
IP Multimedia Communications 

A Special Issue from IJCA - www.ijcaonline.org 

 

151 

Ranking of Resulting Objects and Snippet Generation   

                                     for Falcons 

Pokhar M Jat 
Dhirubhai Ambani Institute of 

Information and 
Communication Technology 

Gandhinagar, India 

 

Manoj K Jain 
Mohan Lal Sukhadia 

University, Udaipur, India 
 

Deepak Sengar 
Dhirubhai Ambani Institute of 

Information and 
Communication Technology, 

Gandhinagar, India 

ABSTRACT 

Semantic web search engine Falcons support keyword based 

search for linked objects by using comprehensive virtual 

document which it creates for each object. In our work we are 

suggesting idea of using Selectivity Estimation of triple patterns 

for ranking of resulting objects and generating snippet for the 

keyword query for Falcons Semantic web search engine. 

Selectivity of a triple pattern is the fraction of triple satisfying 

the keyword query. Our work ranks resulting objects 

considering their relevance to the keyword query. For each 

resulting object for a searched keyword query, Object-rank is 

calculated by calculating the query-relevant-index for each RDF 

triple related to the object. For each resulting object, a query 

relevant structured snippet is provided to show the associated 

literals and linked objects matched with the query. Snippet 

generation is also done by query-relevant index of RDF triples 

related to the resulting object.   

General Terms 

Searching Semantic Web, Resource Ranking on Semantic Web. 

Keywords 

Semantic Web, Falcons, Snippet Generation, Resource Ranking.  

1. INTRODUCTION 
In this paper, we focus on ranking of resulting objects for a 

keyword query search for Falcons semantic web search engine 

and also on the generation of snippet for each object. Semantic 

search ([4], [11], [12]) promises to provide more accurate results 

Ranking of searched results  is a fundamental and crucial 

subtask of query execution for search engines. In Falcons, the 

system constructs for each object a comprehensive virtual 

document ([1], [8], [10]) consisting of textual descriptions 

extracted from its concise RDF description [1]. We focus on the 

use of idea of selectivity estimation of RDF triple patterns [7] 

for ranking of resulting objects. Selectivity of a triple pattern [5] 

based on the keyword query can be calculated easily which in 

turn will make object’s ranking easier to calculate. The objects’ 

ranking goal is to find the efficient order of representation of 

results for the searched keyword query.  

For each resulting object, the system generates a query-relevant 

structured snippet [1] to show the associated literals and linked 

objects matched with the keyword query. The snippet can help 

the user quickly determine its relevance or even directly obtain 

knowledge. The triples with the higher selectivity value, which 

is easy to calculate and is based on searched keyword query, is 

most likely to be a part of snippet. 

 

The problem we are going to tackle in this paper is best 

explained by a simple example. Consider, hypothetically, 

searching a keyword based query (e.g. “Chris Bizer” “Tom 

Heath”) on Falcons semantic web search engine and 3 objects 

are returned as results. The next task is to rank these 3 objects 

and generate snippet for each of these 3 objects. Again 

hypothetically if each of these 3 objects contain 3 triples. Then 

we can calculate query relevant index of three triples by using 

idea of selectivity for each of the three objects. Knowing the 

query relevant index of all the triples of an object, we can 

calculate object-rank for that particular object. One with the 

highest object-rank will be ranked first, the next lower will be 

ranked second and so on. For generating snippet for each object, 

triple (or sentence) with highest query relevant index will be 

selected first, and then the next lower will be second and so 

on(depending upon how many threads should be suitable for a 

snippet) 

2. PRELIMINARIES 
For Falcons semantic web keyword based search engine, the 

system constructs for each object a virtual document. Then an 

inverted index is built from terms in virtual documents to object.  

For constructing virtual document RDF Sentence are used. An 

RDF graph [7] g can be decomposed into a unique set of RDF 

sentences, denoted by Sent(g) Some important factors are 

describes as follows: 

2.1 A. RDF Sentence 
Two RDF Triples are called b-connected if they contain 

common blank nodes. In an RDF graph, RDF sentence [2] is a 

set of b-connected RDF triples. See also [3]. 

In an RDF graph g as a set of RDF Triples, an RDF sentence  s 

⊆ g satisfies the following conditions: 

 ∀ti, tj  ϵ s,,ti, tj are b-connected 

    ∀ti ϵ s , tj  ϵ g \ s,,ti, tj are not b-connected 

 Where ti, tj  are RDF Triples 

We can define 

Sub(s) = {s|∃ <s, p, o>  ϵ  s}, 

Pred(s) = {p|∃ <s, p, o>  ϵ  s}, 

Obj(s) = {o|∃ <s, p, o>  ϵ  s}, 



IP Multimedia Communications 

A Special Issue from IJCA - www.ijcaonline.org 

 

152 

Where, Sub(s) is subject of RDF sentence s, and 

Pred(s) is predicate of RDF sentence s, and 

Obj(s) is object of RDF sentence s. 

2.2 Virtual Documents 
To implement keyword-based search for web pages, an inverted 

index from terms to web page URIs is built. For Semantic Web, 

an object identified by a URI has no such content except for the 

URI itself. So its virtual document is made that includes its data 

so that an inverted index from terms in virtual documents to 

objects can be built along with other important data that it 

possesses which is used to rank the object. 

2.3 Constructing Virtual Documents with 

RDF Sentences 
Let G be the universal RDF graph combined from all the RDF 

documents in the data set. Let U and L be the sets of all URIs 

and all literals, respectively. For an object o, all the RDF 

sentences decomposed from G that describe o form its concise 

RDF description (RDFDesc(o)) . We can also define the sets of 

entities(DescEnt(o)) and literals(DescLit(o)) which are related to 

object o. 

 If Object o is a Part of Subject of Sentence(or RDF 

Triples):  RDFDesc(o) = {s|s ϵ Sent(G) ˄ o ϵ Subj(s)}, 

DescEnt(o) = {u ϵ U|∃s(s ϵ RDFDesc(o) ˄ u ϵ (Pred(s) U 

Obj(s))) }. 

 If Resulting Object o is a Part of Object of Sentences (or 

RDF Triples):  RDFDesc(o) = {s|s ϵ Sent(G) ˄ o ϵ 

Obj(s)}, DescEnt(o) = {u ϵ U|∃s(s ϵ RDFDesc(o) ˄ u ϵ  

(Pred(s) U Subj(s))) } 

RDFDesc [1] gives the set of all possible RDF 

sentences(or triples) for object o. RDFDesc of 1 and 2 

together give all RDF sentences(or triples) related to 

object o. 

DescEnt [1] of 1 and 2 together give URIs of objects  

related to object o 

 3.Literals which could be Related to o:                  

DescLit(o) = {l ϵ L|∃s(s ϵ RDFDesc(o) ˄ l ϵ Obj(s)) } 

Using 1, 2 and 3, virtual document ([1], [8], [11]) of 

an object o is calculated 

3. RANKING RESULTING OBJECTS 

USING SELECTIVITY OF TRIPLE 

PATTERNS 
For each resulting object, we have RDF Triples related to the 

object. An RDF triple has three parts, subject, predicate and 

object respectively. Selectivity of triple  pattern is calculated  

based  on   keyword    query. 

Selectivity of a triple pattern is calculated as follows: 

If an RDF triple pattern is represented as t, and subject(s), 

predicate(t), and object(o) are parts of RDF triple, 

Sel(t): Selectivity of triple pattern t based on keyword query, 

Sel(s): Selectivity of subject s of RDF triple based on keyword query, 

Sel(p): Selectivity of predicate p of RDF triple based on keyword query, 

Sel(o): Selectivity of object o of RDF triple based on keyword query. 

Sel(obj): Selectivity of resulting object obj based on keyword query, 

Sel(sent) : Selectivity of RDF sentence based on the keyword query. 

Sel(sB) : Selectivity of subject of an RDF Triple which is a blank node. 

Sel(oB) : Selectivity of object of an RDF Triple which is a blank node. 

3.1 Relation Between Sel(t), Sel(s), Sel(p), 

and Sel(o): 
 See [5],       Sel(t) = Sel(s) * Sel(p) * Sel(o) 

Thus, the expected selectivity of t, Sel(t), is modeled as the 

multiplication of the expected selectivity of subject Sel(s), 

predicate Sel(p), and object Sel(o).The selectivity function 

returns a value between 0 and 1,thus, it is basically a 

normalization to [0,1] of the estimated selectivity. 

3.2 Selectivity Estimation: 
In this section we calculate selectivities of subject, predicate and 

object of triple pattern based on keyword query. 

1.Subject Selectivity Estimation( Sel(s) ) Based on 

Keword Query: There are three possible cases. 

 Subject of triple matches with the keyword query(or part 

of the keyword query), then 

Sel(s) = 1  

 •Subject of triple does not match with the keyword 

query(or part of the keyword query), then 

Sel(s) = 1/|R| 

Where |R| is total number of resources 

 If subject of triple is a blank node,then 

If a blank node ( [6], [9] ) appears at the subject position of an 

RDF Triple, then this blank node must have been also an object 

of a previous RDF Triple. So we can calculate selectivity of a 

blank node at the subject position as follows. 

If  t1 is an RDF  triple which has a blank node say b at the 

position of subject, and t2 is the RDF triple(previous) having b 

at its object position. 

Sel(sB) = average of selectivities of object  of triple t1 and 

subject of triple t2. 

Or  Sel(sB) = ( Sel(t1.o) + Sel(t2.s) ) / 2 ; 

Where, sB represents a blank node at the subject position, and 

Sel(t1.o) is selectivity of object for the RDF triple t1, and 

Sel(t2.s) is the selectivity of subject for the RDF Triple t2. 

3.2.1 Predicate Selectivity Estimation( Sel(p) ) 

Based on Keword Query: There are two possible 

cases. 
 predicate of triple matches with the keyword query(or part 

of the keyword query), then 

Sel(p) = 1  

 Predicate of triple does not match with the keyword 

query(or part of the keyword query), then 



IP Multimedia Communications 

A Special Issue from IJCA - www.ijcaonline.org 

 

153 

Sel(p) = |Tp|/|T|,   see [5] 

Where |Tp| corresponds to the number of triples matching 

predicate p, and |T| is total number of triples. This is the fraction 

of triples which matches pattern p. 

3.2.2 Object (of RDF Triple) Selectivity Estimation( 

Sel(o) ) Based on Keword Query: There are four 

possible cases. 

 Object of triple matches with the keyword query(or part 

of the keyword query), then 

Sel(o) = 1/|R| 

 Object of triple does not match with the keyword query(or 

part of the keyword query), then 

Sel(o) = 1/|R| 

Where |R| is total number of resources. 

 Object of triple does not match with the keyword query(or 

part of the keyword query) and it is a literal, then 

Sel(o) = 1/|T| 

Where |T| represents total number of RDF triples 

 If object of triple is a blank node,then 

If a blank node( [6], [9] ) appears at the object position of an 

RDF Triple, then this blank node must have been also a subject 

of  some following(next) RDF Triple. So we can calculate 

selectivity of a blank node at the object position as follows: 

If  t1 is an RDF  triple which has a blank node say b at the 

position of object, and t2 is the RDF triple(following) having b 

at its subject position, then 

Sel(oB) = average of selectivities of subject  of triple t1 and 

object of triple t2. 

Or, Sel(oB) = ( Sel(t1.s) + Sel(t2.o) ) / 2 

Where, oB represents a blank node at object position of an RDF 

triple, and 

Sel(t1.s) is selectivity of subject for the RDF triple t1, and 

Sel(t2.o) is the selectivity of object for the RDF Triple t2 

3.2.3  Selectivity of Resulting ObjectsBased on 

Keyword Query: 
After calculating selectivity of all triples based on keyword 

query related to a resulting object, we can calculate selectivity of 

object based on keyword query as follows 

Sel(obj) = sum of selectivities of all triples related to the object 

obj. 

                               n              

 Or,         Sel(obj) = ∑ Sel(ti) 

                              i=1  

where, n is total no. of related triples to resulting object obj, and  

ti  is a related triple of resulting object obj. 

3.2.4  Ranking of Resulting objects: 
After calculating selectivities of all resulting objects based on 

the keyword query, we rank them as follows: There are two 

possible cases. 

 No. Of Related Triples are same (or almost same) for 

Resulting Objects: Resulting object with the highest 

selectivity will be ranked first, next lower will be ranked 

second and so on. 

 No. of Related Triples are Different for Different 

Resulting Objects: here if we apply rule of case 1, then 

object ranking might not be perfect. To avoid it and to 

rank in a fine manner, we introduce the concept of a 

Virtual default triple 

Virtual Default Triple: It is an assumed (which does not exist in 

real) related triple to a resulting object, and its selectivity would 

be the selectivity which has highest frequency for related triples 

to the resulting object. 

So if two resulting objects have different no. of related triples, 

we make them equal by adding virtual default triple to the object 

having less number of related RDF triples, and then selectivity 

of object (after adding virtual default RDF triple) is recalculated 

and then they are compared for ranking of objects. 

If there are two resulting objects for a keyword query, first is 

obj1 having m no. of related triples, and the other is obj2 having 

n no. of related triples and m<n, then 

Since m < n, selectivity of obj1 will be recalculated as follows: 

Sel(obj1) = sum of selectivities of all real related triple for obj1  

+  (n-m)*selectivity of virtual default triple. 

                               n              

 Or,    Sel(obj1) =  ∑ Sel(ti) + (n-m) * Sel(VDefT), 

                              i=1  

where, Sel(VDefT) is selectivity of virtual default triple,  

n is total no. of real related triples to resulting object obj, and 

ti  is a real related triple of resulting object obj1 

Now comparision is done between Sel(obj1) and Sel(obj2), one 

with higher value will be ranked first and the next lower will be 

ranked second . If there are more resulting objects for a searched 

keyword query with different number of related triples the same 

approach will be followed. 

4. SNIPPET GENERATION 
In this section we will describe, how snippet would be generated 

of a resulting object for a searched keyword query by using 

selectivity of RDF sentences. 

1.Selectivity of an RDF Sentence for a Resulting Object Based 

on Keyword Query :  For each RDF sentence [2] related to a 

single resulting object, we can calculate its selectivity(based on 

the keyword query) as follows: 

An RDF sentence [2] is made by connecting RDF triples via 

blank nodes ( [6], [9] ). So by using selectivities of RDF triples 

which make an RDF sentence, we can calculate selectivity of 

that RDF sentence: 



IP Multimedia Communications 

A Special Issue from IJCA - www.ijcaonline.org 

 

154 

Sel(sent) = Sum of selectivities of all RDF triples which form 

RDF sentence sent. 

                                  m              

 Or,         Sel(sent) = ∑ Sel(tj) 

                                 j=1 

where, m is the number of triples which make an RDF sentence 

for a single resulting object, and 

tj is one of the RDF triple of an RDF sentence of a resulting 

object. 

2.Ranking of RDF Sentences for Generating Snippet for a 

Resulting Object:  First we will define a thread. A thread could 

be a RDF Triple if and only if it does not contain any blank node 

or a thread could be an RDF Sentence. A thread would be an 

RDF sentence when blank nodes exist in RDF Triples for that 

RDF sentence. Secondly we should decide how many threads 

should be there in a snippet of a resulting object for a searched 

query. This could be decided by  considering  following  points 

in mind. 

 User should be able to see sufficient number of 

resulting objects on the resulting page. 

 Searched keyword query could possibly be answered 

in the snippet itself 

For our case we are considering no. of threads should be 3 for a 

snippet. 

For each RDF Sentence of a resulting object, selectivity is 

calculated. Then, Selectvities of RDF Sentences for that object 

are compared. Now we select m no. of RDF sentences with 

highest selectivities where m is the number of threads which 

would make the snippet for a resulting object. Value of m  is 3 

for our case, so we will select 3 RDF sentences (threads) with 

highest selectivities which would make snippet for the resulting 

object. 

5. CONCLUSION 
In this paper, we have presented the idea of ranking of resulting 

objects and snippet generation for a searched keyword query for 

Falcons keyword-based semantic web search engine. To meet 

the challenge idea of selectivity has been used. Selectivities have 

been calculated based on the searched keyword queries. 

Firstly, objects are searched for a keyword query, then they are 

ranked. RDF Sentences (or RDF Triples) related to each object 

are used for ranking of the resulting object.  Selectivity of an 

RDF triple is fraction of the triple satisfying the searched 

keyword query. Based on selectivities of all related RDF 

Triples, selectivity of the resulting object has been calculated. 

Selectivities of all resulting objects for a searched keyword 

query are compared to rank them, one with higher selectivity 

will be ranked higher. For snippet of a resulting object, threads 

(RDF Triples or RDF sentences) which have higher values of 

Selectivities than the other threads have been selected. 

6. REFERENCES 
[1] Cheng Gong & Qu Yuzhong, Searching Linked Objects 

with Falcons: Approach, Implementation and Evaluation. 

In International Journal on Semantic Web and Information 

System, 5(3), 50-71, July-September 2009 

[2] X. Zhang, G. Chang & Y. Qu (2007). Ontology 

Summarization based on RDF Sentence Graph. In C. 

Williamson, M. E. Zurko, P. Patel-Schneider, & P.Shenoy 

(Eds.), Proceedings of the 16th International Conference on 

World Wide Web (pp. 707-716). New York,NY,USA: 

ACM 

[3] G. Tummarello, C. Morbidoini, R. Bachmann-Gmur, & O. 

Erling (2007). RDF Sync: Efficient Remote 

Synchronization of RDF Models. In K. Aberer et al. (Eds.), 

Proceedings of the 6th Semantic web Conference and the 

2nd Asian Semantic web Conference (Vol. 4825, pp. 537 - 

551). Berlin/Heidelberg:  Springer. 

[4] T. Tran, P. Cimiano, S.Rudolph, & R. Studer (2007). 

Ontologu Based Interpretation of Keywords for Semantic 

Search. In K. Aberer et al. (Eds), Proceedings of the 6th 

Semantic web Conference and the 2nd Asian Semantic web 

Conference (Vol. 4825, pp. 523 - 536). Berlin/Heidelberg:  

Springer. 

[5] A. Bernstein, C. Kiefer, and M. Stocker. OptARQ: A 

SPARQL                                   Optimization Approach 

based on Triple Pattern Selectivity Estimation(Section 2). 

Technical Report IFI-2007.02, Department of Informatics, 

University of Zurich, 2007.. 

[6] M. Arenas, M. Consens, and A. Mallea. Revisiting Blank 

Nodes in RDF to Avoid the Semantic Mismatch with 

SPARQL. (Section 2) 

[7] G. Antoniou, and F. van Harmelen. Semantic web Primer, 

2nd edition. Chapter 3 & 4. 

[8] C. Waters (1999). Information Retrieval and Virtual 

Document. Journal of the American Society for 

Information Science, 50(11), 1028-1029. 

[9] W3C,  Resource Description Framework(RDF): Concepts 

and Abstract Syntax, Section 6.6 Blank Nodes. 

[10] Y. Qu, W. Hu, & G. Chang (2006). Constructing Virtual 

Documents for Ontology Matching. In L. Carr, D. D. 

Roure, A. Iyengar, C. Goble, & M.Dahlin (Eds.), 

Proceedings of the 15th International Conference on World 

Wide Web (pp. 23-31). New York,  NY,  USA:ACM.  

[11] Q. Zhou, C. Wang, M. Xiong, H. Wang, & Y. Yu (2007). 

SPARK: adapting keyword query to semantic search. In  K. 

Aberer et al. (Eds.), Proceedings of 6th International 

Semantic Web Conference and the 2nd Asian Semantic 

Web Conference (Vol. 4825, pp. 694-707), 

Berlin/Heidelberg: Springer. 

[12] H. Wang, K. Zhang, Q. Liu., T. Tran, & Y. Yu. (2008). 

Q2Semantic: a Lightweight Keyword Based Interface to 

Semantic Search.  In  S. Bechhofer, M. Hausewirth, J. 

Hauffmann, & M. Koubarakis (Eds.), Proceedings of 5th 

European Semantic Web Conference (Vol. 5021, pp. 584-

598). Berlin/Heidelberg: Springer 


