
 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012) 

        Proceedings published in International Journal of Computer Applications® (IJCA) 

21 

Advanced Query-based Multi-tier Approach towards 

Detection and Prevention of Web Attacks 

Gaurav Kumar Tak   
School of Computer Science and Information 

Technology 
Lovely Professional University, 

Phagwara, Punjab - 144402, India 

Gaurav Ojha 

Department of Information Technology, 
Indian Institute of Information Technology and 

Management, 
Gwalior, Madhya Pradesh – 474010, India 

 

ABSTRACT 

The Internet, which can be defined as a huge network of 

networks - both wired and wireless, uses the Internet Protocol 

Suite (TCP/IP) to make information available beyond 

geographical boundaries. Computing devices all through the 

world connect to the World Wide Web via the Client Server 

architecture. In this architecture, the client requests some 

information from a web server through a web browser. The 

web server connects to a database server in turn to fetch data. 

The connection between the web server and the database is 

the one that needs to be well secured. This is where the role of 

secure authentication techniques comes into picture. 

Nowadays, Cyber-crimes are becoming rampant. These 

include illegal access of data, illegal interception of data, 

eavesdropping of unauthorized data over an information 

technology infrastructure, etc. Popular Web attacks include 

Spam, Phishing Attacks, Information warfare, Nigerian 

Scams, and Denial-of-Service attacks. At some or the other 

stage, most of these are ramifications of web attacks and SQL 

attacks – practical implementation of an advanced analysis 

and prevention technique of which is explained in this paper. 

It uses a multi-tier approach which makes web applications 

retain their simplicity for the user and complexity for the 

attacker.   

General Terms 

Web Attacks, SQL Injection, Cyber Crimes and Cyber 

Security 

Keywords 

Denial-of-service attacks, XSS, Brute Force, Dormant Phase, 

Alert Phase and Inquisitive Phase. 

1. INTRODUCTION 
A very important part of our day-to-day life, nowadays, is 

Information Technology. It lies at the heart of almost all 

advanced technologies that make human life simplified. The 

number of E-commerce sites, Social Networking sites and 

other web portals is on the rise. Large amounts of data are 

stored in the databases of web portals, the working of which is 

based around web technologies such as PHP, ASP.NET, JSP, 

XHTML and SQL. A simple web application usually consists 

of a PHP server (such as Apache), an SQL database and an 

XHTML front-end which forms the user-interface. Due to the 

large amount of penetration of web services in almost all 

spheres of human life, it becomes important to make sure that 

these services are not tampered with, in any form. 

With an increasing number of web portals, there is also an 

increase in the number of web developers, who either lack 

technical expertise, or are too much focused on the end-user 

requirements so as to ignore security issues in the web 

applications they have developed. Security of a web 

application should be focused on at the time of development 

of the application itself. Since most of the web is largely open, 

it becomes very easy to find security loopholes and turn 

insecure web applications into potential victims for 

exploitation using worm attacks, etc. [1]. 

As per [2], a secure system must have the four features 

defined by the CAIN architecture namely, Confidentiality, 

Availability, Integrity and Non-repudiation. Web applications, 

especially E-commerce and Social Networking sites must 

fulfill these requirements, in order to be classified as secure 

applications. But it has been found that most of them don‟t. 

Most of the internet applications these days are based on 

dynamic scripting (PHP/JSP) in order to allow on-demand 

fetching of data from SQL databases. A database designed for 

this purpose might contain a lot of confidential information 

such as user passwords, bank account details, and other 

personal information. It is considered as a security violation if 

it is possible to gain unauthorized access to such a database, 

sneaking into personal data. An attacker might also misuse 

this data which may be devastating at times. The Structured 

Query Language (i.e. SQL) is aimed at maintaining and 

nurturing data is databases. But SQL statements are very 

prone to harmful modifications which can turn them into 

attacks sequences. A secure system must be able to compare 

the data during usual behavior with that during an observation 

in order to detect an attack. In this paper, the proposed 

technique can detect a large number of web attacks prevalent 

over modern web applications.  

2. ATTACKS OVER THE WEB 
Web attacks also come under the category of cyber-crimes. 

The popular web attacks during present times are [4]: 

 SQL Attacks 

 XSS (Cross Site Scripting) 

 Attacks over Remote Connection 

 Attacks with Code Analysis 

2.1 SQL Attacks 
An SQL injection attack takes place when a hacker changes 

the semantic or syntactic logic of an SQL text string by 

inserting SQL keywords or special symbols within the 

original SQL command that will be executed at the database 

layer of an application [3]. 

An example of an insecure PHP code that can be used for 

login is given below: 

 

$con=mysql_connect("localhost", "root", "gaurav"); 

$condb=mysql_select_db("admission",$con); 

$username=$_REQUEST['username']; 

$password=$_REQUEST['password']; 

$sqlstring= "Select * from login where userid= '$username' 

and password = '$password' "; 



 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012) 

        Proceedings published in International Journal of Computer Applications® (IJCA) 

22 

$sqlexecution=mysql_query($sqlstring); 

if(mysql_num_rows($sqlexecution)==1) 

echo "Login Successful"; 

else 

echo "Login Failed"; 

 

The above code validates the users. The data input by the user 

are assigned to PHP variables username and password and 

then inserted to the SQL query. If the SQL query results in 

one row, it means the user is authorized to access the database 

and if it results in no row then the user is not authorized. Since 

data input by the user are not analyzed, it is possible to inject 

any combination of strings. For example, an attacker can use: 

OR 'a'='a' in the username field and let the password field be 

empty. Now the modified SQL query will be as described 

below: 

 

$sqlstring= "Select * from login where userid= '$username' or 

'a'= 'a' and password = '' "; 

$sqlexecution=mysql_query($sqlstring) or die("Query 

execution failed"); 

 

In the above SQL query, the Boolean expression 'a'= 'a' is 

always true, so it allows the attacker to access the database 

without entering the correct password in the password field of 

the web form. Thus, an attacker will be easily logged in with 

privileges same as those of the other (legitimate) users stored 

in the login table of the database. 

 

2.2 XSS – Cross Side Scripting 
Cross Site Scripting is yet another variety of attacks on Web 

applications. In this malicious data is injected into a database 

so as to gain unauthorized access to a network connection of 

an authorized user. Websites, generally, employ scripts 

written in JavaScript coupled with HTML, which runs on a 

client side rendering application for seamless user experience. 

Attackers utilize the fact that there is a trust relationship 

between a Web server and a browser. Such attacks can occur 

when data sent to the server are put onto the web site without 

being properly analyzed for possible security threats. If the 

data input in a form is a nasty script, it will be run by the 

browser. In the simplest case, a user will be shown pop-up 

window with its session ID completely recognizing it. 

 

2.3 Attacks over Remote Connection 
Using Remote Connections, attackers are able to pass some 

commands to other applications. With Server architecture, the 

attacker can easily gain admin level privileges, thus allowing 

attacks from various remote locations on the servers and can 

easily execute whatever commands he wishes to perform and 

also the desired operations, on the web server. 

 

2.4 Attacks with Code Analysis 
These attacks are performed using some security design errors 

and not necessarily coding errors. These vulnerabilities 

facilitate the attacker to access files, directories, (which reside 

at the web server) and commands   for which users are not 

authorized. 

A Knowledge Base is the modeling of previously occurred 

events in order to predict future events by employing some 

artificial intelligence techniques [5]. It is a sort of database for 

knowledge management, providing the means for the 

computerized collection, organization, and retrieval of 

knowledge. Also a collection of data representing related 

experiences and their results is related to their problems and 

solutions. 

They are basically artificial intelligence tools providing 

intelligent decisions. Knowledge is obtained and represented 

using various knowledge representation techniques rules, 

frames and scripts. The basic advantages offered by such 

system are documentation of knowledge, intelligent decision 

support, self-learning, reasoning and explanation. [6] 

In the employed system, a highly simplified Knowledge Base 

architecture of artificial intelligence is used. 

3. PREVIOUS WORK 
Most of the research being carried out, nowadays, pertaining 

to detection or prevention of SQL attacks can be, in general, 

divided into three categories (1) Runtime HTTP requests, (2) 

Design-time web application source code, and (3) Runtime 

dynamically generated SQL statements. In order to detect 

SQL attacks, some researchers employ only one type of data 

while some others employ two. We, now, discuss some of the 

works done in the field of SQL attacks and their preventions 

based on the above categorization, and give a short summary 

of the advantages and shortcomings of these methods. 

Detection systems which are based on artificial neural 

network techniques, represents several approaches that build 

normal profile based on the training data, behavior of users 

and web applications. A common approach is used to 

characterize network traffic that is data-mining techniques. 

For example, in [7], the authors have described the clustering 

techniques over unlabeled network traces to detect intrusion 

patterns. Some of the statistical techniques have also been 

used to model the network worms‟ behavior [8]. 

Detection approaches based on artificial neural network 

primarily rely on some features of specific applications and 

protocols employed by them. For example, in order to  

recognize sequences of normal system calls for any 

application,  sequence analysis is applied with system calls 

generated by specific applications [9] [10]. These profiles, 

specific to applications, are then used to recognize attacks that 

generate previously undetected sequences. As another 

example, some authors have described about utilization of the 

statistical analysis related to the traffic of network to study the 

normal behavior of applications based on network. This is 

achieved by analyzing packet header information as well as 

the contents of application specific protocols. 

4. PROPOSED METHODOLOGY 
In this paper, an advanced query based multi-tier approach, 

for detecting SQL attacks and other web attacks, is being 

proposed, designed from the base, after realizing the 

complexities involved in these attacks. Knowledge based 

dynamic query generation techniques have been implemented 

in the designed application, which learns from the history of 

previously occurred attacks over the system. The system gains 

efficiency with time. It also maintains a list of common 

attacks which helps detect a larger number of attacks at an 

improved rate. 

The proposed methodology comprises of certain steps in order 

to detect attacks, which are explained in the following article: 

4.1 K.B. Cross-check 
This is perhaps the fastest step in the proposed methodology. It 

validates the input SQL string using the Initial Knowledge 



 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012) 

        Proceedings published in International Journal of Computer Applications® (IJCA) 

23 

Base which stores all the frequent SQL attacks of each 

category and is managed by the probabilistic approach: 

1) Receive input string; 

2) Match Input string with those in attack table; 

3) If result=true; Declare “Attack” else 

Exit (); 

In the above algorithm, if the input string pattern matches with 

the any of the patterns already stored in initial knowledge base, 

then it is declared as an SQL attack and a warning message will 

be generated automatically. In case the input string is not in the 

K.B. but is identified as an attack at a later stage, it will be 

stored in the K.B. for future reference. This step also improves 

the efficiency of the system with time. 

 

4.2 AND-OR Validation 
In this step, the system detects the presence of AND-OR tokens 

in the input string, using string comparison and parsing 

operations. The algorithm, which detects and counts the 

number of AND-OR tokens separately, is given below: 

1) Receive input string; 2) Split each word; 

3) Repeat step 4 and 5 until string ends; 

4) Match each word with AND & OR token; 

5) If result=true //Comment condition is true for any word 

Declare “Attack” else 

Exit (); 

This step only contains parsing operations to validate the AND 

& OR tokens in the final SQL string of the user parameters. 

 

4.3 Equal Sign (‘=’) Validation 
In this step, the system looks for the presence of an „=‟ sign 

within the input string. Algorithm for this step is as follows: 

 

1) Receive input string; 

2) Repeat step 3 and 4 until string ends. 

3) Match each letter with „=‟ token; 

4) If result=true //Comment condition is true for any word 

Declare “Attack” else Exit (); 

 

 

This operation is also executed before execution of the commit 

statement of the SQL string (mysql_query). 

 

 

4.4 Tokens Analysis 
In this step, each letter of input word is split and matched with 

a specific set of attack letters (:,”,‟,#,--,~). Algorithm for this 

step is as follows: 

1) Receive input string; 2) Split Each letter; 

3) Repeat step 4 and 5 until string ends. 

4) Match each letter with set of attack letters (:,”,‟ ,#,-- ,~); 

5) If result=true //Comment condition is true for any letter 

Declare “Attack” else Exit (); 

 

4.5 Tracing Cross Side Scripts 
In this step, the system detects the presence of JavaScript-based 

attacks using JavaScript itself. Sometimes, attackers use 

JavaScript to confuse users while at times it is used to extract 

some confidential information about cookies and access level, 

etc. Following is the algorithm for tracing cross side scripts: 

1)  Receive input string; 2) Split each word; 

3) Repeat step 4 and 5 until string ends. 

4) Match each word with „<script‟ token; 

5) If result=true //Comment condition is true for any letter 

Declare “Cross Side Script Attack” else Exit (); 

The security discussed here can be included in the page coding 

itself at the time of development of the web application. The 

whole methodology has been found to be quite effective in 

order to prevent practically all kinds of SQL and JavaScript 

attacks. 

5. IMPLEMENTATION OF PROPOSED 

METHODOLOGY 

All through the development of the proposed methodology, it 

has been observed that user-friendliness is of utmost 

importance. In order to make sure that the secure web 

applications are silent for the genuine user at the same time, the 

following multi-tier approach is being proposed – 

 

5.1 Dormant Phase 
User ID is initially in Active Mode. The user needs to enter his 

username and password. If the username and password matches 

with those stored in the database of the server, the login is 

authenticated and the user can use his account. If the username 

and password do not match, but username exists in the 

database, the user is given another chance to enter his 

credentials for login at the time of which his IP and username 

will be recorded. If the credentials do not match with the stored 

ones in the second attempt the user will be given another 

attempt and his user ID will be marked as „suspected‟. If the 

login is unsuccessful even after the third attempt, the user ID 

will enter into „Alert Phase‟. 

 

5.2 Alert Phase 
In Passive Mode, the security level is elevated. Now user has 

to enter, in addition to his username and password, an 

additional Image Captcha. This step validates a human user. A 

machine or computer script cannot go beyond this step. If the 

user enters the correct username and password, and also the 

image Captcha properly, then his login is authenticated and he 

can use his account. If the password or Captcha do not match 

for the first time, the user is given another chance to enter his 

credentials. If the entered credentials do not match with the 

stored ones the second time, the user will be given one more 

attempt before marking the username as „Inquisitive‟. If the 

username or password or Captcha are entered wrongly one 

more time, the username enters „Inquisitive Phase‟. 

 

5.3 Inquisitive Phase 
In Inquisitive Phase, the security level is elevated further. 

Now, in addition to the username, password and image 

Captcha, the user needs to enter a special code that will be 

sent via SMS. This secret code or SMS code will be sent to 

the phone number which had been provided by the user at the 

time of registration. The SMS code will be a randomly 

generated string. If the user enters his username, password, 

image Captcha and the SMS code correctly, only then login 

will be authenticated, failing which he won‟t be able to login 

into the account. 

 

5.4 Block Open Accesses 
All open accesses, such as remote login, common attack ports, 

should be kept blocked. FTP connection can still be initiated 

to view files on server. This will prevent any attacks on the 

database server that happen due to unauthenticated login and 

remote access. 

 

 



 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012) 

        Proceedings published in International Journal of Computer Applications® (IJCA) 

24 

5.5 Prevention of Brute Force 
Alert phase helps to block brute force attacks by not letting 

the user to enter the wrong password more than thrice. An 

image captcha is considered safe and cannot be entered by a 

script or software. In case the attacker manually enters 

captcha then he has only three more attempts after which an 

SMS code will be sent to the original user of the account. This 

completely washes away the possibility of trying out more 

combinations of strings for the password. Thus, in this 

methodology, there is a very high level of security and the 

user can be assured that the chances of his/her account being 

compromised are extremely low. 

We have implemented the proposed steps in real time 

scenario, analyzed the user inputs and recorded some attacks 

using above steps and pattern matching techniques. The 

analysis of attacks also represents the efficiency of the 

proposed methodology itself. Using the proposed 

methodology, we are able to detect any misbehavior of users 

and provide an additional layer on the data security. We have 

created the proposed environment using some web 

technologies, HTML, script languages (PHP), AJAX, XML, 

Apache Server and MySQL tools for implementing the 

methodology. JSP and ASP.NET also can be used as script 

languages, in which case we need Apache Tomcat and 

Windows Server (IIS) to process and execute code written in 

JSP and ASP.NET respectively. We also applied some basic 

concepts of PHP, AJAX, MySQL and JavaScript from the 

references [11] [12] [14]. 

 

Figure 1: Representation of proposed methodology 

Figure 1 represents the different steps in the implemented 

scenario. Each step is purely defined and provides two types 

of results using if-else conditions. We have recorded all the 

incoming input strings over the client–server architecture of a 

real time system. We have analyzed each SQL query before 

its execution and always compared the changes between both 

stages (before and after execution). The following table data 

represents the recorded activities about the various kinds of 

attacks and their detection using the above steps. 

 

 



 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012) 

        Proceedings published in International Journal of Computer Applications® (IJCA) 

25 

Table 1: Data of recorded activities 

 
Recorded 

Activities 

Execution Time 

(Per attack) 

Total Attacks 

Performed 
806 - 

Total Attacks 

Detected 
794 - 

K.B. Cross-Check 
94 0.07 seconds 

AND-OR 

Validation 
337 0.193 seconds 

„=‟ Sign 

Validation 
287 0.18 seconds 

Script Analysis 
76 0.28 seconds 

We can get the performance information of the proposed 

methodology using the experimental results which are shown 

in Table 1. There were a total of 806 attacks out of which 794 

were detected, giving an accuracy of 98.51 % and we can 

easily compare these results and performance with the 

previously described approaches of detection of SQL attacks. 

However, it must be noted that, Efficiency and time 

complexity of the results depend on the server configuration 

and pattern of the scripts. 

6. CONCLUSION AND FUTURE WORK 

In our work, we have recorded all the input strings which are 

responsible for the query execution and analyzed them using 

the above described steps. We have executed the methodology 

on an online examination system and recorded and analyzed 

all the SQL strings over a significant period of time. These 

attacks were carried out by some students of universities who 

provided technical support during analysis part of the 

methodology. The experimental results provide the complete 

scenario of the problem and accuracy of above steps. Our 

system indicated that the attacks were detected with 98.51 % 

accuracy. Table 1 represents details of all the recorded attacks 

and detected attacks over the specific time period. 

The proposed methodology is advantageous, as it doesn‟t 

affect the speed and performance of the web applications due 

to lower space and time complexities of the detection 

mechanism. Thus, the whole system is very much secure and 

user-friendly at the same time. 

6. REFERENCES  

[1] CERT/CC, July 2001. Code Red Worm, Exploiting 

Buffer Overflow, in IIS Indexing Service DLL. Advisory 

CA-2001-19. 

[2] Dhiraj, G., Nilkanthrao, July 2009. RSA Based 

Confidentiality and Integrity Enhancements in SCOSTA-

CL, A thesis report, Department of Computer Science 

and Engineering, Indian Institute of Technology, Kanpur, 

India. 

[3] Halfond, W. and Orso, A., AMNESIA, 2005. Analysis 

and Monitoring for Neutralizing SQL Injection Attacks, 

20th IEEE/ACM International Conference on Automated 

Software Engineering, pp. 174--183. USA, New York. 

[4] http://www.applicure.com/solutions/web-application-

security 

[5] Ullman, J., 1989. Database and knowledge base systems, 

In Database and knowledge base systems, Volume 2, 

Computer Science Press. 

[6] Akerkar, R. A., and Srinivas, Priti, Sajja, 2009. 

Knowledge-based systems, Jones & Bartlett Publishers, 

Sudbury, MA, USA. 

[7] Portnoy, L., Eskin, E., and Stolfo, S., November 2001. 

Intrusion Detection with Unlabeled Data Using 

Clustering, Proceedings of ACM CSS Workshop on Data 

Mining Applied to Security, Philadelphia, PA. 

[8] Liljenstam, M., Nicol, D., Berk, V., and Gray, R., 2003. 

Simulating realistic network worm traffic for worm 

warning system design and testing, In Proceedings of the 

ACM Workshop on Rapid Malcode, pages 24–33, 

Washington, DC. 

[9] Forrest, S., May 1996. A Sense of Self for UNIX 

Processes, Proceedings of the IEEE Symposium on 

Security and Privacy, pages 120–128, Oakland, CA. 

[10] Warrender, C., Forrest, S., and Pearlmutter, B. A., 1999. 

Detecting intrusions using system calls: Alternative Data 

Models, IEEE Symposium on Security and Privacy, 

pages 133–145. 

[11] PHP, AJAX, MySQL and JavaScript Tutorials, 

http://www.w3schools.com/ 

[12] Von Ahn, Louis, Blum, Manuel, Hopper, Nicholas and 

Langford, John, CAPTCHA – Using Hard AI Problems 

for Security, In Eurocrypt. 

[13] Cormen, Thomas, H., Leiserson, Charles, E., Rivest 

Ronald, L., and Stein, Clifford, 2001. Introduction to 

Algorithms, MIT Press/ McGraw-Hill. 

[14] History of PHP and related projects, 

http://www.php.net/history. 

[15] Buehrer, G., Weide, B. W., and Sivilotti, 2005. Using 

parse tree validation to prevent SQL injection attacks, 

Proceedings of the 5th International Workshop on 

Software Engineering and Middleware (Lisbon, Portugal, 

September 05 - 06, 2005, SEM '05, ACM, New York, 

NY, P. A, 106-113. DOI= 

http://doi.acm.org/10.1145/1108473.1108496

 


