
 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

15

Fault Tolerance Multi Agent Co-Ordination:
A Petri Net based Approach

Sudipta Acharya
Dept. of Information technology
National Institute of Technology

Durgapur, India

Prajna Devi Upadhyay
Dept. of Information technology
National Institute of Technology

Durgapur, India

Animesh Dutta
Dept. of Information technology
National Institute of Technology

Durgapur, India

ABSTRACT

As technology shifts from centralized computing to distributed

computing and then to ubiquitous computing, the users are more

dependent on the computer system for task delegation. Here

autonomous agent and Multi Agent System (MAS) plays an

important role to perform the task delegated by the user. As the

fault in MAS is not-deterministic in nature, so designing fault

tolerant MAS is a challenging research area. Here we propose a

dynamic fault tolerant MAS interaction protocol. We model the

proposed protocol using a high level Petri net. The model is

analyzed to check the fault tolerance capability in different fault

tolerant situation of the system.

General Terms

Distributed computing.

Keywords
Agent, Multi Agent System (MAS), Petri Nets, Fault tolerance.

1. INTRODUCTION

1.1 Agent and Multi Agent system(MAS)

 An agent is a computer system or software that can act

autonomously in any environment,makes its own decisions

about what activities to do, when to do, what type of information

should be communicated and to whom, and how to assimilate

the information received. Multi-agent systems (MAS)[1,2] are

computational systems in which two or more agents interact or

work together to perform a set of tasks or to satisfy a set of

goals. Each agent of system has following information attached

with it.

 <AID,{capability set},TID,state>

Where AID = Agent identification number (each agent has

unique ID), {Capability set} = consists set of tasks which can be

performed by this agent, TID = Identification number of task

which the agent is currently performing, State =represents the

state of system while performing task. During the execution

system goes through a number of states.

1.1.1 Peer Agent
Let a agent am is performing a task tm ,then another agent an will

be reffered as peer agent of am if tm Є {capability set of an }.For

example Let capability set of ai = {t1,t2}= Ti, for aj agent =

{t1,t3}=Tj, for ak agent = {t2,t4}= Tk, where {ai,aj,ak}Є A and

{t1,t2,t3,t4} Є T.where A=set of all agents in the system.T=set of

all tasks in the system.while ai is performing t1 then according

to the definition of peer agent its peer agent will be aj as t1 Є

Tj.similarly while ai is performing t2 then its peer agent will be

ak as t2 Є Tk .

1.2 Petri Nets for Agent coordination

Petri Nets [3, 4] were first conceptualized by Carl Adam Petri in

1962. Petri nets and Color Petri Nets are graphical tools for the

formal description of systems whose dynamics are characterized

by concurrency, synchronization, and mutual exclusion, which

are typical features of distributed environment. Petri Nets have

been widely used to describe the Multi Agent Systems for a long

time. Color Petri Nets have been used in [5] to achieve agent

scheduling in open dynamic environments. The representation of

composite behaviors through Color Petri Nets has been done in

[6].

1.2.1 Reachability in petri-net
 Let the initial marking of the Petri net be M0. A marking Mj is

said to be reachable from marking Mi if there exists a sequence

of transitions that takes the Petri net from Mi to Mj . If I is the

incidence matrix of the model, then the reachability criterion can

be specified by the following matrix equation:

Mi +I. σ = Mj (1)

where σ is the sequence of transitions. This is a necessary but

not sufficient condition. If the goal state in the Petri-Net is

reachable for any fault state, it indicates that goal can be

achieved through formal derivation and the petri-net is fault

tolerant.

1.3 Fault tolerance

A characteristic feature of distributed system that distinguishes

them from single machine systems is the notion of partial failure

which may happen when one component in a distributed system

fails. This failure may affect the proper operation of other

components. An important goal in distributed systems design is

to construct the system in such a way that can be automatically

recovered from partial failures without seriously affecting the

overall performance [7]. In our paper we take a closer look at

techniques for making MAS fault tolerant.

1.4 Happens-before relationship

The expression ab is read “a happens before b” and means that

all processes agree that first event a occurs, then afterword event

b occurs[7]. The happens-before relation can be observed

directly in two situations:

1. If events a and b occur on the same process and the

occurrence of event a preceded the occurrence of event

b then ab =TRUE

2. if a is the event of sending a message m in a process and b

is the event of receipt of the same message m by another

process then ab is also true. A message cannot be

received before it is sent or even at the same time it is sent,

since it takes a finite, nonzero amount of time to arrive.

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

16

3. Happens-before is a transitive relation i.e. If ab and bc

then ac .

2. RELATED WORK

It is very obvious that while performing a task, one or more than

one agents can stop executing. Failure of such agents can be of

different type. For example Crash type, Byzantine, omission. In

our paper we consider Crash type failure of agent, i.e. agent just

stops executing or producing output. Till now a number of fault

tolerance methods have been proposed. In [8], authors propose a

preventive method to achieve fault tolerance by replicating

agents. As discussed by [9], software replication in distributed

environments has some advantages over other fault tolerance

solutions. But in both the papers [8,9] replication methods

increase cost of application much more than optimal cost

because for every agent replicates are maintained. To overcome

this in [10] authors propose a dynamic, automatic plan based

replication mechanism to achieve fault tolerance. A new factor

“criticality” of agent is proposed here which is calculated

according to the difficulties to perform tasks in agents plan

graph. After every time interval Δt according to the criticality of

agent number of replicated agents are employed for highly

critical agents. But this method takes into account the prediction

of the future behaviour of the agents and their influence over the

other agents of the society which may not be always true.In [11]

author proposes a strategy for fault tolerance using sentinels.

The sentinel agents listen to all broadcast communications,

interact with other agents, and use timers to detect agent crashes

and communicate link failure. The main problem within this

approach is that sentinels also are subject of faults. Authors in

[12] introduce a strategy based on Adaptive Agent Architecture.

This strategy uses the teamwork to cover a multi-agent system

from broker failures. This approach does not deal completely

with agent failures since only some agents (the brokers) or part

of them can be replicated. In [13] a strategy is proposed based

on 2 phase Decision making for fault handling in MAS. In this

strategy faulty agents broadcast or multicast help request, after

getting that request helper agents decide whether they are able to

help or not, and if yes they determine the number of help

requests and if there exist a number of faulty agents seeking help

then helper agents decide in which sequence they will help

faulty agents. But a problem of this strategy is it is not

applicable for crash type of failure, because it is not possible for

any agent to request for help after crash of that agent.

3. SCOPE OF WORK

Although there have been a number of contributions in the area

of fault tolerance in MAS, most of them only concentrate on

replication mechanism of agents and pay limited attention to the

ways of detection and handling of faults if they occur. Some deal

with predictive mechanisms to handle fault but these

mechanisms go wasted if the fault does not occur in the MAS.

There is a need for efficient fault detection and resolving

mechanism which does not lead to a deadlock even if some of

the agents crash and resumes the work of the faulty agent by

searching for peer agents from the agent pool. In this paper, we

have proposed such a mechanism where the agents performing

the tasks share their state information in periodic intervals so

that any fault, if occurs, can be detected and handled

accordingly. We have also modeled the protocol with the help of

color Petri nets and shown the formal proof of the reachability of

the goal state of the system. In this way, we verify that the

system achieves its goal even if some faults occur in the MAS.

4. MODELLING MAS FAULT

TOLERANCE

4.1 Problem definition

Let us define a few terms to understand the problem definition

4.1.1 Interface Agent
 In our MAS, an interface agent is one which accepts the user’s

query and determines the task to be performed from the query. It

also divides the task into a number of sub-tasks along with

determining their happens before relationships.

4.1.2 Concurrent tasks
For two concurrent tasks ti, tj, we write (⌐ (ti→tj))∧(⌐ (tj→ti))

= TRUE

4.1.3 Dependent tasks
 If a task tj is dependent on a task ti, we write (ti → tj) = TRUE

4.1.4 Dependency graph
We define a dependency graph to represent the happened before

relationship between the subtasks. A dependency graph is a

directed graph where each subtask ti is represented by a vertex -

vi and a dependency relation between two subtasks ti and tj is

represented by a directed edge from vertex vi to vertex vj,

Let a user submit a query Q to a MAS. Initially Q is given to

interface agent. This agent finds out the task to be performed

from the query. Let this task be called T. T is divided into a

number of subtasks. Let those subtasks be t1, t2,…..,tn. There

may exist a happened–before relationship between these

subtasks. Each subtask is performed by an agent. The subtask

starts with an initial state, and during execution it goes through a

number of states to reach to a final state indicating that the

subtask is complete. After getting required resources, the agent

starts execution. During execution if one or more than one

agents crash due to some reason then how to tolerate that fault

such that user does not come to know about this fault in system

and further execution can be carried on from faulty state of task

to finish that task successfully as well as all subtasks to reach to

the goal state i.e. to satisfy user request, we have to design a

protocol to get fault tolerant MAS. Total fault tolerant protocol

should be designed in such a way that minimum number of

agents should be employed to perform total task.

4.2 Proposed protocol to get fault tolerant

MAS

The proposed protocol to get fault tolerance is shown in figure 1.

4.3 Petri net representation of proposed

protocol

The Petri net representation of our proposed protocol is shown in

figure 2. The Petri net consists of a number of places and

transitions. There are two types of places timed place and non-

timed place. A transition connected to a timed place can occur

only when the time interval of the place elapses. Each place

contains a set of markers called color tokens. The Petri-net

model of the proposed protocol given in figure has 28 states and

52 transitions. P1 is the place where all sub-tasks initially reside

and P15 is the place where each sub-task after completion

resides. Arc which has weight other than one is specified

explicitly in the petri-net. In order to prove that the goal state is

reachable even if any agent faults for any of the five cases

described later, we can use the matrix equation for reachability

of a marking(section I.C.1)The places are described as

P1: Contains all subtasks after dividing the main task given by

the user.

P2: Contains pool of agents.

P3:Place of concurrent independent tasks with allocated agents.

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

17

P4: Place of dependant tasks.

P5: Initially contains those concurrent tasks with allocated agents

who get their required resources and are ready to be executed. If

more than one token is here, this place contains multiple

concurrent tasks with allocated agents.

P6: Contains those concurrent tasks with allocated agents who

have not got required resources, agents are waiting in this place.

i.e. not ready to be executed.

P7: Contains dependant tasks of single running agents in the

system which has no concurrent tasks in waiting stage.

P8: Contains single concurrent task with allocated agent

temporarily which is ready to be executed.

P9: Contains single task with allocated agent which is ready to

be executed has no concurrent task in waiting stage but has a one

or more dependant tasks.

P10: Contains dependant tasks of singly running agents with

allocated peer agents who has no concurrent tasks in waiting

stage.

P11: Contains incomplete single task which is aborted due to

crash of it’s agents during execution in place P9

P12: Contains same incomplete task of place P11.

P13: Contains dependent tasks of selected peer agent from its

capability set which is employed to perform incomplete single

task of P11 .

P14: Contains single task with allocated agent ready to be

executed.

P15: Contains finished tasks with agents which have finished that

task successfully.

P16: For singly running agent which have directly dependent

tasks this timed place contains concurrent tasks of it with

allocated agents which are in waiting stage. Each agent has timer

information “tm”.

P17: Contains incomplete single task which is aborted due to

fault of the agent executing it in P14 .

P18: Contains directly dependent tasks of incomplete task which

is in place P17.

P19: Contains directly dependent tasks of the task which is in

place P17 with allocated peer agents.

P20: Contains dependent tasks of selected peer agent from its

capability set which is employed to perform incomplete single

task.

P21: Contains multiple concurrent tasks with allocated agents

that are ready to be executed, each has timer information “tm”,

i.e. it is a timed place.

P22: Contains failed tasks which are in place P21.

P23: Contains directly dependent tasks of incomplete tasks which

are in place P22.

P24: contains directly dependent tasks which are in P23 with

allocated peer agents.

P25: for each agent of P24 it contains dependent task of selected

peer agent from its capability set which are employed to perform

their corresponding incomplete tasks.

P26: Contains concurrent tasks with allocated agents which are

not ready to be executed of the single running agent in place P14

with no dependant tasks. Agents of this place have timer info

“tm”, i.e. it is a timed place.

P27: Contains 5 copies of the single task running in the system,

which is in P14 place, which have no other concurrent tasks as

well as dependent tasks.

P28: Contains 5 peer agents for same single task whose copies

are in place P27.

The descriptions of transitions are,

t1: It will be fired for those tasks in P1 place which are

independent of any other tasks of the system and sends them to

P3 and allocates agents for them who can perform that task.

t2 : It will be fired for those tasks in P1 place which are

dependent on one or more tasks of the system and sends them to

P4.

t3:It will be fired for only those tasks with allocated agents who

get their required resources and sends them to P5.

t4:It will be fired for only those tasks with allocated agents who

do not get their required resources and sends them to P6.

t10 :It will be fired if token i.e the task in P9 finishes successfully

& send the agent which finishes the task successfully to P15.

t11 :It will be fired if token i.e the task in P9 with allocated agents

abort due to crash of agent and send that incomplete task to P11.

t12 : It will be fired if task in P9 finishes successfully and sends

back all dependent tasks of that task with allocated agents to P3

if they are not further dependent on any other task.

t13 :It will be fired if there are tokens both in P9, P10 and used to

pass control information i.e timer and state information.

t15 : It will be fired to select one of the dependent task with

allocated peer agent and send the agent along with the

incomplete faulty task to P9 to finish that, and send other

dependent tasks of that agent to P13.

t16 : It will be fired if faulty agent of P11 finishes successfully

and this transition send back a copy of employed agent from P15

along with its tasks at P13 to P3.

t19 : It will be fired if single task in P14 finishes successfully and

sends that to P15.

t20 It will be fired if faulty task of P17 finishes successfully and a

copy of employed peer agent at P15 along with the rest of

dependent tasks is sent back to P3.

t21:It will be fired if single agent in P14 crashes and sends the

incomplete task to P17.

t22 :It will be fired for only to transfer control information

between agents of P14 and P16.

t25 : It will be fired to employ one peer agent to do the faulty task

of P17 and send rest of the tasks of that agent to P20.

t28 It will be fired if there are multiple agents with allocated task

in P5 and send a timer tm to each of these agents and along with

this timer send them to P21.

t29 : this transition will be fired if any agent of P21 crashes during

execution and send that incomplete task to P22.

t30 : this transition will be fired only to pass timer information

between agents of P21.

t33 : this transition will be fired to employ one peer agent from

P24 to finish faulty task of P22 and send that agent to P21 and

send rest tasks of that agent to P25.

t34 : It will be fired if any agent of P21 finish successfully and

send

that agent to P15.

t35 : It will be fired after finishing successfully the faulty task of

P22 and sent that employed agent along with its rest task to P3.

t38 : It will be fired to send control information between agents

of P26 and P14.
t39 : It will be fired if the agent of P14 crashes and any one agent

from agent pool P2 is employed by any agent of P26 and send

that agent to P14 to complete the incomplete task.

t40 : It will be fired if there is a single agent ready to run with no

concurrent agent in waiting or running state and no dependent

agent, and then send 5 copies of that single agent to P27.

t41 : It will be fired to exchange control information between

single

agent of P14 and agents of P28.

t44 : It will be fired if the faulty task of P17 finishes successfully

and if the rest tasks of employed peer agent in P20 in are still

dependent then send those task to P4 place and send that peer

agent to agent pool P2.

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

18

Figure 1: Flow chart of our proposed protocol

t45 : It will be fired if the faulty task of P17 finishes successfully

and if the dependent tasks of that finished task in P19 are still

dependent on any other task then send those tasks to P4 and send

allocated agents for those tasks to agent pool p2.

t46 : It will be fired if the faulty task of P11 finishes successfully

and if the rest tasks of employed peer agent in P13 are still

dependent then send those task to P4 place and send that peer

agent to agent pool P2.

t47 : It will be fired if the faulty task of P11 finishes successfully

and if the dependent tasks of that finished task in P10 are still

dependent on any other task then send those tasks to P4 and send

allocated agents for those tasks to agent pool p2.

t49 : It will fire if P21 contains single token and send that token to

P14.

t50 :It will be fired if the faulty task of P22 finishes successfully

and if the rest tasks of employed peer agent in P25 in are still

dependent then send those task to P4 place and send that peer

agent to agent pool P2.

t51 It will be fired if the faulty task of P22 finishes successfully

and if the dependent tasks of that finished task in P25 are still

dependent on any other task then send those tasks to P4 and send

allocated agents for those tasks to agent pool p2.

t52 : It will be fired if any faulty agent in P22 has no dependent

agents then one agent from agent pool who can perform the

faulty task is chosen by other agents executing in P21 and send

that agent to P21 to finish the incomplete task. Other transitions

will be fired according to the basic Petri-net concept.

5.ANALYSIS

In this section, we will prove that the protocol we have defined

is fault tolerant for every scenario in MAS. For each of the 5

cases shown below, the final marking of the system after

finishing a task is reachable from a faulty state where agent

performing that task aborts during execution.

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

19

Figure 2: Petri net representation of our proposed protocol

Let us take an example to prove our assumptions. Let a user

submit a query Q, which is divided into 5 sub-tasks (tsk1, tsk2,

tsk3, tsk4, tsk5) by the interface agent. The happened before

relationship between those divided tasks can be represented by a

dependency graph given below:

Figure 3: task dependency graph of subtasks of query Q

Initially there are 5 subtasks, which are kept in the starting place

of petri-net (place P1). Let us assume the number of agents in

agent pool (place P2) is 20. Initially there are no tokens in other

places of this petri-net.The incidence matrix of the Petri net

represented in figure 2 is denoted by I.

Lemma 1. Single agent executing a task in the system with no

concurrent tasks but have dependant tasks, can support fault

tolerance.
Proof: In our example this situation will occur when tsk1 is

ready to be executed. It has three directly dependant tasks tsk2,

tsk3 and tsk4 and one indirectly dependant task tsk5 but no

concurrent tasks. From our petri-net diagram we can see Initial

marking before starting execution of any tasks is Mi = [5 20 0 0

0 0]’. If agent

performing tsk1 aborts during execution the fault state marking

is Mj = [0 16 0 1 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]’.

We can reach from Mi to Mj through following sequence to

transitions, σ1 =[1 4 1 0 3 1 0 1 3 0 1 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0]’. If our MAS is

fault tolerant its leads to generate a final state of system after

completing tsk1 successfully even after agent performing tsk1

aborts, i.e final state after successful completion of tsk1 is Mk =

[0 16 3 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0] and we

get a sequence of transitions to reach from Mj to Mk which is, σ2

= [0 0 0 0 0 0 0 0 0 1 0 2 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]’.

Putting these in the equation (1),

[5 20 0]’ + I. σ1 =

[0 16 0 1 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]’

[0 16 0 1 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]’ + I. σ2

=[0 16 3 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]’

So we can say in this scenario MAS we have designed is fault

tolerant, i.e final state after completing that single task is

reachable from fault state.

Lemma 2. Single agent executing a task in the system with

concurrent tasks and dependant tasks can support fault

tolerance.

Proof: In Lemma 1 we have proved tsk1 reaches to final state

successfully even after agent which is performing tsk1 crashes.

Now three dependant tasks tsk2, tsk3, tsk4 can run concurrently.

Now situation mentioned in lemma 2 will occur when tsk2 gets

resources and goes for execution and tsk3, tsk4 are not ready as

they don’t get resources and tsk5 is in dependant task place. In

this scenario the initial marking (last marking of lemma 1) is Mi

= [0 16 3 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]’. If

tsk2 aborts during execution the fault state marking is Mj = [0 16

0 1 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0]’. We can

reach from Mi to Mj through following sequence to transitions σ1

= [0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]’. If our MAS is fault

tolerant it leads to a final state of system after completing tsk2

successfully even after agent performing tsk2 aborts, i.e final

state after successful completion of tsk2 is Mk=[0 16 2 1 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0]’ and we get a sequence of

transitions to reach from Mj to Mk which is, σ2 =[0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0]’

Putting in the equation (1),

[0 16 3 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]’+ I. σ1

=[0 16 0 1 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0]’

[0 16 0 1 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0]’ + I. σ2

=[0 16 2 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0]’

So we can say in this scenario MAS we have designed is fault

tolerant, i.e final state after completing that single task is

reachable from fault state .

Lemma 3. Multiple agents executing more than one task in the

system can support fault tolerance.

Proof: In Lemma 1 and Lemma 2 we have proved tsk1, tsk2

reaches to final state successfully even after agents which are

performing tsk1and tsk2 abort. Now tsk3 and tsk4 can run

concurrently. Now situation mentioned in Lemma 3 will occur if

both tsk3 and tsk4 get resources and start execution.tsk5 is in

dependant task place. In this scenario the initial marking (last

marking of lemma 2) is Mi=[0 16 2 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0]’. If tsk3 aborts during execution the fault

state marking is, Mj=[0 16 0 1 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 1 1

0 0 0 0 0 0]’. We can reach from Mi to Mj through following

sequence to transitions, σ1 =[0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 1 2 0]’.

If our MAS is fault tolerant it leads to generate a final state of

system after completing tsk3 successfully even after agent

performing tsk3 aborts, i.e final state after successful completion

of tsk3 is Mk=[0 15 2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0

0 0]’ and we get a sequence of transitions to reach from Mj to Mk

which is, σ2 =[0

0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]’

Putting in the equation (1),

[0 16 2 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0]’ + I. σ1 =

[0 16 0 1 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 1 1 0 0 0 0 0 0]’

 [0 16 0 1 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 1 1 0 0 0 0 0 0]’ + I. σ2

=[0 15 2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0]’

So we can say in this scenario MAS we have designed is fault

tolerant, i.e if any one or more agents among multiple running

 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012)

 Proceedings published in International Journal of Computer Applications® (IJCA)

20

agents abort, then also those tasks can be finished successfully

and reaches to a final state.

Lemma 4. Single agent executing tasks in the system with

concurrent tasks but no dependant tasks can support fault

tolerance.

Proof: In Lemma 1, Lemma 2 and Lemma 3 we have proved

tsk1, tsk2, tsk3 reach to final state successfully even after agents

which are performing tsk1, tsk2, tsk3 abort. Now tsk4 and tsk5

can run concurrently. Now situation mentioned in Lemma 4 will

occur if tsk4 gets resources and starts execution and tsk5 does

not get resources. There is no task in dependent place. In this

scenario the initial marking (last marking of lemma 3) is, Mi=[0

15 2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0]’. If tsk4

aborts during execution the fault state marking is, Mj=[0 15 0 0 0

0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 1 0 0]’. We can reach from

Mi to Mj through following sequence to transitions , σ1 =[0 0 1 1

0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0]’. If our MAS is fault tolerant its leads

to generate a final state of system after completing tsk4

successfully even after agent performing tsk4 aborts, i.e final

state after successful completion of tsk4 is Mk=[0 14 1 0 0 0 0 0

0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0]’ and we get a sequence of

transitions to reach from Mj to Mk which is, σ2 =[0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0]’

Putting in the equation (1),

[0 15 2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0]’+ I. σ1

=[0 15 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 1 0 0]’

[0 15 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 1 0 0]’+ I. σ2

=[0 14 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0]’

So we can say in this scenario MAS we have designed is fault

tolerant, i.e final state after completing that single task is

reachable from its fault state.

Lemma 5. Single agent executing in the system with no

concurrent tasks and no dependant tasks can support fault

tolerance.

Proof: In Lemma 1, Lemma 2, Lemma 3 and Lemma 4 we have

proved tsk1, tsk2, tsk3, tsk4 reach to final state successfully

even after agents which are performing tsk1, tsk2, tsk3, tsk4

abort. Now only tsk5 is in concurrent state. Now situation

mentioned in Lemma 5 will occur if tsk5 gets resources and

becomes ready to be executed. There is no task in concurrent

and dependent place. In this scenario the initial marking (last

marking of lemma 4) is, Mi=[0 14 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0

0 0 0 0 0 0 0 0 0 0]’. If tsk5 aborts during execution the fault

state marking is, Mj=[0 9 0 0 0 0 0 0 0 0 0 0 0 0 4 0 1 0 0 0 0 0 0

0 0 0 5 5]’. We can reach from Mi to Mj through following

sequence to transitions , σ1 =[0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0]’ if

our MAS is fault tolerant its leads to generate a final state of

system after completing tsk5 successfully even after agent

performing tsk5 aborts, i.e final state after successful completion

of tsk5 is, Mk=[0 9 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0

5 4]’ and we get a sequence of transitions to reach from Mj to Mk

which is, σ2 =[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]’

Putting in the equation (1),

[0 14 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0]’+ I. σ1

=[0 9 0 0 0 0 0 0 0 0 0 0 0 0 4 0 1 0 0 0 0 0 0 0 0 0 5 5]’

[0 9 0 0 0 0 0 0 0 0 0 0 0 0 4 0 1 0 0 0 0 0 0 0 0 0 5 5]’+ I. σ2 =[0

9 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 5 4]’

So we can say in this scenario MAS we have designed is fault

tolerant, i.e final state after completing that single task is

reachable from its fault state .It is the last and final state of given

query. So, from above mentioned five Lemmas we prove that

even after a number of failures in MAS all tasks can be

completed successfully and final state after executing a query

can be reached successfully.

6. CONCLUSION

In this paper, we have proposed fault detection and handling

mechanism and have verified its correctness with the help of

color petri nets. We have shown that MAS achieves the goal

state even if some faults occur in the system. This protocol

assumes that whenever an agent crashes, its peer agent will be

present in healthy state in the agent pool. The future prospect of

this work is to consider cases when no peer exists in the agent

pool. Another prospect of this work is to implement the protocol

and determine the degree of fault tolerance i.e. to what extent

can the system provide fault tolerance.

7. REFERENCES

[1] Weiss, G. (Ed). 1999. Multiagent systems: a modern
approach to distributed artificial intelligence. MIT Press.

[2] Wooldridge, M. J. 2001. Introduction to Multiagent
Systems. John Wiley & Sons.

[3] Yen , H. 2006. Introduction to Petri Net Theory, In Recent
Advances in Formal Languages and Applications. volume
25/2006 of Studies in Computational Intelligence,pages
343–373.

[4] Suzuki, T., Shatz, M., and Murata, T. 1990. A Protocol
Modeling and Verification Approach Based on
Specification Language and Petri Nets . IEEE Transactions
on Software Engineering, vol. 16. no. 5.May 1990, 523-
536.

[5] Bai, Q., Zhang, M. and Zhang, H. 2005. A Coloured Petri
Net Based Strategy for Multi-agent Scheduling. In the
proceedings of the Rational, Robust, and Secure
Negotiation Mechanisms in Multi-Agent Systems.

[6] Jindian, S., Heqing, G., and Shanshan, Y. 2008. A Coloured
Petri Net Model for Composite Behaviors in Multi-Agent
System. In Proceedings of IEEE Conference on
Cybernetics and Intelligent Systems, 677 – 680.

[7] Tanenbaum, A.S. 1995. Distributed Operating Systems.
Pearson Education.

[8] Fedoruk, A., and Deters, R. 2002. Improving fault-
tolerance by replicating agents. In Proceedings of
Autonomous agent and multi agent systems, AAMAS-02,
Bologna, Italy, 737-744.

[9] Guerraoui, R., and Schiper, A. 1997. Software-based
Replication for Fault Tolerance. IEEE Computer, vol. 30,
no. 4, 68-74.

[10] Almeida, A., Aknine,S., Briot,J.P., and Malenfant, J. 2006.
A Predictive Method for Providing Fault Tolerance in
Multi-Agent Systems. In proceedings of IEEE/WIC/ACM
International conference on Intelligent agent technology
(IAT 2006),Hong kong.

[11] Hugg, S. 1997. A Sentinel Approach to Fault Handling in
Multi-Agent Systems. In the proceedings of the 2nd
Austrdian Workshop on Distributed AI, Caims, Australia.

[12] Kumar,S., Cohen.,P.R., and Levesque,H.J. 2000. The
adaptive agent architecture: achieving fault tolerance using
persistent broker teams. In Proceedings of the Fourth
International Conference on Multi-Agent Systems (ICMAS
2000), Boston, MA, USA.

[13] Mirian, M.S., Abmadabadi,M.N., and Navabi,Z. 2002. A
decision based approach for fault handling in multi agent
system. In the proceedings of the 9th international
Conference on Neural Information Processing
(ICONIP'OZ) , Vol. 4.

