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ABSTRACT 
Pseudo Zernike Moments (PZMs) are very popular moments 

among the family of orthogonal radial moments. While 

several methods have been proposed to enhance accuracy, 

accurate PZMs computation for gray level images is still an 

open issue. PZMs suffer from image discretization error, 

geometric error and numerical integration error, which result 

in the degradation of the reconstructed images for high order 

of moments. It is observed that these errors are significant for 

the small images. In this paper, PZMs are computed after 

image interpolation on the small size images. Bi-cubic 

interpolation is used to increase the number of sampling 

points of the image. Experimental results show that the 

proposed method provides much improved accuracy of PZMs 

which provide very accurate reconstructed images, numerical 

stability and rotation invariance. 
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1.  INTRODUCTION 
Zernike Moments (ZMs) and Pseudo Zernike Moments 

(PZMs) are most popular moments among the family of 

circularly orthogonal moments. They have been used in 

optical character recognition, pattern classification, face 

recognition, content based image retrieval, image 

watermarking, image reconstruction etc.[1-8]. PZMs are 

observed to be superior than ZMs in terms of their feature 

representation capabilities, since pseudo-Zernike polynomials 

contain  1
max

2
p  linearly independent polynomials of order 

pmax
 , whereas Zernike polynomials contain only 

   2/21
maxmax

 pp
 
linearly independent polynomials due 

to the condition evenqp  . PZMs are less sensitive to 

image noise than the ZMs [9,10]. Apart from being rotation 

invariant, they can be made scaling and translation invariant 

after certain geometric transformations [11,12]. 

The conventional direct method which depends on zeroth 

order approximation produces geometric error and numerical 

integration error in PZMs calculation. By inscribing the circle 

inside square image, the information loss occurs due to the 

inexact approximation of the circular boundary of the image 

[13]. To overcome the geometric error, Wee and Paramesran 

[14] proposed an alternative mapping technique in which the 

complete image is contained inside the unit disk. Therefore, 

all pixels are involved in the computation of radial moments. 

However, this enhances the domain of calculation. The second 

source of error is from sampling the kernel functions of 

moments at pixel center, which is referred to as the numerical 

integration error. However, the higher number of sampling 

points of an image gives better approximation and reduces 

numerical integration error. The higher order moments which 

are mainly affected by numerical integration error, are 

required for better representation of an image and for its 

accurate reconstruction. The image discretization error, 

geometric error and numerical integration error are more 

pronounced in small images. Therefore, applications such as 

optical character recognition and template matching in which 

small images are used, are more prone to these errors when 

PZMs are used as features. Numerical instability is another 

problem which is observed in moment calculation. Numerical 

instability occurs when the images are small and moment 

orders are high. The traditional zeroth order approximation of 

PZMs calculation makes PZMs numerically unstable for 

moment order 20
max

p . There are, however, fast recursive 

algorithms [15] which make them stable even for moment 

orders upto 40 for an image of size 3232  pixels.  

The geometric error and numerical integration error are 

reduced if the resolution of the image is increased. It is shown 

by Liao and Pawlak [13] that the geometric error is of the 

order )( 2215
NO  , where N is the resolution of a square image 

in one direction. The numerical integration error is reduced if 

the kernel function of PZMs is sampled at more number of 

points instead of a single point on a square grid. The increased 

resolution of an image is obtained by image interpolation 

from a lower resolution image. There are various interpolation 

techniques in the literature for image interpolation but the 

performance of bi-cubic interpolation [16,17] is found to be 

most appropriate when a good tradeoff between accuracy and 

speed of calculation is required. 

In this paper, we propose bi-cubic interpolation technique to 

reduce the image discretization error for representing a 

discrete image function by a piecewise continuous function. 

The resulting continuous image function is then used to 

compute the PZMs at higher resolutions which, in turn, reduce 

the geometric error and numerical integration error thus 

providing very accurate PZMs. Numerical stability is achieved 

by resorting to recursive relations for the fast computation of 

PZMs. The enhanced accuracy of PZMs results in better 

image reconstruction and improved invariance to rotation. 
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2. PSEUDO ZERNIKE MOMENTS 

2.1 Basic Formulation 

The PZMs of order p  and repetition q of a two dimensional 

image function ),( rf  over a unit disk are defined by 
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where the image function ),( rf is defined over discrete 

square domain NN  and ),(* rVpq  are the complex 

conjugate of the pseudo Zernike polynomials ),( rVpq , given 

by 

erRrV jq
pqpq
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where p is a non-negative integer, 1,||0  jpq , 
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pqA  is often split into real and imaginary parts, A
R
pq  and 

A
I
pq , as given below 
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The radial polynomials )(rRpq  are expressed as 
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Since the integration in Eq.(1) does not have an analytical 

solution, it is approximated in a discrete domain as [13] 
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where ),( yx ki  is the centre of the pixel ),( ki  given by 
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D
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The pixel ),( ki  has an elemental area ki yx   which 

represents the grid ],[],[ 11 baba kiki   where, 
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Figure 1(a) represents an 88  image. Figure 1(b) is an 

inscribed circular region of the image where the circular 

boundary is approximated by square grids for which 

1
22  yx ki . For this circle, ND  . Figure 1(c) describes the 

outer circle which encloses the square image completely and 

for which 2ND  .

 
In the first mapping process, given in Fig. 1(b), the pixels 

whose centers fall outside the boundary of the unit disk are 

ignored. The centers of many square grids on image boundary 

lie outside the circle and, therefore, these square grids are left 

out in the process of moment calculation. On the other hand, a 

square grid whose center lies inside the circle takes part in the 

calculation even though a part of it falls outside the circle. 

This creates geometric error in the computation of moments. 

However second approach given in Fig. 1(c) removes 

geometric error but increases the domain of computation. We 

use both mapping approaches to observe the results for the 

proposed algorithm. 

Suppose that moments of all orders and repetitions maxp
 
are 

given, then the image is reconstructed as follows. 
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The closeness of reconstructed image function ),(ˆ yxf with 

the original image function ),( yxf
 
reflects the ability of a 

method to describe an image. The fidelity criterion which 

measures this closeness is expressed in terms of mean square 

reconstruction error (MSRE) represented by   and defined by 
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  (a)                         (b)                     (c)   

Fig.1: (a) An 88  image, (b) inscribed circle approximated by square grids, (c) outer circle containing the whole square 

image.

2.2 Recurrence Relation for )(rRpq  

It can be observed that the computation of radial polynomial 

)(rRpq  is time consuming. In order to enhance the speed 

there are many approaches, among them the recursive 

methods [15] are found to be very useful and numerically 

stable. The recursive methods are characterized by reduced 

time complexity. A p-recursive method for the calculation of 

radial polynomials of PZMs is given by [15]. 
q
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3. THE PROPOSED ALGORITHM 

The zeroth order approximation of the PZMs defined by 

Eq.(1) is given by Eq.(6). We resample the image function 

using interpolation for better approximation of the image 

function. Bi-cubic interpolation [16] is used to resample the 

image function, which uses sixteen 44
 
neighboring pixels 

for its estimation. The bi-cubic interpolation given by Keys 

[16] is commonly used for digital images. It has been proved 

by Reichenbach and Geng [17] that other advanced methods 

provide marginal improvements in interpolation at the cost of 

a high complexity of computation and their implementation. 

Let ],[],[),( 11 babayx kiki  , then the function value 

),( yxf  within the grid is represented by 
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where u is the interpolation kernel as given below and  hx  

and h y  are the x and y coordinates sampling increments. 
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The interpolation on the image boundaries are treated as 

special cases. For more details, one can refer [16]. For 

experimental purpose, we resample the image by taking 44  

sampling points within each grid for maintaining a balance 

between speed and accuracy. However, higher sampling 

points give better approximation of an image but it takes 

much more time for computation. After performing the bi-

cubic interpolation over an image, we perform zeroth order 

approximation as given in Eq.(6) for the computation of 

PZMs. We use recursive algorithms for the computation of 

radial polynomials which not only reduce the time 

complexity, but also provide numerical stability. 

4. EXPERIMENTAL ANALYSIS 
The computational framework presented in this paper is 

implemented in Visual C++6.0 under Windows environment 

on a PC with 3.0 GHz CPU and 3GB RAM. We take twelve 

standard gray scale images which are normally used for 

various image processing analysis [14]. The original images 

are 256256  pixels in size which are resized to 6464
 

pixels. 

4.1. Accuracy and Reconstruction 

Capability 
The experiments are performed for the three cases: (i) & (ii) 

the zeroth order approximation using the direct approach, and 

recursive approach, respectively, and (iii) the proposed 

approach using bi-cubic interpolation of image. The results 

are presented both for the inscribed circle, i.e., ND   and 

outer circle, i.e., 2ND  . 

 

The average MSRE for twelve images with respect to the 

order of moment is depicted in Fig.2 and Fig.3 for inscribe 

circle and for outer circle, respectively. For the proposed 

method, MSRE decreases with respect to the increase in pmax. 

It is shown that the MSRE is much lower by using the 

proposed method for high order of moments for both 

inscribed circle and outer circle. 
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Fig.2: Average mean square reconstruction error,  , as a 

function of order of moments for twelve standard images 

of 6464  pixels (inscribed circle). 

 

Fig.3: Average mean square reconstruction error,  , as a 

function of order of moments for twelve standard images 

of 6464  pixels (outer circle). 

 

Fig.4: Lena 6464  image (one of the standard images of 

size 256256  pixels which is resized to 6464
 
pixels). 

It may be recalled that the MSRE represents the gross aspect 

of image reconstruction error, it does not provide the local 

trend of instability in PZMs. This is clear in figures which 

illustrates the visual aspects of reconstructed images using 

PZMs. The experiments are conducted on 6464  Lena image 

which has high contrast of gray values. Figure 4 displays the 

original Lena image and Fig. 5 and Fig.6 represent the 

reconstructed images using various methods and different 

moment orders pmax. The quality of the reconstructed images 

shows that the zeroth order approximation using direct 

method of the computation of PZMs is highly unstable and it 

is observed that for 20
max

p  the magnitude of PZMs 

assume high values. However, the images reconstructed using 

recursive method are numerical stable except in the vicinity of 

the centre of the circle. The instability is reflected through 

white spots around the centre and it increases with the 

increase of the moment order pmax. On the other hand, the 

quality of reconstructed images using proposed method is far 

better than that of traditional methods. There is no white spot 

in the vicinity of the centre of the circle, both for inscribed 

circlular disk and outer circle. The proposed method using bi-

cubic interpolation have better reconstruction capability and 

numerical stablity as compared to traditional methods. 

 

Fig.5:
 
Reconstructed image of Lena

 
6464

  
using PZMs, 

with different orders, 8010
max

top 
 
for inscribed circle. 
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Fig.6:
 
Reconstructed image of Lena

 
6464

  
using PZMs, 

with different orders, 8010
max

top 
 
for outer circle. 

4.2 Rotation Invariance
 

Rotation invariance is one of the most useful characteristics of 

PZMs. This property is, however, affected by various errors 

and the discrete nature of the image function. In order to 

analyze the effects of errors on rotation invariance, all twelve 

standard images are resized to 6464  pixels and rotated by 

angles ranging from 0
o  to 90

o  with an interval of 10
o . In 

order to evaluate quantitatively the effect of rotation, we 

define the average mean square error, MSE, of PZMs 

magnitudes as 

   
 

p

p

p

q
pqpq AA

L
MSE

max

0 0

21 
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where 90,...,20,10,0
oooo  are the angles of rotation set in 

our experiments, Apq  and Apq


 
are the PZMs of the non-

rotated and rotated images, respectively, and L is the total 

number of moments for a given maximum order pmax
, which 

is given as      2/21
maxmax ppL  .

 
The average MSE is 

plotted for various angles of rotation for the twelve standard 

images for various methods by taking 20
max

p  and the 

results are shown in Fig.7 and Fig.8 corresponding to 

inscribed circle and outer circle, respectively. It is observed 

that the curves for the direct and recursive methods overlap 

meaning thereby that they reflect the same trend for rotation 

invariance. The average value of MSE is quite high for 

20
max

p . On the other hand, the proposed method provides 

small values of average MSE as compared to direct method 

and recursive method. This shows that the rotation invariance 

property is severely affected by the presence of these errors. 

 

Fig.7: Effect of rotation on average mean square error 

(MSE) of PZMs magnitude for 20
max

p
 
on 12 standard 

images (inscribed circle). 

 

 

Fig.8: Effect of rotation on average mean square error 

(MSE) of PZMs magnitude for 20
max

p
 
on 12 standard 

images (outer circle). 

5. CONCLUSIONS 

The computation of PZMs suffers from discretization error, 

geometric error and numerical integration error. The presence 

of these errors affects the performance of image description 

capability of these moments. These errors are more 

pronounced in small images. In this paper, we propose an 

approach through image interpolation which reduces these 
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errors. The proposed method uses bi-cubic interpolation of 

image function which provides higher resolution of image 

function, thereby, enhancing the number of sampling points. 

We know that the geometric error and numerical integration 

error are reduced if more number of sampling points are 

available for PZMs calculation. Thus the proposed method not 

only reduces discretization error but also reduces geometric 

error and numerical integration error. The enhanced accuracy 

is reflected through better image reconstruction and improved 

invariance to rotation. The proposed method for the 

computation of PZMs does not turn out to be prohibitive 

because of the computation of kernel functions at more than 

one location. It requires only 2.97 seconds, 3.47 seconds as 

compared to the direct method which requires 5.84 seconds, 

6.93 seconds, respectively for inscribed circle and outer circle 

for 6464  pixels image for 20
max

p . Thus the method can 

be used for applications such as optical character recognition 

and template matching where small images are used. 
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