
 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

11

Emergence of Software Product Line

Divya Chadha
Maharishi Markandeshwar University

Mullana-Ambala, India.

Narender Singh

Maharishi Markandeshwar University
Mullana-Ambala, India.

ABSTRACT

Software Product line is emerging as an important paradigm

and has provided competitive and various other benefits to

organizations. This can help to overcome problems caused by

resource shortages. The approach promotes asset re-use

throughout the software life cycle, and facilitates product

customization.

In this paper, we describe the emergence of software product

line and its increasing scope. The first part of paper describes

introduction to software engineering, software crisis and its

principle. The other parts describe software reusability, types of

reusable software assets, software product line, its processes,

and its real-life applications. Related work and conclusion are

discussed at last sections of the paper.

General Terms

Software Reusability, Software Product Lines.

Keywords

Software Engineering, Software Engineering Principles,

Software Crisis, Software Reuse.

1. INTRODUCTION
Over the past number of years Software is evolving at a rapid

pace. Information System is also becoming more complex and

is being emerged as an important engineering discipline. In this

scenario it is very important to implement high level concepts

and techniques to develop this complex information system and

this process is not straight forward but a bit tedious.

Development of this complex system and large size projects

always involve some unpredictable errors and violation of

constraints and results into software crisis [1] or software

runways. The main causes behind this are exceeding budget,

late delivery of software, poor quality software, user

requirements when not completely supported by the software,

and when maintenance is difficult and in some cases where

software is unreliable.

With evolution of software, constraints related to various

technologies are also increasing. Wasserman [2] summarized

the seven key changes that have impact on software engineering

practice. It involves changing economics of computing-lower

hardware & greater development cost, emergence of powerful

desktop computing, extensive local and wide area network etc.

He argued that any of these developments would have had a

significant impact on the software development process. To

overcome these constraints, the concept of software engineering

introduced and it is evolving rapidly.

The conferences [3] sponsored by NATO in 1968 gave popular

impetus to the term "software engineering". Since that time, the

need for a more disciplined and integrated approach to software

development has been increasingly recognized. Software

Engineering is a profession that is dedicated to design,

implement and modify software to improve its quality, reduce

cost and make it maintainable and faster to build. It is a

systematic approach to the analysis, design, assessment,

implementation, test, maintenance and reengineering of

software, that is, the application of engineering to software. The

IEEE Computer Society's Software Engineering Body of

Knowledge defines software engineering as the application of a

systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software, and the

study of these approaches; that is, the application of engineering

to software [1]. It aims at establishing sound principles to obtain

economical software that is reliable and works efficiently on

real machines. Sommerville [4] gave a new definition of

software engineering as being concerned with theories, methods

and tools for developing software.

Software engineering like other engineering disciplines is not

constrained by materials governed by physical laws. A

McDermid [5] point out that software engineering is to become

a true discipline .It too must have an appropriate foundation in

science and mathematics.

Evolution of software engineering has laid to emergence of new

techniques and phases in software development process. The

results of various phases were being analyzed by observing

their results and software engineering has to evolve its

principles as a result of it. The following are the software

engineering principles that develop a foundation for efficient

software process model.

Modularity [6] is expressed in terms of independent functions.

A program is divided into various small modules or

subprograms that are separately compiled. There is connection

between these structures and modularity is based on constraints

applicable on modules.

Abstraction [7] is another principle that only presents some

necessary features or a brief description about the process.

Conformability [7] is a principle, which ensures that

information needed to verify correctness has been explicitly

stated.

Source code browsing [8] describes contribution of various

factors to readability and maintainability of an application.

Readability is increased by making a clear intention while

writing code that is program by intention. The main idea is to

make code understandable by user e.g. choosing identifier name

that can be easily readable and recognized by programmers as

well as other users and also matches that application.

Software metrics [9] is a principle that measures various aspects

of software. The major advantage is that it provides an ease

classify, compare and analyze the task. It enhances features of

interest in software quantitatively.

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

12

Reverse engineering [10] category is during maintenance phase

when engineers have to solve problems having poorly

documented software system. This is helpful to represent

system at higher level of abstraction.

Reuse [2] includes making use of various components again to

improve usability of already available features and reduce cost.

2. SOFTWARE REUSABILITY
Software reuse is a major area that has significantly improved

software productivity and quality. This is an important utility

for software engineering. Software reuse [11] is the utilization

of already developed components. These previously built

components like code, architecture, design, programs can be

used to implement or update software systems. A good software

reuse process facilitates the increase of productivity, quality,

and reliability, and the decrease of costs and implementation

time [12]. It is process of creating software components from

predefined software systems. In this process software assets can

be used as components that can be used again and again.

Software can be developed for Reuse and with Reuse. It is very

important to explicitly reuse components while satisfy all other

properties. It is very important to develop an analytical method

based on measures of software size in terms of complexity and

functionality [13]. Reusability rising trends are shown in Fig 1.

This shows that reusability usage is day by day increasing

because of increased productivity and cost effectiveness. New

techniques are implemented for software reuse with various

software components which considers two main principles

commonality and variability.

Fig 1. Reusability Rising Trend

3. TYPES OF REUSABLE SOFTWARE

ASSETS
Reusability of software depends on how efficiently the software

assets or components used. There are various components that

can be reused like code or design. It is important to locate all

these components [14] and efficiently stored them in a

repository and their existence must be realized.

3.1 Software code
It can be reused. It can be used as a module again in another

software development and add features of software asset

reusability to software development.

3.2 Requirements
Requirements can also be used as assets. A template software

requirement component can be implemented in various aspects

for customer having same or different category of requirements

by making few deviations in present model.

3.3 Architecture or design document
This is a representation of software process, or model it can be

considered as architecture of whole development cycle or a

particular module. An architecture or design is also considered

to be an important software asset that can be reused.

3.4 Test plans
These are very necessary for checking working of software. It

saves a lot of time if same test plan is used for one or more

software development lifecycle.

3.5 Design decisions & Templates for any

asset
These are the most expensive factor of design planning phase of

software development. Its reuse is most cost effective for

developers of software. Software Reuse results in reduced cost

and investment. The reused components when collected must be

properly located [15]. There must be a classification scheme for

components and effective repositories for getting efficient core

asset.

4. TYPES OF SOFTWARE REUSE
The Software reuse is classified on the basis of some measures.

These parameters are described in [16].

4.1 Reuse over fungible systems
Software reuse has portability feature which means that new

software can be created from already existing software and can

be moved from one environment to another. It is adaptable to

various platforms. Commonality is the important feature of

software reuse that shows usage of a common component again

and again for different versions.

4.2 Reuse over different domains
 This is an important concept in which domain knowledge can

be used to get new system form a past of previous one. Domain

is first analyzed and then redesigning of domain is done

according to usage and requirement in new production. It

involves process of identifying domains, finding commonalities

and then reusing them.

4.3 Reuse over time
Reuse over time has given concept of maintenance, evolution

and versions. Maintenance of software is the need after some

time of its delivery. Its maintenance is required each time.

Evolution of software is its emergence with new features.

Versions of software are released with new features. Example is

Software Product line that reuses software with commonality

and variability.

5. SOFTWARE PRODUCT LINE
Software Product Lines (SPL) [17] refers to engineering

techniques where a new system is created by using common

means of production. In this system, software assets can be

reused to construct new software. For example to create a

product line of similar products some common components or

parts are assembled or configured to design various products.

The study of software product lines includes collection of

similar type of software system that has some commonality.

The architecture and components are central to the set of core

assets. The individual products in the software product line are

built from these core assets according to a pre-defined

production plan, sometimes called a reuse guide [18]. It arises

repository of common software components that create software

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

13

artifacts when reuse is predicted [19].This can be achieved by

using a commonality function or by using common assets again

and managing it by implementing along with variability. SPL

techniques can be used in various phases of software

development life cycle. For example in software testing phase

software product line can be used for using similar test plan

components in various software development processes.

Optimization of SPL and deviation of these techniques are also

considered for efficient implementation.

6. SOFTWARE PRODUCT LINE

PROCESS
Software product lines can be described in terms of four simple

concepts that form the process of software product line, as

illustrated below:

6.1 Core Assets
These assets can be composed in various ways to create

products that can be configured. These software assets are the

main ingredient for software product line because of their

nature to be reused again. These assets are requirements, source

code components, test cases, architecture, and documentation.

The main feature of these assets is commonality of architecture

for various product lines. To accommodate variation among the

products, variation points are included and deviations are

affixed among paths.

6.2 Product Decisions
This phase describes analysis of those variable features that can

be reused. Based on particular software asset a product decision

suitable for that particular product is taken with constraints and

few deviations in asset or that reusable component product

decision actually defines a product line. A decision model is

then built

6.3 Production process
This is a phase in which product decision is used to select

software asset that is used and its configuration is also

determined. This consists of composing and configuring

products from the software asset inputs. This is a means of

composing products out of assets.

6.4 Process Outcome
It is the result of Software process and gives the range of

product that can be produced by applying software product line.

Software Product Output can best tell the results of

implementing this methodology in software development

lifecycle. The output of software product line that is produced

by applying common software assets and various decisions can

tell effectiveness of this technique.

Fig 2 shows that the key to the SPL approach is to identify the

commonalities and variability of the product members.

Commonality refers to core assets and Variability refers to

decisions that can vary depending on a particular problem,

requirement and component development. Fig 2 taken from [21]

shows the usage of Core Assets with product development.

These are amalgamated under the control of management to

give unique output.

Fig 2. Basic Software Product Line Concepts

Software Product Line is a methodology that provides a variety

of software products by accumulation of product decision and

software asset. A matrix of software product line is presented

below in Fig 3. It shows software assets at X-axis and product

decision at Y-axis. And output is shown inside the matrix that is

outcome of these two features. The results in every case vary

by applying combination of one asset with a particular product

decision.

Pi where i =1 to n is n number of Software Assets.

Dj where j=1 to m is m number of Product Decisions

PiDj => is combination of ith software asset and jth product

decision.

Fig 3. Shows matrix of software assets and product decision.

7. REAL LIFE APPLICATIONS
There are various applications of this technology. Some

applications are as following technology.

 Big Lever Software [20] researched and developed new

software product line technology and was referred as Self

Configuring Software Product line technology. They provided

different point of views and levels of software reuse that

effectively enhanced productivity of software product line.

 Advancement in Big Lever Software [21] was described with

three new methods that provided very significant software

product lines practices, software mass customization with

configurations, minimally invasive transitions to software

product line practice, and bounded combinatory.

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

14

 Philips Medical System, MRI Software [22] adopted Software

Product line methods because of its variability and

commonality feature. Philips provides several product lines in

various technologies X-ray, ultrasound, magnetic resonance

and computer tomography. It is very difficult process to test

MRI scanner software and it heavily depend on selected

hardware.

 Service-oriented applications [23] required implementation of

Software Product Line. SPL practices can be leveraged to

support the development of these applications and to promote

the reusability of assets throughout the iterative and

incremental development of software product families.

 Control Channel Toolkit (CCT) [24] built under the direction

of the United States National Reconnaissance Office (NRO) is

a software asset base for a software product line of ground-

based spacecraft command and control systems came into

existence. This product line base system had a set of reusable

software components and tools to help integrate them into

complete systems.

 Capability Maturity Model [25] proposed by Lawrence G.

Jones Albert L. Soule is based on concepts and essential

elements of Software Product Line. Various software

engineering process groups have given their acceptance to

this model. It focuses on continuous process improvement,

process standardization and basic project management and

covers various process areas like organizational process

performance, verification, validation, technical solution,

product integration, project monitoring and control.

 Metal Processing Line (MPL) [26] Implemented Software

Product line for its machine software. In a MPL, each

machine is controlled by its own software; there is a

Programmable Logic Control (PLC). PLC is a program that

controls and synchronizes all the machines. Supervision

Control and Data Acquisition (SCDA) is another program for

monitoring and visualizing the line. Program like PLC were

made to attend customer requirement each time because of

reusability concept MSI adopted SPLE to its MPL software

and to its sub-domains also.

 A new version of Supplier Trading exchange (STX) [27] and

its predecessor successfully implemented at Komatsu were

developed with support of already available functionality of

ERP product to provide a solution next to ERP products. So,

an integrated procurement product was planned including

direct materials purchasing, indirect materials purchasing, and

e-procurement, e-invoicing to be integrated via one Supplier

Trading exchange (STX). Some of the functionality was

already available in existing products (e.g. direct materials

purchasing in the ERP-product), while other functionality

needed to be created.

8. RELATED WORK
Software Product line is a developing area in which researchers

have proposed many techniques, approaches and methods. This

section reviews the related work done by various researchers in

this field. J. Bayer et al. [28] developed the Pulse (Product Line

Software Engineering) methodology for the purpose of enabling

the conception and deployment of software product lines within

a large variety of enterprise contexts. The main consideration in

this system was customizability and product centric feature with

domain engineering. John D. McGregor [29] presented a

different view of product line by implementing test related

activities that can be used to form test process for product line

organizations. The report described the test cases used to detect

defects for software product line processes. L. M. Northrop [30]

from Software Engineering Institute reviewed SPL activities

and practice area. Some basic concepts are formulated in the

paper. SPL approaches and some success stories have also been

described in this paper. M. Matinlassi [31] performed

comparative study for Software Product Line design

architectures. An evaluation framework is introduced in this

paper.This evaluation framework was introduced for

comparison between five design methods COPA, FAST, FORM,

KobrA and QADA. Yu Chen et al. [32] proposed to develop a

simulator for cost-benefit analysis. The aim is to predict cost of

selected software line product process. Process definition is an

important stage to initiate the actual working. It is very

necessary to determine cost, time and resource estimation.

Simulator can be used to estimate these parameters for various

product line processes. D. Fischbein et al. [33] proposed Modal

Transition system and its semantics for behavior conformance

for software product line architectures. They provided

shortcomings of traditional behavior modeling formalisms such

as Labelled Transition Systems and difference between existing

and proposed approach. G. K. Hanssen and T. E. Fægri [34]

presented a different perspective of Software Product Line by

performing case study for company that has integrated practices

from software product line engineering (SPLE) and agile

software development (ASD). The paper described overview

SPLE and ASD and how they are related. J. Zhang et al. [35]

described role of aspects in Software Product Line from 3

phases. The effects of implementation of aspect-oriented

software development are presented in this paper. The

encapsulation and compatibility of variable features into

architectural components is also presented. L. Chen et al. [36]

presented the concept of variability management from different

aspects. Virtual management is used to estimate the degree to

which SPL is successful. They presented chronological

background of different approaches and reviewed key issues

regarding evolution of these approaches in VM research. F Mafi

et al. [23] described how reusability of assets can be attained by

developing service oriented applications by implementing

software product line practice.

9. CONCLUSION
Software product line has become a very important area to be

implemented in software development lifecycle because of its

advantages. The most important is competitive benefit that is

the main aim of every project. Other benefits are reduction in

time to create and deploy a new product, number of defects per

product, maintenance and cost per product. SPL increases total

numbers of products that can be deployed and managed,

improve competitive product value, profit margins, product

quality, scalability of market and ability to hit market. Hence

after analyzing the literature of this research topic it has been

realized that at present and in coming time software product

line is going to be emerged as a very effective methodology to

reduce cost and increase efficiency of software systems and can

efficiently use already stored software assets in repository.

Application of SPL is felt necessary with rapid evolution of

technology or software. It will be very necessary to make more

and more use of already present assets and resources in near

future to compete in an environment when there will be heavy

scarcity of resources and limited cost constraint.

10. REFERENCES

[1] Pressman, R. 1992. Software Engineering: A Practitioner

’.s Approach, 3‘d edition, McGraw Hill.

[2] Wasserman, A. I. 1996.Toward a Discipline of Software

Engineering, IEEE Software.

[3] Naur, P. and Randel, B. 1969. Software Engineering:

Report of the Working Conference on Software

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

15

Engineering, Garmisch, Germany, October 1968. NATO

Science Committee.

[4] Sommerville, I. 1996. Sofinre Engineering, Addison

Wesley.

[5] McDennid, J. 1991. Software Engineer’s Reference Book,

Butterworth Heinemann.

 [6] Parnas, D. L 1972. A Technique for Software Module

Specification with Examples. Communications of the

ACM (CACM), 15(5):330–336.

[7] Ross, D. T., Goodenough, J.B. and Irvine, C.A. 1975.

Software Engineering: Process, Principles and Goals.

[8] Astels, D. 2003. Test-Driven Development – A Practical

Guide, Prentice Hall.

[9] Conte, S. D., Dunsmore, H. E. and Shen, V. Y. 1986.

Software Engineering Metrics, Benjamin Cummings,

Software Metrics: A Rigorous Approach, Chapman and

Hall, Fenton, N, E.

[10] Chikofsky, E. J. and Cross, J. H. 1990. Reverse

Engineering and Design Recovery: A Taxonomy, IEEE

Software.

[11] Jones, T. C. 1984. Reusability in Programming: A Survey

of the State of the Art.. IEEE Transactions on Software

Engineering, vol. SE-10, no. 5.

[12] .Jalender, B., Govardhan, A. and Premchand, P. 2010. A

Pragmatic Approach To Software Reuse. Journal of

Theoretical and Applied Information Technology (JATIT),

Vol 14 No 2, pp.87-96.

[13] Harsh, O. K. and Sajeev, A. S. M. 2006. Component

based-Explicit Software Reuse, Engineering Letters, 13:1,

EL_13_1_4, Advance online publication.

[14] Rao, C. V. G. and Niranjan, P. 2010. A Mock up tool for

Software Component reuse repository. International

Journal of Software Engineering and Applications, Vol 1,

No.-2.

[15] Rao, C. V. G. and Niranjan, P. 2008.An Integrated

Classification Scheme for Efficient Retrieval of

Components. Journal of Computer Science 4 (10): 821-

825, 2008 ISSN 1549-3636, Science Publications.

[16] http://alpha.fdu.edu/~levine/reuse_course/lesson1.html.

[17] www.softwareproductline.com

[18] Software Engineering Institute, The Product Line Practice

(PLP) Initiative, Carnegie Mellon University,

www.sei.cmu.edu/activities/plp/plp_init.html.

[19] Krueger, C. 1992. Software Reuse. ACM Computing

Surveys. 24, 2 (June), 131-183.

[20] Krueger, C. W. 2000. Big Lever Software, Software

Product Line Reuse in Practice. IEEE.

[21] Krueger, C. W. 2006. New Methods in Software Product

Line Development.10th International Software Product

Line Conference, IEEE.

[22] Jaring, M., Krikhaar, R. L. and Bosch, J. 2008.Modelling

Variability and Testability Interaction in Software Product

Line Engineering, Seventh International Conference on

Composition-Based Software Systems, IEEE .

[23] Mafi, F., Mafi, S. and Mohsenzadeh, M. 2010. Service

Composition in Service Oriented Product Line.

International Journal on Computer Science and

Engineering, Vol. 02, No.

 09, 2859-2864.

[24] Clements, P., Cohen, S., Donohoe, P. and Northrope, L.

2001 Control Channel Toolkit: A Software Product Line

Case Study. Technical report CMU/SEI-2001-TR-030.

[25] Jones, L. G. and Soule, A. L. 2002. Software Process

Improvement and Product Line Practice: CMMI and the

Framework for Software Product Line Practice.

[26] Sellier, D., Benguria, G. and Urchegui, G. 2007.

Introducing Software Product Line Engineering for Metal

Processing Lines in a Small to Medium Enterprise, IEEE.

[27] Versendaal, J. M. and Brinkkemper, S. 2003.Benefits and

Success Factors of Buyer-Owned Electronic Trading

Exchanges: Procurement at Komatsu America

Corporation. Journal of Information Technology Cases and

Applications, vol. 5, no. 4, 2003, pp. 39-52.

[28] Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D.,

Schmid, K., Widen, T. and DeBaud, J. 1999. PuLSE: A

Methodology to Develop Software Product Lines. Best

Paper Symposium on Software Reusability ‘99 (SSR’99),

Los Angeles.

[29] McGregor, J. D. 2001. Testing a Software Product Line..

[30] Northrop, L. M.. 2002. Software Engineering Institute,

SEI’s Software Product Line Tenets, IEEE SOFTWARE

J u l y / August 2002

[31] Matinlassi,, M. 2004. Comparison of Software Product

Line Architecture Design Methods: COPA, FAST, FORM,

KobrA and QADA, IEEE.

[32] Chen, Y., Gannod, G. C. and Collofello, J. S. 2005.A

Software Product Line Process Simulator.

[33] Fischbein, D., Uchitel, S. and Braberman, V. 2006. A

foundation for behavioural conformance in software

product line architectures. ACM New York, NY, USA.

[34] Hanssen, G. K. and Faegri, T. E. 2007. Process fusion: An

industrial case study on agile software product line

engineering.

[35] Zhang, J., Cai X. And Liu, G. 2008. The Role of

Aspects in Software Product Lines.

[36] Chen, L., Babar M. A. and Ali, N. 2009. Variability

management in software product lines: a systematic

review, ACM USA.

http://dl.acm.org/author_page.cfm?id=81100306465&coll=DL&dl=ACM&trk=0&cfid=78920575&cftoken=14082898
http://dl.acm.org/author_page.cfm?id=81100510892&coll=DL&dl=ACM&trk=0&cfid=78920575&cftoken=14082898
http://www.acm.org/publications
http://www.acm.org/publications

