
International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

55

A New Proactive Fault Tolerant Approach for Scheduling

in Computational Grid
P.Keerthika,

Assistant Professor(Sr.G),

Kongu Engineering College,

Perundurai, Erode,

Tamilnadu.

Dr.N.Kasthuri,

Professor,

Kongu Engineering College,

Perundurai, Erode,

Tamilnadu.

ABSTRACT

Grid Computing provides non-trivial services to users and
aggregates the power of widely distributed resources.

Computational grids solve large scale scientific problems
using distributed heterogeneous resources. The Grid
Scheduler must select proper resources for executing the tasks
with less response time and without missing the deadline.
There are various reasons such as network failure, overloaded
resource conditions, or non-availability of required software
components for execution failure. Thus, fault-tolerant systems
should be able to identify and handle failures and support
reliable execution in the presence of failures. Hence the

integration of fault tolerance measures with scheduling gains
much importance. In this paper, a new fault tolerance based
scheduling approach for scheduling statically available meta
tasks is proposed wherein failure rate and the fitness value are
calculated. The performance of the fault tolerant scheduling
policy is compared with a non-fault tolerant scheduling policy
and the results shows that the proposed policy performs better
with less TTR in the presence of failures. The number of

tasks successfully completed is also more when compared to
the non-fault tolerant scheduling policy.

Keywords

Fault tolerance, Failure rate, Grid scheduling, Meta task

1. INTRODUCTION
Grid computing is sharing of coordinated resources in a
dynamic environment where multi-institutional virtual
organization involves and open standards becomes the key
underpinning. In grid environments they does not prefer to
rely on centralized control; instead they provide coordination
among the resources. The use of open standards, protocols
and frameworks provides interoperability facilities. To
achieve the full potential of grid environment we should
perform the grid scheduling in an effective manner.

Grid scheduling is the process of making scheduling decisions
involving resources over multiple administrative domains.
This process can include searching multiple administrative
domains to use a single machine or scheduling a single job to
use multiple resources at a single site or multiple sites.
Job scheduling involves mapping of „n‟ tasks to „m‟
processors. It is a NP- complete problem. Scheduling is done
by using a software application called scheduler. Scheduler

software enables an enterprise to schedule and, in some cases,
monitor computer "batch" tasks. It can initiate and manage
jobs automatically by processing prepared task control
language statements or through equivalent interaction with a
human operator.

When a task is considered, the key parameters includes
deadline, memory space required, waiting time, process time,
turn-around time etc. Similarly the key parameters for a
resource include speed, failure rate, maximum load it can
handle, queue length etc. In this paper we try to find out the
common parameters that are being shared by both task as well

as resource like memory space, speed to filter out the capable
tasks. With the above assumptions we perform the scheduling
through time to release and failure rate values.
Fault tolerant mechanisms are needed to hide the occurrence
of faults, or the sudden unavailability of resources. Although
scheduling and fault tolerance have been traditionally
considered independently from each other, there is a strong
correlation between them. As a matter of fact, each time a
fault-tolerance action must be performed. Fault-tolerant

schedulers [19,20] attempt to do so by integrating scheduling
and fault management, in order to properly schedule both
faulty and non-faulty tasks.
The consideration of TTR value is because of its improved
efficiency over Min-Min and FCFS algorithms. The addition
of transmission time in scheduling criteria enables the sight
over the transmission cost of data‟s or packets where the
actual grid resources being distributed in nature. When this is

being integrated with fault tolerant measures then the
reliability of the algorithm would increase. In the proposed
algorithm the above is achieved in efficient way with the
fitness value which is calculated and considered while
scheduling when the task can hold with the available
specifications of the resource.
The main objective of this paper is to design a new scheduling
algorithm that reduces the TTR which is the total time taken

to complete a set of jobs. Also, the idle time of the resources
should be less which assures that no resources are kept idle
for a long time. It also ensures that fault tolerant measures are
satisfied. The tasks are scheduled after the fault rate of all the
resources is calculated. The proposed algorithm considers
both system performance and user satisfaction. Hence, most
of the jobs are completed within their expected completion
time with minimum number of failures.

2. RELATED WORKS
There are many scheduling algorithms that perform better and
some of the algorithms concentrate on fault tolerance. Some

of those scheduling algorithms are discussed below.
Minimum Time to Release Scheduling Algorithm has been
discussed in [1] in which the Time to Release (TTR) is
calculated. Based on the TTR value all the tasks are arranged
in descending order. The tasks are submitted in that order.
This algorithm performs better when compared to First Come
First Serve Scheduling and min-min algorithms.
Other related works includes time and cost optimization

algorithms discussed in [3]. It extends the cost-optimisation

http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci214049,00.html
http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci214049,00.html

International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

56

algorithm to optimise the time without incurring additional
processing expenses. This is accomplished by applying the
time-optimisation algorithm to schedule task farming or
parameter-sweep application jobs on distributed resources
having the same processing cost.

Computational grid environment involves problems in
effective scheduling of jobs. [1] brings out a way in solving
this problem through grid scheduling architecture and job
scheduling algorithm. This architecture is scalable and
eliminates control of local site resources. In this algorithm the
grid scheduler which selects the computational resources
based on job requirements, job characteristics and information
given by resources, performs resource brokering and job

scheduling.
The purpose of this scheduler is to minimize the total time to
release (TTR) for individual applications. The work [1]
provides the grid architecture with dispatcher, grid scheduler
and load balancer which interface modules, matches resources
and clients, reschedules for optimizing resources respectively.
Grid scheduling systems obtain user applications through
interface application profiling and the services are provided

by the resources which differ in number of processors, cost
and speed of processing, etc. This model is efficient enough to
handle large range of components being integrated into the
Grid and supports varied policies of users. This architecture
brings out interoperation of different schedulers, which
considers user objectives. Grid resources must register with
GIS initially.

The grid scheduling algorithm starts with splitting of user
requests and checking for available identified specific
resources. Then the resources and their requirements are
verified with appropriate resources saved for future
processing. This algorithm proceeds with calculation of TTR
and mapping of jobs based on it. Based on time assignment
some mappings are removed and a updated list is made which
is sorted. From the list first job is released and assigned to
selected resource if possible. This algorithm is repeated till

completion of jobs. This proposed model implements grid
simulation toolkit software GridSim Toolkit 4.0. Through this
a virtual network connection was established among various
entities with an exclusive bandwidth between every two
entities. On the whole the results obtained seem to be efficient
when compared with some benchmark algorithms.

The model proposed in [2] brings out modeling execution of

jobs on grid compute clusters with the assistance of PEPA
model. It involves approximation of state space and
representing it as a set of ordinary differential equations. [3]
proposes a new scheduling algorithm called DBC cost time
optimization extending the DBC cost optimization algorithm.
Based on the user‟s quality of services requirements, the
resources for their applications are allocated, by regulating the
supply and demand. This is brought through a framework

including economy driven deadline and budget constrained
algorithms for satisfying user‟s requirements. [4] addresses
fault-tolerant scheduling for differentiated classes of
independent tasks through various simulation experiments. It
proposes two algorithms such as MRC-ECT and MCT-LRC
which provides optimal backup schedule in terms of
replication cost and minimum completion time respectively.

A QoS guided task scheduling algorithm is put forth in [5]
which is based on general adaptive scheduling heuristics
including QoS guidance. The results of [5] show that general
adaptive scheduling heuristics that includes QoS guidance
provides significant performance gain. A fault tolerance

service based on different types of failures satisfying the QoS
requirements is explained in [6]. It also gives a resource
scheduling service, detection of faults and over usage of
resources and fault management service.

[7] gives an evaluation of coordinated grid scheduling strategy
with the FCFS job scheduling policy and the matchmaking
approach for the resource selection as a reference. [8] tests
and compares coordinated checkpoint and pessimistic
message log based on frequency of faults and concludes that
an uncoordinated checkpoint is better for large scale cluster
computational grids.[9] implements (LA-MPI) for toleration
of network related failures and present a distinguished view

its features in network transmission. [10] studies various
failures in computational grid environment and presents a
statistical view on all factors related to failures.

Through effective mechanisms for fault tolerance using over-
provisioning algorithms as basic steps and achieving balance
reliability in real time constraints has been proposed in [11].
In order to allocate grid tasks in minimum time and to

increase toleration of faults, [12] uses DAG mechanism to
enter tasks and thereby brings out an efficient algorithm
namely Ant Colony Optimization algorithm.[13] approaches
scheduling mechanism with dynamic priority for tasks
according to the execution time and multi queues are
formed.RPC and Proactive failure detection are being used for
accurate efficiency.[14] surveys the importance of fault
tolerance for achieving reliability by all possible mechanisms

such as Replication, Check pointing and job migration.

Overcoming the disadvantages of existing fault tolerance
techniques,[15] proposes “Smart Failure” technique for
reducing failover and increasing performance.[16] studies
various fault occurrences and investigates the reason for faults
thereby providing a clear view on faults. [19] proposes a
system architecture for Distributed Networks providing a
wide area scheduler prototype.[20] uses divide and conquer

strategy for overcoming crashes of one or more nodes and
concentrates on minimizing the redundant work.

3. PROPOSED FAULT TOLERANT

BASED SCHEDULING POLICY
In this section, the brief description of the proposed algorithm
is presented. This scheduling algorithm is based on
transmission time and fault rate. User deadline is taken into
account and the job is made to be executed within the

expected deadline by assigning it to the most suitable
resource. System performance is also achieved by reducing
the idle time of the resources and distributing the unmapped
tasks equally among the available resources. TTR value is
calculated for all the jobs with every available resource.
Secondly, the job with the minimum deadline is considered.
The deadline of the selected job given by the user is compared
with different TTR values. Then the waiting time of the

resource and the TTR are recalculated for the remaining
unmapped jobs. Above steps are repeated until all the jobs are
scheduled.

3.1 Calculation of TTR.

TTR = TW +TE + TI + TO

TW: Time for waiting in resource queue
TE: Expected time to execute the job

International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

57

TI: Time taken for transfer of input files and executable to
the resource
TO: Time taken for transfer of output files to the user.

 Hit Rate = JSucc/Jsub

JSucc : No. of jobs successfully completed
Jsub : Total No. of jobs submitted

 Miss Rate = Jf/Jsub

Jf : No. of jobs failed for execution
Jsub : Total No. of jobs submitted

4. ESTIMATION OF FAULT RATE

AND FITNESS VALUE

In this algorithm fault rate is considered. Based on fault rate
and TTR value, fitness value is calculated.

FR =Jf / Js

where
FR = Fault rate
Jf = Number of jobs failed
Js = Number of jobs submitted

FV = Ff + Ft

 where

 Ff =((fc – fmin) / 2)
 Ft =((tc – tmin) / 2)
 FV= Fitness value
 fc = current fault-rate
 fmin =overall minimum fault-rate
 tc = current ttr
 tmin = overall minimum ttr

5. SIMULATION RESULTS
The above proposed algorithm is simulated with 512 jobs and
16 machines for 5 different inputs using GridSim5.0 Toolkit.

Fault Tolerant Time To Release scheduling algorithm is
compared with Time To Release scheduling algorithm on the
basis of TTR, hit rate and miss rate. By analyzing various
possible TTR values, the performance of the fault tolerant
time to release algorithm is found to be better than the Time to
Release scheduling algorithm.

 CASE

TIME TO

RELEASE

SCHEDULING

ALGORITHM

FAULT

TOLERANT

TIME TO

RELEASE

SCHEDULING

ALGORITHM

 1 69 65

 2 61 57

 3 66 63

 4 65 62

 5 63 59

Table 5.1 Comparison based on TTR

Figure 5.1 Comparison chart based on TTR

 From the table 5.1 and figure 5.1, it is inferred that Fault
tolerant scheduling has less TTR than scheduling without fault
tolerance. TTR is the total time taken to complete a set of
jobs.

CASE

TIME TO

RELEASE

SCHEDULING

ALGORITHM

FAULT

TOLERANT

TIME TO

RELEASE

SCHEDULING

ALGORITHM

 1 215 220

 2 198 199

 3 228 230

 4 209 213

 5 228 229

Table 5.2 Comparison based on Hit count

From the table 5.2 and figure 5.2, it is inferred that Fault

tolerant scheduling has better hit rate than scheduling without
fault tolerance. Hit count is calculated as the ration between
number of jobs executed successfully to the total number of
jobs submitted.

 Figure 5.2 Comparison chart based on Hit count

 CASE

TIME TO RELEASE

SCHEDULING

ALGORITHM

FAULT

TOLERANT TIME

TO RELEASE

SCHEDULING

ALGORITHM

 1 297 292

 2 314 313

International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

58

 3 284 282

 4 303 299

 5 284 283

 Table 5.3 Comparison based on Miss count

Figure 5.3 Comparison chart based on Miss count

From the table 5.3 and figure 5.3, it is inferred that Fault
tolerant scheduling has less miss rate than scheduling without
fault tolerance. Miss count is calculated as the ration between
number of jobs failed for execution to the total number of jobs
submitted.

6. CONCLUSION AND FUTURE WORK
The problem of grid scheduling is addressed in this paper with
a solution of providing fault tolerance along with scheduling.
The simulation results shows that the proposed scheduling
algorithm with fault tolerance shows high hit rate and less
miss rate. This approach is successful for static scheduling

and it can be extended for dynamic scheduling. The proposed
technique is a proactive fault tolerance technique and it can
also be merged with passive techniques through which fault
tolerance can be achieved to a greater extent.

7. REFERENCES
[1] N.Malarvizhi, Dr.V.Rhymend Uthariaraj. (2009): A

Minimum Time To Release Job Scheduling Algorithm in
Computational Grid Environment, IEEE Fifth
International Joint Conference on INC, IMS, IDC.

[2] Benoit Anne, Cole Murray, Gilmore Stephen and
Hillston Jane. (2005): Enhancing the effective utilization
of Grid clusters by exploiting on-line performability
analysis, IEEE International symposium on Cluster
Computing and the Grid (CCGRID), pp. 317-324.

[3] Buyya. R, Murshed. M, Abramson. D. (2002): A
deadline and budget constrained cost-time optimization
algorithm for Scheduling task farming applications on
global grids, In Proceedings of the international

conference on parallel and distributed processing
techniques and applications, Las Vegas, USA, pp. 24–27.

[4] Q. Zheng, B. Veeravalli, and C. Tham.(2007): Fault-

tolerant Scheduling for Differentiated Classes of Tasks
with Low Replication Cost in Computational Grids,
ACM, HPDC‟07, June 25–29, 2007, Monterey,
California, USA.

[5] He X , Sun, X., Laszewski, G.V., (2003). Qos guided
min-min heuristic for grid task scheduling, Journal of
Computer Science and Technology 18, 442-451.

[6] H.Lee, D.Park, M.Hong, Sang-Soo Yeo, SooKyun Kim,
SungHoon Kim, (2009): A Resource Management

System for Fault Tolerance in Grid Computing, IEEE
International Conference on Computational Science and
Engineering, DOI 10.1109/CSE.2009.257.

[7] Ivan Rodero, Francesc Guim, Julita Corbalan, 2009,
Evaluation of Coordinated Grid Scheduling Strategies,
11th IEEE International Conference on High
Performance Computing and Communications, DOI
10.1109/HPCC.2009.28.

[8] A. Bouteiller, P.Lemarinier, G.Krawezik, F.Cappello,
Coordinated checkpoint versus message log for fault

tolerant MPI, IEEE International Conference on Cluster
Computing (Cluster 2003). IEEE CS Press, December
2003.

[9] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. D. nd
Ronald G. Minnich, C. E. Rasmussen, L. D. Risinger,
and M. W. Sukalski, “A network failure-tolerant
message-passing system for terascale clusters,” in
International Conference on Supercomputing(ICS‟02).
New York City, NY, USA: ACM, June 2002, pp.
77–83.

[10] B. Schroeder, and G. Gibson, “A Large Scale Study of
Failures in Highperformance-Computing Systems,”
International Symposium on Dependable Systems and
Networks, 2006.

[11] Gopi Kandaswamy, Anirban Mandal, and Daniel A.
Reed, “Fault Tolerance and Recovery of Scientific
Workflows on Computational Grids”

[12] VahidModiri, Morteza Analoui and Sam Jabbehdari,
Fault tolerance in grid using Ant colony optimization and

Directed acyclic graph, (2011), International Journal of
Grid Computing & Applications (IJGCA) Vol.2, No.1.
DOI: 10.5121/ijgca.2011.2102

[13] S.ThamaraiSelvi, Ponsy R.K.SathiaBhama, S.Architha,
T.Kaarunya and K.Vinothini, (2010) “Scheduling
inVirtualized Grid Environment Using Hybrid
Approach” International Journal of Grid Computing &
Applications (IJGCA) Vol.1, No.1.

[14] Ritu Garg, Awadhesh Kumar Singh, (2011), “Fault
Tolerance in grid computing: state of the art and open
issues”, International Journal of Computer Science &
Engineering Survey (IJCSES) Vol.2, No.1. DOI :
10.5121/ijcses.2011.2107

[15] K Limaye, B. Leangsuksun, Z. Greenwood, S. L. Scott,
C. Engelmann, R. Libby and K. Chanchio, (2005), “Job-
Site Level Fault Tolerance for Cluster and Grid
environments” In Proceedings of the IEEE international
conference on cluster computing, , pp. 1-9.

[16] R. Medeiros, W. Cirne, F. Brasileiro, J. Sauve, (2003),
“Faults in grids: why are they so bad and what can be

done about it?” In proceedings of the 4th international
workshop, pp 18–24.

[17] J. H. Abawajy,(2004), “Fault-tolerant scheduling policy
for grid computing systems”, In Proceedings of the
International Parallel and Distributed Processing
Symposium, IEEE Computer Society, Los Alamitos,
United States, pp.3289–3295.

[18] J. Weissman and D. Womack,(1996), Fault Tolerant
Scheduling in Distributed Networks. Technical Report
TR CS-96-10, Department of Computer Science,
University of Texas, San Antonio.

[19] Gosia WrzesinNska, Rob V. van Nieuwpoort, Jason
Maassen, Thilo Kielmann, Henri E. Bal, (2006), Fault-

International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

59

Tolerant Scheduling Of Fine-Grained Tasks In Grid
Environments, The International Journal of High
Performance Computing Applications,Volume 20, No. 1,
Spring 2006, pp. 103–114,DOI:
10.1177/1094342006062528, SAGE Publications.

[20] Meenakshi Bheevgade, Manik Mujumdar, Dr. Rajendra
Patrikar, Latesh Malik, (2008), Achieving Fault

Tolerance in Grid Computing System, Proceedings of
2nd National Conference on Challenges & Opportunities
in Information Technology (COIT-2008).

[21] Sameer Singh Chauhan, R. C. Joshi, (2010), QoS Guided
Heuristic Algorithms for Grid Task Scheduling,
International Journal of Computer Applications (0975 –
8887),Volume 2 – No.9

[22] Leyli Mohammad Khanli, Maryam Etminan Far, Ali
Ghaffari , (2010), Reliable Job Scheduler using RFOH
in Grid Computing , Journal of Emerging Trends in
Computing and Information Sciences.

