
 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012) 

Proceedings published in International Journal of Computer Applications® (IJCA) 

 

1 

Modelling Critical Context in Software Engineering 

Experience Repository: A Conceptual Schema 

Neeraj Sharma 
Associate Professor 

Department of Computer Science 
Punjabi University, Patiala (India) 

 

ABSTRACT 

The experiential knowledge needs to be stored in some 

formalized system for the purpose of its reuse. Such 

knowledge repositories are referred to as experience bases in 

software engineering. Though the concept of software 

engineering knowledge repository is often discussed and 

advocated by the proponents of knowledge and experience 

management practices but there are no concrete studies 

available on how to structure and model such experiences in 

software engineering environments. Moreover, the critical 

context associated with software experience is often not 

captured and stored for the want of the formalization schema 

to model such context. In this paper, the conceptual schema of 

the experience repository is described. The paper also 

explains the components of the critical context and presents a 

conceptual model in UML class diagram.   

General Terms 

Software Engineering, Experience Repository 

Keywords 

Experience Base, Critical Context, Experience Factory  

1. INTRODUCTION 
The Software Engineering Experience Repository captures 

and manages up-to-date experience about software 

engineering items or objects which may include any 

technique, method or tool used for software engineering. 

Programming languages, methods for systems analysis and 

design, reusable code libraries, testing techniques, tools for 

configuration management, version control, and software 

metrics are typical examples of software engineering reusable 

objects. These objects also include methods and models used 

for software development like the Waterfall model, Spiral or 

Prototyping model etc. These software engineering objects are 

also referred to as software engineering technologies [6]. 

Experience about such software engineering objects, referred 

to as software experience in the proposed model, are the core 

elements of the experience repository. Specifically, the 

proposed model interweaves the following three kinds of 

elements: 

a)Definitions of software engineering reusable objects or 

technologies which act as a basis for establishing systematic 

and effective software engineering practices in an 

organisation leading to improvements in process, called 

software experiences. 

b)Experience about the impact of the usage of software 

experience on the quality of the software product or some 

attributes of software development project, called usage 

impact. 

c)Experience and knowledge about the critical success factors 

of software objects in specific context situations, called 

critical context. 

The knowledge of the impacts of the usage of software 

experience helps a software engineering organisation in 

selecting those software experiences that support the process 

improvement goals of the organisation.  

The knowledge about critical success factors guides the 

process improvement teams in identifying the most effective 

experiences in a given project profile.  

2. LITERATURE SURVEY 
In software engineering, Experience Factory (EF) approach is 

the most popular solution for capturing and managing the 

software engineering knowledge into knowledge repositories. 

The Experience Factory is a logical and/or physical 

organisation that supports project developments by analysing 

and synthesising all kinds of experience, acting as a repository 

for such experience, and supplying that experience to various 

projects on demand [6]. The focus of the EF is primarily on 

experiences as opposed to generalised knowledge (e.g. rules, 

heuristics etc.). The captured experiences are stored into a 

repository of experiences, called the Experience Base (EB), 

which stores the software engineering experience in a 

packaged form, called Experience Packages. The EF is an 

organisation that supports software projects conducted in, 

what we call the project organisation. Project organisation can 

be an independent full-fledged software development 

organisation or a unit or department within an organisation 

developing software [3]. In particular, the EF analyses and 

synthesises all kinds of experiences drawn from these 

projects, acts as a repository for such experiences by 

documenting, storing, qualifying, and updating them using a 

experience base, and supplies those experiences back to 

projects on demand. Literature is abound with many 

successful stories of EF implementations in many 

organisations, e.g. [11], [12] and [14]. Furthermore, 

experience factories covering different aspects of software 

engineering process are reported, e.g. [1] and [2].  

We also find mention of domain-specific experience factories 

which include software development cost estimation, e.g. 

[10], data mining applications, e.g. [5], developing CBR 

applications, e.g. [4], [9], and ontology deployment, e.g. [13]. 

Software engineering knowledge representation and 

technology to support the development of software 

engineering repositories have been the main focus of research 

in this area. How to document and represent experiences in 

repository finds special emphasis in research.  

There are studies which forewarn about the potential barriers 

in implementing EF approach in software engineering 

organisations. They conclude that EF implementations require 

a significant investment of time and efforts. Need to leverage 

alternate approaches to distribute knowledge have been 

stressed. A short term solution to this problem has been 

suggested in the form of ‘Answer Garden’ approach. An 

approach called the ‘Knowledge Dust to Pearls’ has been 



 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012) 

Proceedings published in International Journal of Computer Applications® (IJCA) 

 

2 

explained in [7]. This approach addresses some of the issues 

with knowledge management in software development and 

allows the software experience repository to become more 

useful more quickly than traditional approaches. This 

approach adds the short-term-oriented features from the 

‘Answer Garden’ approach to the long-term and sophisticated 

features of the EF approach. 

3. CONCEPTUAL SCHEMA OF 

EXPERIENCE REPOSITORY 
The essence of the proposed model for experience repository 

can be explained as follows: 

1. Software engineering experience directly impacts 

the process performance and indirectly impacts the software 

product attributes. Application of relevant and up-to-date 

experience results in software process improvement and better 

product quality. 

2. One or more experiences, relevant for a process, 

cause the impact of a process on a software product attribute. 

The trio of software experience, SE process and software 

product are the central part of software experience usage 

impact. 

3. Different software experiences and process areas 

have different patterns of impact on product attributes and 

project performance. 

4. Software process impact on product attributes or 

project performance varies across different context situations 

characterized by the relevant critical context factors (CCF).  

The major goals of the experience repository are to capture 

and use experience about the (1) impacts and (2) the critical 

success factors of software experience application. These are 

referred to as software experience usage impact (usage impact 

in short) and software experience usage critical context 

(critical context in short) respectively. 

3.1 Software Experience Usage Impact 
The purpose of software experience ‘Usage Impact’ is to 

explain for which software engineering process a given 

software experience can be used and for which quality 

attribute of a product or performance attribute of a project, 

this software experience is critical. Usage impact is used for 

evaluating the success of a software experience, i.e., we can 

claim that a software experience has been applied successfully 

for a given process, only if it has been relevant for achieving 

the desired product quality attribute. 

3.2 Software Experience Usage Critical 

Context 
The proposed schema lays special emphasis on the ‘critical 

context’ of the usage of the software experience. Critical 

context is defined as the collection of all the attributes of the 

contextual dependencies in a situation in which a certain 

software experience is applied for a certain process which 

impacts the success of the software experience usage with 

regard to a certain success criterion or a certain quality 

attribute of a product. Therefore, we can say that the concept 

of critical context is bound to a certain software experience, a 

software engineering process in which the experience is used, 

and to a software product quality attribute that provides a 

measure of the success of the software experience usage. 

4. SOFTWARE EXPERIENCE 

CONTAINER 
Software Experience Container (SEC) is the core element of 

the experience repository. They store experience about the 

impacts and critical context dependencies of the software 

experience. The concept of Software Experience Container 

has been drawn from the ‘Experience Package’ (EP) concept 

of [6] and [7], which is the central element of the Experience 

Factory approach proposed by them. EP packages the reusable 

experience to be used in software projects. The software 

experience container has been defined as the unit of 

experience, within an experience repository which stores the 

contents related to a software experience.  

The overall structure of a SEC is shown in Figure 1. It has 

following four components: 

SEC Header 

Software Experience Definition 

Software Experience Usage Impact 

Software Experience Critical Context 

4.1 SEC Header 
The Header part of the SEC stores the information required 

for the maintenance and administration of the SECs. This part 

of the SEC contains: 

SEC_Id 

SEC_Name 

Version 

SEC_State 

Repository_Name 

Created by/ Owner 

Source 

Last Update/ History 

SEC_Id is the unique identification tag assigned to an 

experience container. Every SEC in a repository is assigned a 

unique identity number or Id. A logical name is assigned to 

each SEC which gives a clear and unambiguous description 

about the contents of the SEC in SEC_Name. Version is 

required for updation and configuration management. 

SEC_State slot indicates the status of the SEC. A SEC could 

be placed in one of the many possible states – initial, 

confirmed, validated etc. The initial state indicates that the 

SEC is in the preliminary state in the repository and still has 

not been confirmed or validated through use. A SEC in 

confirmed state indicates that the said SEC has been used 

sufficient number of times by software engineers and it has 

been found useful. The validated state means that the SEC has 

been tested empirically and is fully mature. In fact these states 

reveal the reliability factor of a SEC which is relevant for the 

selection decision of the SEC by software engineers. The 

appropriate values depicting different SEC states along with 

their respective interpretations must be defined during the 

installation of the experience repository. Repository_Name 

stores the name of the parent experience repository. Created 

By/ Owner lists author(s) who created the contents of the 

SEC. Source displays the source(s) of information, and Last 

Update/ History reveals the currency of the SEC and it is 

important for possible revisions of the SEC. 



 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012) 

Proceedings published in International Journal of Computer Applications® (IJCA) 

 

3 

Fig 1: Structure and Schema of SEC 

4.2 Software Experience Usage Impact 
The Software Experience Usage Impact has six parts (cf. 

Figure 1). These are: 

Software Experience 

Software Engineering Process 

Software Engineering Product 

Role 

Domain 

Environment 

The central part of a software experience usage impact is the 

combination of software experience, software engineering 

process and product/project attributes. The Role, Domain and 

Environment are required to qualify this connection. They 

make it easy to define software experience impact from 

different perspectives (roles) or compare them in different 

application domains or organisational environments. Software 

Experience slot of the Usage Impact is stored with the name 

of the software engineering object and provides a link to the 

software experience definition. Software Engineering Process 

slot specifies the name of the process or task for which the 

software experience is to be used. Software Engineering 

Product slot may store the name of the software product or 

can specify the product quality attribute for which software 

experience can be effective. Role defines the formal position 

from whose perspective the specified relationship is valid. 

Examples of the values the ‘Role’ slot can fill are Project 

Manager, Tester, Web designer, DBA and so on. Domain slot 

defines the business domain for which the software 

experience usage has been defined. Environment stores the 

organisational environment, e.g. a specific software company 

or a department within a company. 

It is also important to note that the terms used in the Usage 

Impact should be precise and unambiguous. In fact they are 

drawn from a fixed, predefined vocabulary which is made 

public in the environment of the SEC during the design and 

installation of the experience repository in the organisation. 

These concepts and definitions are stored in the Meta KB part 

of the repository. 

4.3 Software Experience Critical Context 
The Software Experience Critical Context is specified by a 

collection of <critical_attribute, value> tuples that are called 

critical context variables. The conceptual model of software 

experience critical context is presented in UML notation in 

Figure 2. 

5. CRITICAL CONTEXT IN 

EXPERIENCE REPOSITORY 
Critical context can be represented as a tuple 

<critical_attribute, value> for all the relevant success factors. 

For instance, programming language used, experience of 

software engineers and project size are the critical attributes.  

5.1 Essential versus Critical Context 

Factors 
It is however important to note that every software experience 

has a set of essential factors that are prerequisite for that 

experience in the sense that these factors must always be 

provided when the experience is to be applied, i.e., they are 

indispensable for the usage of a particular experience. Such 

context factors are called Essential Context Factors and are 

different from Critical Context Factors. The essential factors 

associated with a software experience can be a minimum 

amount of staff skills and competencies including training and 

technical knowledge; provision of required resources like 

personnel, tools and techniques, and time; and availability of 

required inputs like documents etc.  

The critical context factors are different from the essential 

context factors as the former are not necessary as such for the 

usage of the software experience but they are critical for the 

attainment of the desired goals using the software experience. 

The critical factors of success for a given experience vary 

with the processes, product attributes and all other elements of 

software experience usage impact. 

The distinction between essential and critical context factors 

can be equated with the dichotomy of required versus desired 

factors. The essential factors of software experience are not 

specifically addressed in the proposed schema because they 

SEC Header 

SEC_Id  

SEC_Name  

Version  

State  

Repository_Name  

Created by / Owner  

Source  

Last Update / History  

Software Experience Usage Impact 

Software Experience  

SE Process  

SE Product  

Role  

Domain  

Environment  

Software Experience Usage Critical Context 

Critical attribute1 Value 

Critical attribute2 Value 

: : 

Critical attributen Value 



 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012) 

Proceedings published in International Journal of Computer Applications® (IJCA) 

 

4 

are always directly linked to a software experience and do not 

vary with change in the process or desired product attributes. 

5.2 Abstract layer and the Operative layer 
The Software Experience Critical Context is specified by a 

collection of <critical_attribute, value> tuples that are called 

critical context variables. The conceptual model of software 

experience critical context is presented in UML notation in 

Figure 2. Critical context is defined in two layers – the 

Abstract layer and the Operative layer.  The Abstract layer of 

the critical context contains the critical factors that are defined 

in common intuitive or abstract terms, easy to understand by 

software engineers of the organisation. But such abstract 

terms can be ambiguous; therefore, the Operative layer of the 

critical context defines these abstract contexts in precise and 

standard defined terms. 

5.3 Critical Context Variables 
A context variable is a <critical_attribute, value> tuple that 

specifies an attribute of a software project. A context variable 

has two parts: a) Abstract critical context factor and b) 

value(s). Here the abstract critical context factor represents the 

type definition of the particular attribute and the value(s) part 

contains the actual value(s) of the attribute. One abstract 

factor may have one or more values assigned to it. For 

instance, Project team size and Management commitment are 

the critical context factors which may assume values as 

Project team size = large; and Management commitment = 

high. 

Note that the actual values will depend upon the abstract 

context factors. The values will change with change of the 

abstract critical context factors. 

 

 

 

Fig 2: Conceptual Model of Software Experience Critical Context  

5.4 Critical Context Factor 
A critical context factor represents an aspect of a context 

situation like Project team size or Management involvement. 

Both abstract and operative context factors have following 

parts: 

CCF_No. 

CCF_Title 

CCF_Description 

Range of values 

Each context factor is assigned a unique Id called the 

CCF_No. and a logical title, called CCF_Title. The 

CCF_Description slot contains the detailed definition of the 

context factor. The range of all possible values for the given 

context factor is specified in the ‘Range of values’ slot. 

There are two kinds of critical context factors – a) Abstract 

context factors and b) Operative context factors. Abstract 

context factors are part of the top layer of the software 

experience critical context whereas Operative context factors 

are part of the bottom layer of the critical context part of the 

SEC. 



 International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012) 

Proceedings published in International Journal of Computer Applications® (IJCA) 

 

5 

5.4.1 Abstract Context Factors 
An abstract context factor has all the components of a context 

factor along with one more element, called ‘Operator.’ An 

abstract context factor specifies the abstract view that an 

experienced software engineer has on a software development 

project. We use abstract context factors to define critical 

factors like large project size or high management 

commitment that can be quite intuitive and ambiguous for a 

person who is not well versed with a particular organisation 

environment. For instance, large project size may mean 

different things to software engineers coming from different 

software engineering organisations. 

5.4.2 Operative Context Factors 
An operative context factor has the following four basic 

components of a general context factor: 

CCF_No. 

CCF_Title 

CCF_Description 

Range of values 

One or more operative context factors are linked with one 

abstract context factor through ‘Operator.’ Also one operative 

context factor may be used in several conversions.  

In nutshell, the software experience critical context is a vector 

of critical context variables consisting of one abstract context 

factor and a value assigned to it out of the context factor’s 

‘Range of values’ slot. 

5.4.3 Operator 
The ‘Operator’ disambiguates the abstract context factor so 

that it becomes operational for use in the selection of software 

experience. It maps an abstract context factor like Project size 

to one or more operative context factors like number of 

software engineers in the team and the number of 

development sites. Every abstract context factor must have an 

Operator.  

6. REFERENCES 
[1] Althoff, K.-D., Birk, A., Wangenheim, C.G.V., and 

Tautz, C. 1998. CBR for experimental software 

engineering. In Proceedings of the Case-Based 

Reasoning Technology - From Foundations to 

Application, Chapter 9, 235-254. Springer, Heidelberg. 

[2] Althoff, K.-D., Bomarius, F., Mller, W., and Nick, M. 

1999. Using case based reasoning for supporting 

continuous improvement processes. In Proceedings of 

the 12th German Workshop on Machine Learning. 

[3] Althoff, K.-D., Bomarius, F., and Tautz, C. 2000. 

Knowledge Management for Building Learning Software 

Organizations. Information Systems Frontiers, vol. 2, 

349-367, Kluwer Academic Publishers. 

[4] Althoff, K.-D., Nick, M., and Tautz, C. 1999. CBR-PER: 

A tool for implementing reuse concepts of the experience 

factory for CBR systems. In Proceedings of the 7th 

German Conference on Knowledge Based Systems 

(XPS99).  

[5] Bartlmae, K. 1999. An experience factory approach for 

data mining. In Proceedings of the 2nd Workshop in 

Data Mining and Data Warehousing as Basis of Modern 

Decision Support Systems. 

[6] Basili, V.R., Caldiera, G., and Rombach, H. 1994. The 

Experience Factory. In Marciniak, J. (ed.) Encyclopedia 

of Software Engineering, vol. 1, Chapter X, 468–476, 

John Wiley & Sons, NJ, USA. 

[7] Basili, V.R., Lindvall, M., and Costa, P. 2001. 

Implementing the Experience Factory Concepts as a Set 

of Experience Bases. In Proceedings of the 13th 

International Conference on Software Engineering & 

Knowledge Engineering, 102-109. Knowledge Systems 

Institute.  

[8] Basili, V.R., and Rombach, H.D. 1991. Support for 

Comprehensive Reuse. IEEE Software Engineering 

Journal, 22 (4), 303-316. 

[9] Bergmann, R., Breen, S., Goker, M.; Manago, M., and 

Wess, S. 1999. Developing Industrial Case Based 

Reasoning Applications - The INRECA Methodology. 

LNAI, 1612, Springer-Verlag. 

[10] Finnie, G., Wittig, G., and Desharnais, J.-M. 1997. 

Estimating software development effort with case based 

reasoning. In Proceedings of the 2nd International 

Conference on Case Base Reasoning, 13–22, Springer-

Verlag. 

[11] Henniger, S. 1997. Capturing and formalizing best 

practices in a software development organization. In 

Proceedings of the 9th International Conference on 

Software Engineering and Knowledge Engineering. 

[12] Houdek, F., Schneider, K., and Wieser, E. 1998. 

Establishing Experience Factories at Daimler-Benz: An 

Experience Report. In Proceedings of the 20th 

International Conference on Software Engineering, 443- 

447. 

[13] Kalfoglou, Y., and Robertson, D. 2000. Applying 

experienceware to support ontology deployment. In 

Proceedings of the International Conference on Software 

Engineering and Knowledge Engineering. 

[14] Koennecker, A., Jeffery, R., and Low, G. 2000. 

Implementing an experience factory based on existing 

organizational knowledge. In Proceedings of the 

Australian Software Engineering Conferenc.

 


