
 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

10

Web Page Compression using Huffman Coding
Technique

Manjeet Gupta Brijesh Kumar
Assistant professor,Department of CSE associate professor, Department of IT

JMIT ,Radaur Lingyaya’s university

ABSTRACT

Compression helps in reducing the redundancy in the data

representation so as to reduce the storage requirement of it.

Compression is an important technique used to improve web

retrieval latency Compression is an important technique used to

improve web retrieval latency. Plethora of algorithms is

available for compressing the data. Some of the algorithms

helps in achieving lossless compression and some are good at

lossy compression. The objective of this study is to analyze the

amount of compression that can be achieved by the use of

existing Huffman Coding on web pages and to suggest further

improvement that can be done to compress web pages so as to

achieve better compression ratio and compression efficiency.

The proposed technique may works even better with large files.

How d o u know . This paper also outlines the comparison of

various compression methods using different parameters.

General Terms

Huffman codes, Compression algorithm.

Keywords

Compression , Compression ratio, Redundancy codes, lossless.

1. INTRODUCTION
The lavishing amount of web pages on internet has increased

the demand for bandwidth requirement. Especially with the

growing technology where lots and lots of web pages

containing every field of knowledge, commerce, and

communication have become available. Over the last decade

there has been an unprecedented explosion in the amount of

digital data transmitted via the Internet in the form of text,

images, video, sound, computer programs, etc. If this trend

expected to continue, then it will be necessary to develop a

compression algorithm that can most effectively use available

network bandwidth by compressing the data at maximum level.

Along with this it is mandatory to consider the security aspects

of the compressed data transmitting over Internet, as most of

the text data transmitted over the Internet is very much

vulnerable to an attack. Compression can be done on Image

files and data files. Image compression is the application of

Data compression on digital images [6]. Compression is the

process of reducing the amount of data needed for storage or

transmission of a given piece of information (text, graphics,

video, sound, etc.), typically by use of encoding techniques [4].

Data compression stands for compressing data or files

containing data so that they can be stored in much less memory

space that they had been stored in their original form. It lets you

store more stuff in the same space, and it helps to transfer that

stuff in less time, or with less bandwidth [3]. The task of

compression consists of two components, an encoding

algorithm that takes a message and generates a “compressed”

representation (hopefully with fewer bits), and a decoding

algorithm that reconstructs the original message or some

approximation of it from the compressed representation. These

two components are typically intricately tied together since they

both have to understand the shared compressed representation.

There are two types of compression algorithms – lossy and

lossless [7]. Lossless algorithms, which can reconstruct the

original message exactly from the compressed message, and

lossy algorithms, which can only reconstruct an approximation

of the original message. Lossless algorithms are typically used

for text, and lossy for images and sound where a little bit of loss

in resolution is often undetectable, or at least acceptable.

Huffman algorithm [2] is a method for construction of

minimum redundancy codes .It is a three step process .The first

step is to analyze the file to be compressed and to built the

code tree. The second step is to compress the file based on

Huffman codes generated by the analyzation step. The third

step is to decompress the file back in to its original form[1].

Huffman developed a coding procedure for statistically

independent source in order to minimize the average code

length. A technique is introduced which compresses a web

page at the server –side and decompresses again on the client

side so that the same page can be transferred to client- side in

lesser time[8]. The technique has been tested using a java based

program. The program firstly asks for the web page to be

compressed, analyze it, compresses the contents using Huffman

Encoding Scheme and stores the compressed file in an output

html file. The file also contains the decoding information in it.

When the browser request this page from web server, the

compressed page is transferred in lesser time to the client side,

the page is loaded in to the browser, but before actually

displaying the page, a small script is executed, to decode the

page. The decoded page is actually shown to the client. Many

web page compression tools are available in the market. Most

of them include two processes for compressing a web page -

removing extra blank spaces and removing comments.

To compress a web page using Huffman

* build a table of bit encoding, table giving a sequence of bits

that‟s used to encode characters or may build the table from a

Huffman coding tree.

* Read the web page to be compressed and process one

character at a time. To process each character find the bit

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

11

sequence that encode s the characters using the table built in

previous step and write this bit sequence to the compressed file.

* The page is then loaded on the web server so that clients can

fetch them.

When the compressed page is fetched by the user through a

web browser, the compressed web page is transferred to client

side in lesser time using lesser bandwidth because of lesser size.

As the browser starts rendering the web page, a small java

script is executed automatically, which decodes the web page

contents by replacing the encoded characters with actual words.

Because the major chunk of the time is consumed in data

transmission, rather than decoding the web page, the page is

displayed in lesser time. Compression has been claimed to be

an attractive solution to save energy consumption in high-end

servers and data centers. A comprehensive evaluation of energy

consumption for various file compression techniques

implemented in software has been already presented. Various

compression tools available on Linux are applied to a variety of

data files, and tried on server class and workstation class

systems. Their energy and performance results are compared

against raw reads and writes. The results revealed that software

based data compression cannot be considered as a universal

solution to reduce energy consumption. Various factors like the

type of the data file, the compression tool being used, the read-

to-write ratio of the workload, and the hardware configuration

of the system impact the efficacy of this technique. In some

cases, however, it is found that compression save substantial

energy and improve performance.

2. RELATED WORK
Several transformations have been applied to pre-process the

text to make it more compressible by existing algorithm [9].

The transformed text can be compressed better when most of

the available compression algorithms are applied. The three

transformations called Star Encoding where a word is replaced

by characters „*‟ and at most two characters of the original

word, Fixed Context Length Preserving Transformation (LPT)

where strings of * characters are replaced by a fixed sequence

of characters in alphabetic order sharing common suffixes

depending on the lengths of the strings (viz. „stuvw‟ or

„qrstuvw‟ etc), Fixed Context Reverse LPT (RLPT) which is

same as LPT with the sequence of characters reversed and

shortened-context LPT (SCLPT) where only the first character

of LPT is kept, which uniquely identifies the sequence. All of

these transforms improve the compression performance and

uniformly beat almost all of the best of the available

compression algorithms. It is estimated that in the year 2004 the

National Service Provider backbone has estimated traffic about

30000Gbps and that the growth continues to be 100% every

year[10]. The text data competes for 45% of the total internet

traffic. A number of algorithms for lossless compression, out of

which Huffman , BWT and PPM out perform the classical

algorithms like arithmetic and LZ families of Gzip[6]. Whereas

for image compression various algorithms are implemented

like RLE(Run length Encoding), JPEG 2000, Wavelet

Transform, SPIHT(Set Partition in Hierarchical Trees) it has

been observed that can achieve higher compression ratio for

MRI, Ultrasound ,CT scan and iris images by SPIHT

method[11]. Furthermore we also observe that for MRI image

wavelet compression method has higher compression ratio and

has good PSNR value for iris image than JPEG method

Compression ratio is almost same of iris and MRI image[3]. For

CT scan image JPEG compression method outperforms the

PSNR and degree of compression than wavelet compression

method. SPIHT is the most efficient method in respect of

compression ratio and PSNR vale. With the increase in the

degree of compression SPIHT keeps the image quality [2]. In

case of Huffman compression the adaptive Huffman coding

technique outperforms non adaptive Huffman [2] coding. In an

experiment both were tested against the same text and image

files. The text file was a DBase I11 file, copied to an ASCII

file with blank separators, containing hospital biomedical

equipment information. The file was acquired from a nearby

hospital. The image file is from a Vax 11/750. It was captured

using Vax Tips. It has been observed that non adaptive

Huffman coding produced 59.1377% compression ratio

compared to the 54.9974% produced by the adaptive technique

for the text file. The results were even more significant for the

image file. The non-adaptive technique produced a compression

ratio of 55.0303% where as the adaptive technique for 2

characters produced a compression ratio of 40.9873%[1].

3. PROPOSED ALGORITHM
To improve the compression ratio for web page, a compression

algorithm is designed which is specialized for application

protocol, instead of general purpose compression algorithms.

The basic idea of the specialized compression algorithm is the

introduction of static dictionary including the control messages

of the application protocol and a specific encoding scheme

which is actually an improved version of Huffman encoding

scheme for all redundant words in a web page.

Huffman Encoding, an algorithm for the lossless compression

of file is based on the frequency occurrence of a symbol in a

file that is to be compressed. This Algorithm is a variable –

length coding system that assigns smaller codes for more

frequently used characters and larger codes for less frequently

used characters in order to reduce the size of files being

compressed & transferred, and opened at the client side will

execute a small java script program, which will decompress the

contents on page and the same will be displayed to the user . It

has been observed that compression ratio and the time to

compress a web page increases proportionately with the time.

The compression /Decompression technique presented in this

paper can be used for faster web page transfer to client

machine.

4. METHODOLOGY
The technique of compressing the web page works on the basis

of frequency of occurrence of letters, using frequency analysis

and encoding scheme. A java-based program, being used to

compress the web page, is using Huffman encoding scheme to

encode and compress the web page contents. Java Program

identifies & stores the statistics of each of the word in a

vector/array. The cost benefit analysis is done between lengthy

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

12

words with lesser frequency and comparatively smaller words

with higher frequency.

The first step of compression with Huffman Encoding includes

the building of a table of bit encoding, the table gives a

sequence of bits that is used to encode characters or may it can

be expressed as Huffman coding tree[5]. The second step is to

read the web page to be compressed and process one character

at a time. To process each character find the bit sequence that

encodes the characters using the table built in step one and

write this bit sequence to compressed file. The third step is

loading of page on the web server, so that client can fetch them.

 When the compressed page is fetched by the user through a

web browser, the compressed page is transferred to the client

side in lesser time using lesser bandwidth because of the

smaller size. As the browser starts rendering the web page, a

small java script is executed automatically, which decodes the

web page contents by replacing the encoded characters with

actual words? Because the major chunk of the time is consumed

in data transmission, rather than decoding the web page, the

page is displayed in lesser time.

5. RESULT ANALYSIS
The results of compressing Web pages with the Huffman

encoding are shown below in a Figure1 using MATLAB . It is

clear that the amount of compression increases with the

increase in size of the web page. For smaller pages which are

less than 50KB, the size of compressed file becomes bigger .So

for all practical purposes the lower limit for compressing the

web page was set to be 50 KB.

 Fig1: Compression Graph

It was also observed that the C.P.U time consumption in

compressing a web page using the developed tool. .,increases

linearly with the increase in the size of the web page as shown

in Figure 2.

Compression

 time

 Size of web page

Fig2: Compression time graph

The compression technique introduced can be beneficial in

achieving larger browser compatibility. Most of the browsers

including the most popular one: Mozila and Microsoft Internet

explorer, are capable of executing the java script. The same

scripting language is used in the compressed web page which

leads to compatibility. It will also provide security to the web

pages if they are compressed and then transmitted using secure

http, so that it becomes a bit difficult to decode the page.

6. CONCLUSION
The proposed web page compression technique has been found

to be very effective, in compressing the web page up to 70-

80%,in some cases. But still there is a scope of improvement in

order to best utilize the C.P.U time. The existing Apache and

IIS module also support web page compression at the server

end . They give effective compression ratio on web, but both

have a limitation. Both of the servers compress the files at

server end but before transferring the page to client machine the

page is uncompressed. So efforts can be made related to

compression of pages on client side.An effort will be made to

implement proposed scheme of sending compressed pages in

existing Apache and IIS web servers.

7. REFERENCES

[1] Ahmed Desoky and Mark Gregory, Compression of text

and binary files using Adaptive Huffman Coding

Techniques.In Proceedings of IEEE conference, Aug,

2002, U.S.A.

[2] D.A. Huffman 1952,A method for the construction of

 minimum redundancy codes, IRE 40, 9, (Sept 1952),

1089- 1101.

[3] David A. Clunie, 2000, Lossless Compression of Grayscale

Medical Images- Traditional and State of the Art

(Approaches,www.dclunie.com/papers//spie_mi_2000_co
mpression).

[4] H.Kruse and a. Mukherjee, Data compression using Text

encryption, Proceedings of the Data compression

Conference, 1997,IEEE computer Society Press,pp.447.

 [5] Owen L.Astrachan,2004,Huffman coding:A CS2

 assignment.

[6] F.Awan, and A. Mukherjee ,LIPT: A lossless Text

Transform to improve compression, Proceedings of

International conference on information and Theory

:Coding and Computing, IEEE Computer Society ,Las
Vagas Nevada ,April 2001.

[7] Manber U,1994 A Text Compression scheme that allows

fast searching directly in the compressed file ,pro.of

ombinatorial pattern matching (lecture Notes in computer
science V807), Springer: London ,113-124.

[8] T.Welch,1984 “A Technique for High-Performance data

 Compression”,IEEE Computer,Vol 17.

[9] M.Burrows and D.J. Wheeler. Nov2011, A Block-

 sorting Lossless Data Compression Algorithm,SRC

 Research Report 124,Digital Systems Research

 centre.

[10] J.Ziv and A.Lempel, 1977,A universal algorithm for

 sequential data compression, IEEE Trans.inform.Theory,

 vol.IT-23, no.3, pp.337-343.

