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ABSTRACT 

Many engineering design problems can be formulated as 

optimization problems with constraints. In this paper we have 

proposed two modified variants of differential evolution (DE) 

for solving constrained engineering design problems. Pareto-

ranking method is used to handle constrained with proposed 

approaches. The proposed variants named EDE-1 and EDE-2 

are tested on 4 engineering design optimization problems 

taken from literature. Simulation results prove the efficiency 

of proposed approaches. 
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1. INTRODUCTION 
Many engineering design problem can be formulated as 

optimization problem [1]. These types of problems normally 

have mixed (e.g., continuous and discrete)design variables, 

nonlinear objective functions and nonlinear constraints, some 

of which may be active at the global optimum. Constraints are 

very important in engineering design problems, since they are 

normally imposed on the statement of the problems and 

sometimes are very hard to satisfy, which makes the search 

difficult and inefficient [2]. 

Differential Evolution (DE), a kind of genetic algorithm, was 

proposed by Storn and Price [3] in 1995. It has emerged as a 

simple and powerful algorithm for global optimization over 

continuous space. According to frequently reported 

experimental studies, DE has shown better performance than 

many other evolutionary algorithms (EAs) in terms of 

convergence speed and robustness over several benchmark 

functions and real-world problems [4] It has many attractive 

characteristics, such as compact structure, ease to use, good 

convergence and robustness [5]. DE is capable of handling 

non-differentiable, nonlinear, multi-modal objective functions 

and has been successfully demonstrated to a wide range of 

real life problems of science and engineering field such that 

engineering design, chemical engineering, mechanical 

engineering pattern recognition, and so on [5].  

In order to improve the performance of DE, several versions 

of DE variants have been proposed by many researchers over 

the last few decades. Some of the modified variants are; 

Learning enhance DE (LeDE) [5], DE with Trigonometric 

Mutation (TDE) [6], DE with simplex crossover local search 

(DEahcSPX) [7], Cauchy mutation DE (CDE) [8], Mixed 

mutation strategy based DE [9] Fuzzy adaptive DE (FADE) 

[10], DE with self-adaptive control parameter (jDE) [11], 

Opposition based DE(ODE) [12], Self adaptive DE (SaDE) 

[13], adaptive DE with optional external archive (JADE) [14], 

, Modified DE (MDE) [15] , DE with random localization 

(DERL)[16], DE with global and local neighborhood (DEGL) 

[17] and so on. 

A recent literature survey of DE variants is given in [17]-[19] 

In basic DE, the base vector is either randomly selected 

(DE/rand/bin) or is selected ‘greedily’. In this paper we have 

proposed two new mutation schemes for DE, named EDE-1 

and EDE-2. Both schemes aim at efficiently generating the 

base vector in the mutation phase of DE. The only difference 

to DE and both proposed algorithms at base vector in 

mutation operation. 

Here we would like to mention that we have already 

successfully applied EDE-1 and EDE-2 on unconstrained 

benchmark problems in [20]. Encouraged by its performance, 

in the present study, we have extended EDE-1 and EDE-2 for 

solving constrained engineering design problems to check 

their efficiency and robustness on real world application 

problems. 

The rest of the paper is structured as follows; in section 2 we 

give the introduction of basic DE. The description of proposed 

modified DE variants named EDE-1 and EDE-2 are given in 

section 3. In section 4 engineering problems are given. 

Experimental settings and numerical results are discussed in 

section 5 and finally paper is concluded in section 6. 

2. DIFFERENTIAL EVOLUTION 

ALGORITHM 
Simple DE (SDE) is a stochastic, population-based direct 

search method for optimizing real-valued functions of 

continuous variables. The whole structure of DE is similar to 

the Genetic Algorithm (GA), and the main difference between 

standard GA and DE is mutation operation. The mutation is a 

main operation of DE, and it revises each individual’s value 

according to the difference vector of the population. The 

algorithm uses mutation operation as a search mechanism and 

selection operation to direct the search toward the prospective 

regions in the search space.  

The working of DE is as follows: First, all individuals are 

initialized with uniformly distributed random numbers and 

evaluated using the fitness function provided. letP={Xi,G, i=1, 

2, ..,NP} be the population at any generation G. Here NP 

denotes the population size and each Xi is a D-dimensional 

vector i.e. Xi={x1,i, x2,i,...xD,i}. For simple DE (DE/rand/1/bin) 

[1] the mutation, crossover and selection operator defined as 

follows  

Mutation: For each target vector Xi,G, the mutant vector 

Vi,G={v1,i,G, v2,i,G,,...vD,i,G,} is defined as 
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where },....,2,1{,, 321 NPrrr  are randomly chosen 

integers, different from each other and also different from the 

running index i. F (>0) is a scaling factor which controls the 

amplification of the difference vector. 

Crossover: Crossover  is  introduced  to  increase  the 

diversity of perturbed parameter vectors Vi,G={v1,i,G, 

v2,i,G,,...vD,i,G,}.let Ui,G = (u1,i,G, . . . , uD,i,G) be the trail vector 

then Ui,G is defined as; 
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wherej, k {1,…, D} k is a random parameter index, chosen 

once for each i, Cr is the crossover probability parameter 

whose value is generally taken as Cr [0, 1]. 

Selection: The final step in the DE algorithm is the selection 

process. Each individual of the temporary (trial) population is 

compared with its target vector in the current population. The 

one with the lower objective function value survives the 

tournament selection and go to the next generation. 



 


otherwiseX

XfUfifU
X

Gi

GiGiGi

Gi

,

,,,

1,

)()(

 (3) 

3. PROPOSED ALGORITHMS[20] 
In this section In this Section, we describe the proposed EDE-

1 and EDE-2. In our proposed algorithms, we used two new 

mutation strategies based on Donor mutation [8] and then 

selected the mutation strategy stochastically either from the 

basic DE or from the newly proposed strategy. For this 

purpose first we fix a probability (Pr) and then generate a 

uniform random number (R) between 0 and 1. If the value of 

R is less than Pr then select a new mutation strategy otherwise 

select basic mutation strategy (as per eq. 1). 

The two new mutation strategies (say) M1 and M2 are defined 

as below; 
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Here μi i=1, 2are uniform random number between 0 and 1 

and μ3=1-( μ1+ μ2) satisfies the condition (μ1+ μ2+ μ3=1). 

The other strategy is defined as: 
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Where
i i=1, 2, 3 are uniform random number between 0 and 

1.and 
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3.1 Pseudo code of proposed algorithms 
1 Begin 

2 Generate uniformly distribution random 

population P={X1,G, X2,G,..., XNP,G}. 

 Xi,G= Xlower +(Xupper –Xlower)*rand(0,1), where i 

=1, 2,..,NP 

3 Evaluate f(Xi,G) 

4 While (Termination criteria is met ) 

5 { 

6     For i=1:NP 

7            { 

8          Select three vectors Xr1,G, Xr2,Gand 

Xr3,Gdifferent from Pwhere r1≠r2≠r3≠i 

9              If(R<Pr) /* R=rand(0,1) and  

Pr= probability */ 

10             { 

11 Perform mutation operation as defined by 

Equation-4 (EDE-1) or Equation-5 (EDE-2) 

12              } 

13            Else 

14            { 

15               Perform mutation operation as defined 

by Equation-1 

16             } 

17               Perform crossover operation as defined 

by Equation-2 

18               Evaluate f(Ui,G+1) 

19               Select fittest vector from Xi,Gand Ui,G+1to 

the population of next 

              generation by using Equation-3 

20             } 

21     Generate new population Q= {X1,G+1, X2,G+1,..., 

XNP,G+1}
 

22  } /* end while loop*/ 

23 END 

4. ENGINNERING DESIGN PROBLEM 
To validate proposed EDE-1 and EDE-2 algorithms, four 

engineering design problem are taken from literature [2]; 

 E01-Welded Beam Engineering Design problem 

 E02-Pressure Vessel Design Optimization Problem  

 E03-Speed Reducer Design Optimization Problem 

 E04-Tension/Compression Spring Design Optimization 

Problem  

5. SIMULATION RESULTS AND 

COMPARISONS  

5.1 Experimental Settings 
The following settings are taken in the present study after 

consulting various literature: 

 Population size (NP) is taken as 100 [11], [12], [14], [20] 

 Control parameters, scaling factor F is taken as 0.5 and 

crossover rateCr is fixed at 0.9[11], [14] 

 Over all acceleration rate AR, which is taken for the 

purpose of comparison is defined as [12]: 
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 In every case, a run is terminated. 
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is reached where fmax and fmin are respectively maximum 

and minimum fitness value [12] or when the maximum 

number of function evaluation (NFE=106) was obtained 

[8].  

 All algorithms are implemented in Dev-C++ and the 

experiments are conducted on a computer with 2.00 GHz 

Intel (R) core (TM) 2 duo CPU and 2- GB of RAM [20] 

5.2 Results and Discussion 
Solutions of engineering problems are given in Table 1 -

Table-4. Each solution is taken as the average of 50 runs by 

each algorithm. We comparison the algorithms in the term of 

number of function evaluation (NFE) and in term of CPU 

time. 

In Table -1 solution of E01 is given. From the Table we can 

see that all three algorithms DE,EDE-1 and EDE-2 gives the 

exact solution of E01 but DE take 17200 NFE to reach the 

solution while total NFE taken by EDE-1 and EDE-2 are 

10580 and 9470 respectively. Hence the acceleration rate of 

EDE-1 with respect to DE is 38.35 while acceleration rate of 

EDE-2 with respect to DE is 44.94. Also DE take average 

CPU time by DE is 0.2 sec while CPU time by EDE-1 is 0.1 

sec and 0.1 sec also by EDE-2. 

Similarly we can see results the for the other engineering 

problem from Table-2, Table3 and Table-4 and analysis the 

efficiency of MDE-1 and MDE-2. 

The good performance of the proposed algorithms in terms of 

convergence can also be observed from Fig 1. 

Table 1.Solution of E01 

Solution DE EDE-1 EDE-2 

x1 0.2058 0.2058 0.2058 

x2 3.4684 3.4683 3.4683 

x3 9.0367 9.0366 9.0368 

x4 0.2057 0.2057 0.2057 

f(x) 1.72515 1.72512 1.72515 

NFE 17200 10580 9470 

AR(%) -- 38.35 44.94 

CPU 

Time(sec) 

0.2 0.1 0.1 

 

Table 2. Solution of E02 

Solution DE EDE-1 EDE-2 

x1 0.8125 0.8125 0.8125 

x2 0.4375 0.4375 0.4375 

x3 42.1069 42.1085 42.1085 

x4 176.65 176.63 176.63 

f(x) 6060.91 6059.93 6059.93 

NFE 24700 16340 14900 

AR(%) -- 33.84 39.67 

CPU Time (sec) 0.1 0.04 0.02 

 

Table 3. Solution of E03 

Solution DE EDE-1 EDE-2 

x1 3.4999 3.4999 3.4999 

x2 0.7 0.7 0.7 

x3 17.0 17.0 17.0 

x4 7.3 7.3 7.3 

x5 7.8 7.8 7.8 

x6 3.35021 3.35021 3.35021 

x7 5.28661 5.28661 5.28661 

f(x) 2996.31 2996.31 2996.31 

NFE 22080 13650 12740 

AR(%)  38.17 42.30 

CPU Time (sec) 0.2 0.1 0.05 

 

Table 4. Solution of E04 

Solution DE EDE-1 EDE-2 

x1 0.05169 0.05169 0.05169 

x2 0.3568 0.3567 0.3567 

x3 11.28 11.2870 11.2870 

f(x) 0.012661 0.012664 0.012665 

NFE 3300 2660 2380 

AR(%) -- 19.39 27.87 

CPU Time 

(sec) 

0.1 0.1 0.1 

 

Table 5. Comparisons of Proposed EDE-1and EDE-2 with 

other evolutionary algorithms in term of average fitness 

value 

Algorithms Problems 

E01 E02 E03 E04 

CPSO 1.72802 6061.0777 NA 0.012674 

SicPSO 1.72485 6,059.7143 2,996.3481 0.012665 

CoPSO 1.72485 6,059.7143 2,996.3481 0.012665 

MBFOA 2.386 6060.460 NA 0.012665 

He et al 2.381 6059.7143 NA 0.012671 

Coello 1.74830 6288.7445 NA 0.012704 

Coello& 

Montes 

1.72822 6059.9463 NA 0.012681 

EDE-1 1.72512 6059.93 2996.31 0.012664 

EDE-2 1.72512 6059.93 2996.31 0.012665 

 

 

                     (a)                                          (b) 

 

                          (c)                                       (d) 

Fig 1: Convergence graphs of E01, E02 E03 and E04 
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5.3 Comparison with other algorithms 
Comparison of proposed EDE-1 and EDE-2 with other 

algorithms CPSO [1], SicPSO [2], CoPSO[21] and MBFOA 

[22], He et al [23], Coello [24] andCoelloandMontes [25] are 

given in Table-5. From Table it can see that proposed EDE-1 

and EDE-2 gives the similar solution as other evolutionary 

algorithms. 

6. CONCLUSIONS 
In the present study, two modified versions of DE, named 

EDE1 and EDE2 are proposed and validated on a set of 4 

engineering design problems. All the problems are non linear 

in nature and the numerical results are compared with basic 

DE and also with other methods previously used for solving 

these problems. It was observed that the proposed variants are 

quite competent for solving such problems.  
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