
 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

5

Two Enhanced Differential Evolution Algorithm Variants

for Constrained Engineering Design Problems

Pravesh Kumar

Department of Paper
Technology,

IIT Roorkee, Saharanpur
Campus

Millie Pant
Department of Paper

Technology,
IIT Roorkee, Saharanpur

Campus

V.P. Singh
Director,

Stallion Institute of Technology,
Saharanpur

ABSTRACT

Many engineering design problems can be formulated as

optimization problems with constraints. In this paper we have

proposed two modified variants of differential evolution (DE)

for solving constrained engineering design problems. Pareto-

ranking method is used to handle constrained with proposed

approaches. The proposed variants named EDE-1 and EDE-2

are tested on 4 engineering design optimization problems

taken from literature. Simulation results prove the efficiency

of proposed approaches.

Keywords

Differential evolution, Donor mutation, Engineering design

optimization, Constraints handling.

1. INTRODUCTION
Many engineering design problem can be formulated as

optimization problem [1]. These types of problems normally

have mixed (e.g., continuous and discrete)design variables,

nonlinear objective functions and nonlinear constraints, some

of which may be active at the global optimum. Constraints are

very important in engineering design problems, since they are

normally imposed on the statement of the problems and

sometimes are very hard to satisfy, which makes the search

difficult and inefficient [2].

Differential Evolution (DE), a kind of genetic algorithm, was

proposed by Storn and Price [3] in 1995. It has emerged as a

simple and powerful algorithm for global optimization over

continuous space. According to frequently reported

experimental studies, DE has shown better performance than

many other evolutionary algorithms (EAs) in terms of

convergence speed and robustness over several benchmark

functions and real-world problems [4] It has many attractive

characteristics, such as compact structure, ease to use, good

convergence and robustness [5]. DE is capable of handling

non-differentiable, nonlinear, multi-modal objective functions

and has been successfully demonstrated to a wide range of

real life problems of science and engineering field such that

engineering design, chemical engineering, mechanical

engineering pattern recognition, and so on [5].

In order to improve the performance of DE, several versions

of DE variants have been proposed by many researchers over

the last few decades. Some of the modified variants are;

Learning enhance DE (LeDE) [5], DE with Trigonometric

Mutation (TDE) [6], DE with simplex crossover local search

(DEahcSPX) [7], Cauchy mutation DE (CDE) [8], Mixed

mutation strategy based DE [9] Fuzzy adaptive DE (FADE)

[10], DE with self-adaptive control parameter (jDE) [11],

Opposition based DE(ODE) [12], Self adaptive DE (SaDE)

[13], adaptive DE with optional external archive (JADE) [14],

, Modified DE (MDE) [15] , DE with random localization

(DERL)[16], DE with global and local neighborhood (DEGL)

[17] and so on.

A recent literature survey of DE variants is given in [17]-[19]

In basic DE, the base vector is either randomly selected

(DE/rand/bin) or is selected ‘greedily’. In this paper we have

proposed two new mutation schemes for DE, named EDE-1

and EDE-2. Both schemes aim at efficiently generating the

base vector in the mutation phase of DE. The only difference

to DE and both proposed algorithms at base vector in

mutation operation.

Here we would like to mention that we have already

successfully applied EDE-1 and EDE-2 on unconstrained

benchmark problems in [20]. Encouraged by its performance,

in the present study, we have extended EDE-1 and EDE-2 for

solving constrained engineering design problems to check

their efficiency and robustness on real world application

problems.

The rest of the paper is structured as follows; in section 2 we

give the introduction of basic DE. The description of proposed

modified DE variants named EDE-1 and EDE-2 are given in

section 3. In section 4 engineering problems are given.

Experimental settings and numerical results are discussed in

section 5 and finally paper is concluded in section 6.

2. DIFFERENTIAL EVOLUTION

ALGORITHM
Simple DE (SDE) is a stochastic, population-based direct

search method for optimizing real-valued functions of

continuous variables. The whole structure of DE is similar to

the Genetic Algorithm (GA), and the main difference between

standard GA and DE is mutation operation. The mutation is a

main operation of DE, and it revises each individual’s value

according to the difference vector of the population. The

algorithm uses mutation operation as a search mechanism and

selection operation to direct the search toward the prospective

regions in the search space.

The working of DE is as follows: First, all individuals are

initialized with uniformly distributed random numbers and

evaluated using the fitness function provided. letP={Xi,G, i=1,

2, ..,NP} be the population at any generation G. Here NP

denotes the population size and each Xi is a D-dimensional

vector i.e. Xi={x1,i, x2,i,...xD,i}. For simple DE (DE/rand/1/bin)

[1] the mutation, crossover and selection operator defined as

follows

Mutation: For each target vector Xi,G, the mutant vector

Vi,G={v1,i,G, v2,i,G,,...vD,i,G,} is defined as

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

6

)(* ,,,, 321 GrGrGrGi XXFXV

 (1)

where },....,2,1{,, 321 NPrrr are randomly chosen

integers, different from each other and also different from the

running index i. F (>0) is a scaling factor which controls the

amplification of the difference vector.

Crossover: Crossover is introduced to increase the

diversity of perturbed parameter vectors Vi,G={v1,i,G,

v2,i,G,,...vD,i,G,}.let Ui,G = (u1,i,G, . . . , uD,i,G) be the trail vector

then Ui,G is defined as;

otherwisex

kjCrrandifv
u

Gij

jGij

ij

,,

,,

,

 (2)

wherej, k {1,…, D} k is a random parameter index, chosen

once for each i, Cr is the crossover probability parameter

whose value is generally taken as Cr [0, 1].

Selection: The final step in the DE algorithm is the selection

process. Each individual of the temporary (trial) population is

compared with its target vector in the current population. The

one with the lower objective function value survives the

tournament selection and go to the next generation.

otherwiseX

XfUfifU
X

Gi

GiGiGi

Gi

,

,,,

1,

)()(

 (3)

3. PROPOSED ALGORITHMS[20]
In this section In this Section, we describe the proposed EDE-

1 and EDE-2. In our proposed algorithms, we used two new

mutation strategies based on Donor mutation [8] and then

selected the mutation strategy stochastically either from the

basic DE or from the newly proposed strategy. For this

purpose first we fix a probability (Pr) and then generate a

uniform random number (R) between 0 and 1. If the value of

R is less than Pr then select a new mutation strategy otherwise

select basic mutation strategy (as per eq. 1).

The two new mutation strategies (say) M1 and M2 are defined

as below;

)(

)(:1

,3,2

,33,22,11,

GrGr

GrGrGrGi

xxF

xxxmM

 (4)

Here μi i=1, 2are uniform random number between 0 and 1

and μ3=1-(μ1+ μ2) satisfies the condition (μ1+ μ2+ μ3=1).

The other strategy is defined as:

)(

)/()/()/(:2

,3,2

,33,22,11,

GrGr

GrGrGrGi

xxF

xxxmM

(5)

Where
i i=1, 2, 3 are uniform random number between 0 and

1.and

3

1i

i

3.1 Pseudo code of proposed algorithms
1 Begin

2 Generate uniformly distribution random

population P={X1,G, X2,G,..., XNP,G}.

 Xi,G= Xlower +(Xupper –Xlower)*rand(0,1), where i

=1, 2,..,NP

3 Evaluate f(Xi,G)

4 While (Termination criteria is met)

5 {

6 For i=1:NP

7 {

8 Select three vectors Xr1,G, Xr2,Gand

Xr3,Gdifferent from Pwhere r1≠r2≠r3≠i

9 If(R<Pr) /* R=rand(0,1) and

Pr= probability */

10 {

11 Perform mutation operation as defined by

Equation-4 (EDE-1) or Equation-5 (EDE-2)

12 }

13 Else

14 {

15 Perform mutation operation as defined

by Equation-1

16 }

17 Perform crossover operation as defined

by Equation-2

18 Evaluate f(Ui,G+1)

19 Select fittest vector from Xi,Gand Ui,G+1to

the population of next

 generation by using Equation-3

20 }

21 Generate new population Q= {X1,G+1, X2,G+1,...,

XNP,G+1}

22 } /* end while loop*/

23 END

4. ENGINNERING DESIGN PROBLEM
To validate proposed EDE-1 and EDE-2 algorithms, four

engineering design problem are taken from literature [2];

 E01-Welded Beam Engineering Design problem

 E02-Pressure Vessel Design Optimization Problem

 E03-Speed Reducer Design Optimization Problem

 E04-Tension/Compression Spring Design Optimization

Problem

5. SIMULATION RESULTS AND

COMPARISONS

5.1 Experimental Settings
The following settings are taken in the present study after

consulting various literature:

 Population size (NP) is taken as 100 [11], [12], [14], [20]

 Control parameters, scaling factor F is taken as 0.5 and

crossover rateCr is fixed at 0.9[11], [14]

 Over all acceleration rate AR, which is taken for the

purpose of comparison is defined as [12]:

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

7

%
others

EDEOthers

NFE

NFENFE
AR

 In every case, a run is terminated.
04

minmax 10 ff

is reached where fmax and fmin are respectively maximum

and minimum fitness value [12] or when the maximum

number of function evaluation (NFE=106) was obtained

[8].

 All algorithms are implemented in Dev-C++ and the

experiments are conducted on a computer with 2.00 GHz

Intel (R) core (TM) 2 duo CPU and 2- GB of RAM [20]

5.2 Results and Discussion
Solutions of engineering problems are given in Table 1 -

Table-4. Each solution is taken as the average of 50 runs by

each algorithm. We comparison the algorithms in the term of

number of function evaluation (NFE) and in term of CPU

time.

In Table -1 solution of E01 is given. From the Table we can

see that all three algorithms DE,EDE-1 and EDE-2 gives the

exact solution of E01 but DE take 17200 NFE to reach the

solution while total NFE taken by EDE-1 and EDE-2 are

10580 and 9470 respectively. Hence the acceleration rate of

EDE-1 with respect to DE is 38.35 while acceleration rate of

EDE-2 with respect to DE is 44.94. Also DE take average

CPU time by DE is 0.2 sec while CPU time by EDE-1 is 0.1

sec and 0.1 sec also by EDE-2.

Similarly we can see results the for the other engineering

problem from Table-2, Table3 and Table-4 and analysis the

efficiency of MDE-1 and MDE-2.

The good performance of the proposed algorithms in terms of

convergence can also be observed from Fig 1.

Table 1.Solution of E01

Solution DE EDE-1 EDE-2

x1 0.2058 0.2058 0.2058

x2 3.4684 3.4683 3.4683

x3 9.0367 9.0366 9.0368

x4 0.2057 0.2057 0.2057

f(x) 1.72515 1.72512 1.72515

NFE 17200 10580 9470

AR(%) -- 38.35 44.94

CPU

Time(sec)

0.2 0.1 0.1

Table 2. Solution of E02

Solution DE EDE-1 EDE-2

x1 0.8125 0.8125 0.8125

x2 0.4375 0.4375 0.4375

x3 42.1069 42.1085 42.1085

x4 176.65 176.63 176.63

f(x) 6060.91 6059.93 6059.93

NFE 24700 16340 14900

AR(%) -- 33.84 39.67

CPU Time (sec) 0.1 0.04 0.02

Table 3. Solution of E03

Solution DE EDE-1 EDE-2

x1 3.4999 3.4999 3.4999

x2 0.7 0.7 0.7

x3 17.0 17.0 17.0

x4 7.3 7.3 7.3

x5 7.8 7.8 7.8

x6 3.35021 3.35021 3.35021

x7 5.28661 5.28661 5.28661

f(x) 2996.31 2996.31 2996.31

NFE 22080 13650 12740

AR(%) 38.17 42.30

CPU Time (sec) 0.2 0.1 0.05

Table 4. Solution of E04

Solution DE EDE-1 EDE-2

x1 0.05169 0.05169 0.05169

x2 0.3568 0.3567 0.3567

x3 11.28 11.2870 11.2870

f(x) 0.012661 0.012664 0.012665

NFE 3300 2660 2380

AR(%) -- 19.39 27.87

CPU Time

(sec)

0.1 0.1 0.1

Table 5. Comparisons of Proposed EDE-1and EDE-2 with

other evolutionary algorithms in term of average fitness

value

Algorithms Problems

E01 E02 E03 E04

CPSO 1.72802 6061.0777 NA 0.012674

SicPSO 1.72485 6,059.7143 2,996.3481 0.012665

CoPSO 1.72485 6,059.7143 2,996.3481 0.012665

MBFOA 2.386 6060.460 NA 0.012665

He et al 2.381 6059.7143 NA 0.012671

Coello 1.74830 6288.7445 NA 0.012704

Coello&

Montes

1.72822 6059.9463 NA 0.012681

EDE-1 1.72512 6059.93 2996.31 0.012664

EDE-2 1.72512 6059.93 2996.31 0.012665

 (a) (b)

 (c) (d)

Fig 1: Convergence graphs of E01, E02 E03 and E04

NFE

1000 2000 3000 4000 5000 6000 7000

fi
tn

e
s
s

1

2

3

SDE

EDE-1

EDE-2

NFE

1000 2000 3000 4000

fi
tn

e
s
s

4000

6000

8000

10000

12000

14000
SDE

EDE-1

EDE-2

NFE

1000 2000 3000 4000

fi
tn

e
s
s

2000

3000

4000

5000

6000 SDE

EDE-1

EDE-2

NFE

200 400 600 800 1000

fi
tn

e
s
s

0

10

20

30

40

SDE

EDE-1

EDE-2

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

8

5.3 Comparison with other algorithms
Comparison of proposed EDE-1 and EDE-2 with other

algorithms CPSO [1], SicPSO [2], CoPSO[21] and MBFOA

[22], He et al [23], Coello [24] andCoelloandMontes [25] are

given in Table-5. From Table it can see that proposed EDE-1

and EDE-2 gives the similar solution as other evolutionary

algorithms.

6. CONCLUSIONS
In the present study, two modified versions of DE, named

EDE1 and EDE2 are proposed and validated on a set of 4

engineering design problems. All the problems are non linear

in nature and the numerical results are compared with basic

DE and also with other methods previously used for solving

these problems. It was observed that the proposed variants are

quite competent for solving such problems.

7. REFERENCES
[1] He, Q. and Wang, L. 2007. An effective co-evolutionary

particle swarm optimization for constrained engineering

design problems.Engineering Applications of Artificial

Intelligence, pp. 89-99.

[2] Esquivel, S. C. and Cagnina, L.C. 2008. Solving

engineering optimization problems with the simple

constrained particle swarm optimizer. Informatica 32,

319–326.

[3] Storn, R. and Price, K. 1995. Differential evolution—a

simple and efficient adaptive scheme for global

optimization over continuous. Spaces. Berkeley, CA,

Tech. Rep. TR-95-012.

[4] Vesterstrom, J. and Thomsen, R. 2004. A comparative

study of differential evolution, particle swarm

optimization. and evolutionary algorithms on numerical

benchmark problems. Congress on Evolutionary

Computation, 980-987.

[5] Cai, Y., Wang, J. and Yin, J. 2011. Learning enhanced

differential evolution for numerical optimization.

Springer-Verlag, Soft Computing . doi:10.1007/s00500-

011-0744-x

[6] Fan, H. and Lampinen J. 2003. A trigonometric mutation

operation to differentia evolution. Journal of Global

Optimization. 27, 105-129.

[7] Noman, N. and Iba, H. 2008. Accelerating differential

evolution using an adaptive local Search. IEEE

Transaction of Evolutionary Computing. 12(1), 107–125.

[8] Ali, M. and Pant, M. 2010. Improving the performance

of differential evolution algorithm using cauchy

mutation. Soft Computing. doi:10.1007/s00500-010-

0655-2

[9] Pant, M., Ali, M. and Abraham, A. 2009. Mixed

mutation strategy embedded differential evolution. IEEE

Congress on Evolutionary Computation, 1240-1246.

[10] Liu, J. and Lampinen, J. 2005. A fuzzy adaptive

differential evolution algorithm. Soft Computing Fusion

Found Methodol Appl. 9(6), 448–462.

[11] Brest, J., Greiner, S., Boskovic, B., Mernik, M. and

Zumer, V. 2006.Self adapting control parameters in

differential evolution: a comparative study on numerical

benchmark problems. IEEE Transaction of Evolutionary

Computing. 10(6), 646–657.

[12] Rahnamayan, S., Tizhoosh, H. and Salama, M. 2008.

Opposition based differential evolution. IEEE

Transaction of Evolutinary Computing. 12(1), 64–79.

[13] Qin, A. K., Huang, V.L.and Suganthan ,P.N. 2009.

Differential evolution algorithm with strategy adaptation

for global numerical optimization. IEEE Transaction of

Evolutionary Computing. 13 (2), 398–417.

[14] Zhang, J.and Sanderson, A. 2009. JADE: adaptive

differential evolution with optional external archive.

IEEE Transaction of Evolutionary Computing. 13(5),

945–958.

[15] Babu, B.V. and Angira, R. 2006. Modified differential

evolution (MDE) for optimization of non-linear chemical

processes. Computer and Chemical Engineering. 30,

989-1002.

[16] Kaelo, P. and Ali, M.M. 2006. A numerical study of

some modified differential evolution algorithms.

European Journal of Operational Research. 169, 1176-

1184.

[17] Das, S., Abraham, A., Chakraborty, U. and Konar, A.

2009. Differential evolution using a neighborhood based

mutation operator. IEEE Transaction of Evolutionary

Computing. 13(3), 526–553 .

[18] Neri, F. and Tirronen, V. 2010. Recent advances in

differential evolution: a survey and experimental

analysis. ArtifIntell Rev. 33 (1–2), 61–106.

[19] Das, S. and Suganthan, P.N. 2011. Differential evolution:

a survey of the state-of-the-art. IEEE Transaction of

Evolutionary Computing. 15(1), 4-13.

[20] Kumar, P., Pant, M. and Abraham. A. 2011. Two

enhanced differential evolution variants for solving

global optimization problems. In Proceeding of Third

World Congress on Nature and Biologically Inspired

Computing (NABIC 2011) IEEE, pp. 208-213.

[21] Aguirre, A. H., Zavala, A. M., Diharce, E. V. and

Rionda, S. B. 2007. COPSO: Constrained optimization

via PSO algorithm. Technical report No. I-07-04/22-02-

2007, Center for Research in Mathematics (CIMAT).

[22] Montes, E.M. and Ocana, B. H. Bacterial foraging for

engineering design problems: preliminary results.

[23] He, S., Prempain, E. and Wu, Q.H. 2004. An improved

particle swarm optimizer for mechanical design

optimization problems. Engineering Optimization,

36(5):585–605.

[24] Coello, C.A.C. 2000. Use of a self-adaptive penalty

approach for engineering optimization problems.

Computers in Industry 41,113–127.

[25] Coello, C.A.C. and Montes, E.M. 2002. Constraint-

handling in genetic algorithms through the use of

dominance-based tournament selection. Advanced

Engineering Informatics 16, 193–203.

