
 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

28

Efficient Algorithm Selection for Detecting Suitable Test
Case Prioritization

A.Pravin

Research Scholar,
Sathyabama University,

Chennai.

ABSTRACT
 Genetic algorithms have been successfully applied in the area

of software testing. The demand for automation of test case

generation in object oriented software testing is increasing.

Genetic algorithms are well applied in procedural software

testing but a little has been done in testing of object oriented

software. This paper discusses genetic algorithms that can

automatically select an efficient algorithm which is suitable

for test cases selection. This algorithm takes a selected path as

a target and executes sequences of operators iteratively for

efficient algorithm selection to evolve. The evolved efficient

algorithm selection can lead the program execution to achieve

the target path. An automatic path-oriented test data

generation is not only a crucial problem but also a hot issue in

the research area of software testing today. We also propose

genetic algorithm for the selection of the suitable algorithm,

which perform much better than the existing methods and can

provide very good solutions.

General Terms

Automatic selection process, Apriori algorithm, Pincer search

algorithm, FP-Tree algorithm

Keywords

Conformance testing, prioritized test case generation, test case

selection

1. INTRODUCTION
Software being utilized in various situations and software

quality becomes more important than ever. Being main means

of software quality assurance, software testing is very

laborious and costly due to the act that it is accounts for

approximately 50 percent of the elapsed time and more than

50 percent of the total cost in software development [4, 5].

Automatic test data selection is a key problem in software

testing and its implementation can not only significantly

improve the effectiveness and efficiency but also reduce the

high cost of software testing[3, 4]. In particular, it is notable

that various structural test case selection problem can be

transformed into a selection of the best suitable algorithm.

Moreover test case selection; strategy can detect almost 95

percent of errors in program under test [8]. Although efficient

algorithm selection for detecting suitable test case

prioritization is an undesirable problem [6], researchers still

attempt to develop various methods and have made some

progress. These means can be classified as dynamic selection

of suitable algorithm. Dynamic methods include random

selection of suitable algorithm. Dynamic methods include

random selection of algorithms and extract suitable test case

selection it’s a kind of goal-oriented approach [15], and

evolutionary approach [13, 14-16]. As values of input

variables are determined when programs execute, dynamic

test case selection mechanism can avoid

S.Srinivasan
Director – Affiliation,

Anna University of Technology,
Madurai.

those problems with that of the existing methods are

confronted. In this article we propose to investigate the use of

multi objective algorithms in order to combine a test case

generation technique with a test case selection and

prioritization method. The objective of the proposed work is

to generate optimized algorithm to select a suitable test case in

order to their importance with respect to test goals [3]. A

multi objective algorithm can be applied to test case selection

and prioritization problems. The need for multi objective

algorithms to tackle the kind of problems will also be

considering in this paper [4].

2. RELATED WORK
After development and release, software undergo regress

maintenance phase of ten to fifteen years. Modifications in

software may be due to change in customer’s requirements or

change in technology/platform. This leads to release of

numerous versions/editions of the existing software. Also in

case of the version/edition’s test only modified and affected

parts are to be tested to impart confidence in the modified

software which is the process of testing. During development

phase, time and budget of software permits for its thorough

testing but same is not the case for regression testing. So,

effective and intelligent prioritization of the actual software’s

test suite has to be done to make remarkable savings of time

and budget. Several attempts have been made in finding

techniques/algorithms for the test case prioritization. The

time-constrained testing can be reduced to NP-complete

problem and Test case selection and prioritization are well

studied and understood testing techniques. Equally, test case

generation is an active research area. Yet the combination of

these techniques remains largely unexplored. Here we present

a new model for the algorithm selection problem in protocol

conformance testing, the goal of which is to select a suitable

algorithm for a particular test case prioritization from a given

set of algorithms. We also propose genetic algorithm for the

selection of the algorithm, which perform much better than

the existing methods and can provide very good solutions.

 Genetic Algorithms follow the concept of solution

evolution by stochastically developing generations of solution

populations using some given fitness function. They are

particularly applicable to large, non-linear and possibly

discrete in nature kind of problems. Evolutionary algorithms

(EA) when applied for the selection of algorithm the

procedural software can be used to specifically look for test

scenarios that cover certain branches of a program. These

kinds of algorithms are based on reproduction, evaluation and

selection. The GA in general has mainly four stages, which

are evaluation, selection, crossover and mutation. The

evaluation procedure measures the fitness of each individual

solution (also called chromosome) in the population and

assigns it a relative value based on the defining optimization

(or search) criteria here we are taking the chromosomes as

different test cases. The selection procedure randomly selects

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

29

individuals of the current population for development of the

next generation. Various alternative methods exist but all

follow the idea that the fittest have a greater chance of

survival. Selection chooses the chromosomes to be

recombined and mutated out of this initial population.

Recombination reproduces the selected individuals and

exchanges their information (pair-wise) in order to produce

new individuals. This information exchange is called

crossover. The crossover procedure takes two selected

individuals and combines them about a crossover point

thereby creating two new individuals. Mutation introduces a

Small change to each newly created individual. The resulting

individuals are then evaluated through the fitness function. It

transfers the information encoded in the chromosome, the so

called genotype, into an execution of getting a new solution

for the problem that occurs in selection of the test case. The

fitness function measures how well the chromosome satisfies

the test criterion. The implementation of the fitness function

follows earlier standards in evolutionary testing, described in

other articles [11, 12]. This iterative process continues until

one of the possible termination criteria is met: if a known

optimal or acceptable solution level is attained; or if a

maximum number of generations have been performed; or if a

given number of generations without fitness improvement

occur.

3. AUTOMATIC SELECTION

 PROCESS
Genetic Algorithms begins with a set of initial individuals as

the first generation, which are sampled at random from the

problem domain. The algorithms are developed to perform a

series of operations that transform the present generation into

a new, fitter generation [22]. Each individual in each

generation is evaluated with a fitness function. Based on the

evaluation, the evolution of the individuals may approach the

optimal solution. Figure1 explains the overall proposed

architecture and the most common operations of genetic

algorithms are designed to produce efficient solution for the

target problem [15].

The input of our system is a program module which is given

as an input to preprocess. The input comprises the general

information of particular domain provided by the user. For

instance, if the domain provided by the user is Student

academic details. The metadata provided by the user is used to

confine the search through the entire database. In addition to

metadata the user asked to provide desiderata, which is the

information about the required output from the system as

expected by the user.

 The selection of the criteria is done by the user by

listing all the attributes of the database given. The attributes

selected are also influences the selection of the algorithm to

be used for mining. In this criteria selection there are some

parameters are also used as the input to the selection of the

algorithms. The parameters are Runtime, Accuracy,

Comprehensibility, Data input size, Memory utilization.

i) Randomly select two individuals as a couple from the

parent generation.

ii) Randomly select a position of the genes, corresponding to

this couple, as the crossover point. Thus, each gene is divided

into two parts.

iii) Exchange the first parts of both genes corresponding to the

couple.

iv) Add the two resulted individuals to the next generation.

Figure1. Explains the Proposed Architecture

 These operations are iterated until the expected

goal is achieved. Genetic algorithms guarantee high

probability of improving the quality of the individuals over

several generations [5].

Start

Selection Process Java

Program Module to test

Program Module

Given to test on

different data mining

algorithms

Original test data

generation

Test case Selection

Satisfied

Genetic Algorithm

Execution

Stop

 Get suitable Algorithm

Y

N

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

30

4. IMPLEMENTED ALGORITHMS
The input of our system is given by the user. The input

comprises the general information of particular domain

provided by the user. The domain provided by the user can be

of a testing application of a java based program module. The

selection of the criteria is done by attributes of the different

test case conditions. The attributes selected are also influences

the selection of the algorithm to be used for mining.

4.1 Apriori algorithm
Uses a Level-wise search, where k-itemsets (An itemset that

contains k items is a k-itemset) are used to explore (k+1)-

itemsets, to mine frequent itemsets from transactional

database for Boolean association rules. First, the set of

frequent 1-itemsets is found. This set is denoted L1. L1 is

used to find L2, the set of frequent 2-itemsets, which is used

to fine L3, and so on, until no more frequent k-itemsets can be

found. The apriori algorithm is an efficient algorithm for

knowledge mining in form of association rules [2]. We have

recognized its convenience for document categorization. The

original apriori algorithm is applied to a transactional database

of market baskets. In our case, instead of a market basket, we

work with the testing and test case selection (represented by

sets of significant terms).

4.2 Pincer search algorithm
Pincer Search Algorithm uses both, the top-down and bottom-

up approaches to Association Rule mining. It is a slight

modification to Original Apriori Algorithm. In this the main

search direction is bottom-up (same as Apriori) except that it

conducts simultaneously a restricted top-down search, which

basically is used to maintain another data structure called

Maximum Frequent Candidate Set. As output it produces the

Maximum Frequent Set i.e. the set containing all maximal

frequent itemsets, which therefore specifies immediately all

frequent itemsets. The algorithm specializes in dealing with

maximal frequent itemsets of large length.

4.3 FP-Tree Algorithm
It is one of the data mining algorithm here we are using it for

test case selection. The features of the algorithms are:

 Size of FP-tree depends on how items are ordered.

 In the previous example, if ordering is done in

increasing order, the resulting FP-tree will be different

and for this example, it will be denser (wider).

 At the root node the branching factor will Increase from

2 to 5 as shown on next slide.

 Also, ordering by decreasing support count doesn’t

always lead to the smallest tree.

 This algorithmrates frequent itemsets from FP-tree by

traversing in bottom-up fashion.

 This algorithm extracts frequent itemsets [6].

5. RESULTS & DISCUSSION
The algorithm is selected based on the parameters selected.

Here input to the genetic algorithm is the bit corresponding to

each parameter. The input will be a row which contains the

value of the parameter. For some parameters the values may

be kept as levels. The various steps involved are:

(i) The values of the parameters are passed from the

criteria selection module. Parameterized input: [2 3

2 1 0]

(ii) These values are used to form a matrix, which is

given as input to a fitness function.

(iii) A mapping between the input parameters

(chromosome) and the output which are generated

automatically by the number of iterations.

(iv) The output is in the form of decimal values which

corresponds to all the three algorithms.

i. A-priori : 0.0003

ii. Pincer search : 0.0001

iii. FP-tree : 0.0002

(v) The higher value is assumed to be selected

algorithm and that algorithm which is been suitable

for that particular module.

(vi) The result of the experiment is shown in Figure 2

from which it is clear that GP approach outperforms

of the selection of different algorithms.

0.0003

0.0001

0.0002

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

Apriori Printer search FP-tree

Datamining Algorithms

A
c
c
u

r
a
c
y

Figure 2. Different datamining algorithm Vs Accuracy of

the output

6. CONCLUSION
In this paper, the genetic algorithm is used to automatically

select the suitable algorithm for a test case prioritization. The

greatest merit of genetic algorithm in program testing is its

simplicity. Each iteration of the genetic algorithms generates a

generation of individuals. In practice, the computation time

cannot be infinite, so that the iterations in the algorithm are

been limited by fixing a randomized threshold. The quality of

test case selection produces by genetic algorithms is higher

than the quality of test cases produced by random way

because the algorithms that can direct the generation of test

cases to the desirable range fast.

7. REFERENCES
[1] Alspaughy,S.,Walcotty,K.R.,Belanichz,M.,Kapfhammerz

,G.M.,and Soffa,M.L.,‖ Efficient Time-Aware

Prioritization with Knapsack Solvers‖, Proceedings of

the ASE 2007 Workshop on Empirical Assessment of

Software Engineering Languages and Technologies.

Atlanta, Georgia, pp. 1-6.

[2] Askarunisa, A., Shanmugapriya, L., Ramaraj. N., ―Cost

and Coverage Metrics for Measuring the Effectiveness of

Test Case Prioritization Techniques‖, INFOCOMP

Journal of Computer Science, pp. 1-10.

[3] Shin Yoo and Mark Harman,‖Using hybrid algorithm for

Pareto effcient multi objective test suite minimization‖,

Journal of Systems Software, 83(4):689–701, April 2010.

[4] Mark Harman,‖ Making the case for morto: Multi

objective regression test optimization‖, In The 1st

International Workshop on Regression Testing

(Regression 2011), Berlin, Germany, 2011.

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

31

[5] Antonia, B., "Software Testing Research: Achievements,

Challenges, Dreams", in 2007 Future of Software

Engineering: IEEE Computer Society, 2007.

[6] Christian Borgelt, ―An Implementation of the FP-growth

Algorithm‖.

[7] Kant Singh,V., Shah,V., Kumar Jain,Y., Shukla,A.,

Thoke,A.S., Kumar Singh,V., Dule,C., and Parganiha

,V.,―Proposing an Efficient Method for Frequent Pattern

Mining‖.

[8] Wegener,J., and Grochtmann,M., ―Verifying timing

constraints by means of evolutionary testing‖, Real-Time

Systems, Vol.3, No.15, pp. 275-298, 1998.

[9] Wappler,S., and Lammermann,F., ―Using evolutionary

algorithms for the unit testing of object-oriented

software‖, Proceedings of the 2005 Conference on

Genetic and Evolutionary Computation, Washington DC,

USA, June 25-29, ACM, New York, pp. 1053-1060,

2005.

[10] Tonella,P., ―Evolutionary Testing of Classes‖,

Proceedings of the 2004 ACM SIGSOFT Intl.

Symposium on Software Testing and Analysis, Boston,

July 11-14, pp. 119-128, 2004.

[11] B Jones et al. ―Automatic Structural Testing Using

Genetic Algorithms‖, Software Engineering Journal,

Vol.11, No.5, 1996.

[12] McMinn,P., ―Search-Based Software Test Data

Generation: A Survey‖, Software Testing, Verification

and Reliability, Vol.14, No.2, pp. 105—156, 2004.

[13] Koza,D., Genetic Programming: On the Programming of

Computers by Means of Natural Selection, MIT Press,

Cambridge, MA, 1992.

[14] Seesing,A., and Gross,H.G., ―A Genetic Programming

Approach to Automated Test Generation for Object-

Oriented Software‖, International Transactions on

Systems Science and Applications, Vol.1, No.2, pp.127-

134, 2006.

[15] Peter M. Kruse and Magdalena Luniak‖ Automated test

case generation using classification trees. ASQ Software

Quality Professional, 13:4–12, December 2010.

[16] Arturo Hern/andez Aguirre, Salvador Botello Rionda,

Carlos A. Coello Coello, Giovanni Liz/arraga Liz/arraga,

and Efr/en Mezura Montes,‖ Handling Constraints using

Multiobjective Optimization Concepts‖, International

Journal for Numerical Methods in Engineering,

59(15):1989–2017, April 2004.

