
International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

14

Multiple String Matching Algorithms Performance Study

on Beowulf Clusters

Prasad J C
Research Scholar

 Dr M G R University,
TamilNadu

 Dr. K S M Panicker
Professor, CSE Dept.

FISAT, Angamaly
Cochin, India

ABSTRACT

Efficiency of multiple string searching has become more
relevant with the large and redundant amount of data. The size
of storage devices has increased in terms of Terabytes and
modern processors are capable to perform parallel
computation with multi-core architecture. Beowulf cluster
architecture is considered for parallel computations, in which

40 nodes and two quad core processor servers perform
multiple pattern searching operations with different
algorithms. Multiple pattern searching is essential for
intrusion detection systems (IDS), which has the ability to
search through packets and identify content that matches
known attacks. Latest advancements in DNA sequencing, web
search engines, database operations, signal processing, error
detection, speech and pattern recognition areas require

multiple patterns searching problem to process terabytes of
data. Space and time efficient string matching algorithms are
therefore important for this purpose.

General Terms

Aho-Corasick algorithm, Wu-Manber algorithms, AC-Bitmap

and q-Grams algorithms

Keywords

Beowulf cluster, Multiple string matching algorithm
performance, MPI Programming.

1. INTRODUCTION
Efficiency of multiple string searching has become more
relevant with the large and redundant amount of data. The size

of storage devices has increased in terms of Terabytes and
modern processors are capable to perform parallel
computation with multi-core architecture. Beowulf cluster
architecture is considered for parallel computations, in which
40 nodes and two quad core processor servers perform
multiple pattern searching operations with different
algorithms. Multiple pattern searching is essential for
intrusion detection systems (IDS), which has the ability to

search through packets and identify content that matches
known attacks. Latest advancements in DNA sequencing, web
search engines, database operations, signal processing, error
detection, speech and pattern recognition areas require
multiple patterns searching problem to process terabytes of
data. Space and time efficient string matching algorithms are
therefore important for this purpose.

2. RELATED WORK
The naive approach to multi pattern approximate searching is
to perform r separate searches, one per pattern. If we use the

classical O(mn) algorithm, the time is O(rmn), where m is the
length of the pattern and n is the length of the text to be
searched [1].

The performance of signature-based NIDS is dominated by
the speed of string matching algorithm used to compare the

packet header and payload with signatures. For instance,
Snort, an open source NIDS, takes over 2,500 patterns as
signatures and spends more than 80% of CPU time on string
matching. A NIDS claims as a fast string matching algorithm
to reduce its load. Otherwise, an underperforming system not
only becomes the network bottleneck, but also misses some
critical attacks [2].

The famous Aho-Corasick (AC) algorithm is an

automaton-based algorithm that guarantees the linear time
complexity in worst case situation. There are two kinds of
data structure used in AC algorithm: non-deterministic finite
state automaton (NFA) and deterministic finite state
automaton (DFA). When DFA is adopted, for every state,
every symbol has the corresponding next state. Hence for each
input character, only single memory reference is needed, and
the time-complexity is guaranteed to be O(n), where n is the

length of input string. However, the demanded memory space
is large. On the other hand, when NFA is adopted, for every
state, not every symbol has the corresponding next state. In
this method, failure path is needed, and time-complexity then
becomes O(n + k), where k is the number of times which
failure path is taken. [3]

Wu-Manber algorithms can support tens of thousands of
patterns and is better than agrep. The design of the algorithm
concentrates on typical searches rather than on worst-case

behavior. This allows us to make some engineering decisions
that believing are crucial for making the algorithm
significantly faster than other algorithms in practice. Instead
of looking at characters from the text one by one, we consider
them in blocks of size B. During the scanning stage, compute
a hash value h based on the current B characters from the text.
Expected running time of this algorithm is less than linear in
the size of the text. Unless the patterns are very small or there

are very few of them, this algorithm is significantly faster.
The original egrep and fgrep could not handle (or took too
long for) more than few hundreds patterns. [4]

AC-Bitmap: N. Tuck, T. Sherwood, B. Calder, G.
Varghese proposed a modified AC algorithm by applying IP
routing lookup techniques. According to the form of the NFA
in the AC algorithm, they used bitmaps that correspond to
symbols to record the state transition of the non failure path.

In this way, every node in the finite automaton only uses a
pointer pointing to the next state list instead of allocating all
the pointers to the next state. Thus, AC-Bitmap can decrease a
great deal of the demanded memory for implementing NFA.

Multi-pattern string matching with q-Grams: L. Salmela,
J. Tarhio and J. Kytojoki proposed Multi-pattern string
matching with q-grams in the year 2007. Given a text
position, a filter can tell if there cannot be a match at this

position using filtering approach (eg: hashing function). A
good filter is fast and produces few false positives.
Verification to filtering is used to distinguish between false
and true positives. Filtering approach to multiple pattern

International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

15

matching transform patterns to sequences of q-grams and
filter with a character class pattern built from the transformed
pattern set. Then it verify with a Rabin-Karp style
algorithm.[6] q-Grams filters have three‚ recognition zones`
depending on the number of errors : Guarantee zone (finds all

approximate matches), Heuristic zone (finds some of the
approximate matches) and Negative zone (guaranteed not to
find matches). Behavior in the Heuristic Zone is hard to
predict.

3. MULTIPLE PATTERNS SEARCHING

PROBLEM
Given a pattern set P and a text T, report all occurrences of all
the patterns in the text. The text T is drawn from the alphabet
Ʃ (of size σ). The pattern set, P is a set of r patterns each of
which is a string of characters over the alphabet Ʃ. [Assume
that all patterns have the same length m (for simplicity of
description); multiple pattern search algorithms do not make
such assumption]. A multiple string pattern matching
problem can be defined as follows. Let T be a large text of n

number of character size and P be set of r pattern of length
m1, m2, …… mr. The characters of Text T, and r patterns
stored in arrays as T[1] ,T[2] ,….,T[n] and Pattern P = P[1,1] ,
P[1,2]….P[1,m1], P[2,1] , P[2,2], ….P[2,m2] , P[r, 1],
P[r, 2],…….,P[r, mr]. The characters of both T and P belong
to a finite set of elements of the set S and m1, m2, ……mr <<
n. Each searching processes is done with preprocessing and
searching stage. Preprocessing stage computes the hash
function (or any signature method) of each pattern and store

them. During Searching stage, for each text position i
compute signature function and search for the signature value
from the saved values of the patterns, and identify all the
occurrence of the pattern P in text T. Two types of input data
have considered (natural language input string and DNA
sequence string) for the evaluation of algorithms. The actual
task of searching is done parallel among the processors from 0
to p-1. [7]

Master node decomposes the text into r subtexts and
distributed to available workers (nodes)[6]. Each subtext
contains k = [(n-mj+1) / r] + mj-1, characters, where k is the

successive characters of the complete text. The value of j
ranges from 1 to r. There is an overlap of m-1 successive
characters between successive sub texts for different pattern
values of mj. So there will be a redundancy of [r(m1+m2+
……+mr)-r] characters for processing. The objective is to
compare the result of searching with different algorithms. So
redundancy of searching does not have relevance in the
system[8].

4. EXPERIMENTAL SETUP
Beowulf based systems - Dhakshina Cluster Series-I and
Series-II are used for the experiment. During HPL
benchmarking[9], the speed of Dakshina-II has recorded 9600
cores floating operations in a second where as Dakshina-I
performed 7000 cores floating point operations per second.
Two servers of IBM X series Quad Core Xeon processors used
separately for Network Information Service and Job

Scheduling. Linux kernel used with configuration 1 is
customized Debian of 2.6.18 whereas for configuration 2 is of
the version 2.6.26. The configuration of server is: 146 GB
SAS HDD (Serial Attached SCSI (SAS), the logical evolution
that satisfies the enterprise data center requirement of
scalability, performance, reliability and manageability, while
leveraging a common electrical and physical connection
interface with Serial ATA (SATA). This compatibility

provides users with unprecedented choices for server and

storage subsystem deployment. 2 GB RAMNIC 2G (Giga
byte Ethernet Card) is used. 32 computational nodes of
Pentium 4 HT machines and other 3 PCs as login nodes used
with this system.

Network Configuration involves with the following features.
Realtek 8169 Gigabit network card on each compute nodes.
The Realtek RTL8169SB(L) NIC Gigabit ethernet controllers
(RTL8169SB (128 QFP) & RTL8169SBL (128 LQFP))
combine a triple-speed IEEE 802.3 compliant Media Access

Controller (MAC) with a triple-speed ethernet transceiver, 32-
bit PCI bus controller, and embedded memory. Functions such
as crossover detection and auto-correction, polarity correction,
adaptive equalization, cross-talk cancellation, echo
cancellation, timing recovery, and error correction are
implemented to provide robust transmission and reception
capability at high speeds. The versatility of the LWAKE pin
provides motherboards with Wake-On-LAN (WOL)

functionality. Broadcom NetExtreme Gigabit ethernet card X 2
is the Ethernet card in the master nodes which represent the
world's first support for the PCI Express specification; the
BCM5721 combines innovative performance enhancements
with a PCI Express 1x host interface enabling 2 Gbps
throughput for the most demanding server applications. To
reduce the total cost of server ownership, the BCM5721
supports the Intelligent Platform Management Interface (IPMI)

1.5 manageability standard that allows servers to be remotely
managed. The BCM5721 also incorporates the industry's most
advanced server software (the Broadcom Advanced Server
Program or BASP) which offers several innovative teaming
functions not available from any other GbE solution. Our
system used the ProCurve Switch 1400 series provides plug-
and-play simplicity for high-bandwidth connectivity, with a
fan-less design that promotes silent operation. The 1400-24G

has 22 10/100/1000 ports and two dual-personality ports for
10/100/1000 or mini-GBIC connectivity.[10]

Message Passing Interface (MPI) is a language independent
communications protocol used to program parallel computers.
Both point-to-point and collective communication are

supported. MPI's goals are high performance, scalability, and
portability. MPI remains the dominant model used in high-
performance computing today. Most MPI implementations
consist of a specific set of routines (i.e., an API) callable from
FORTRAN, C, or C++ and from any language capable of
interfacing with such routine libraries. [11][12]

5. RESULT
To get a reliable and consistent performance result, the
average of ten executions for multiple patterns of constant

length is given in the table. The results of sequential and
parallel implementation of Aho-Corasick NFA algorithm,
Aho-Corasick DFA algorithm, Wu-Manber algorithms, AC-
Bitmap algorithm, and Multi-pattern string matching
algorithms with q-grams are shown in table.

Table 1: Aho-Corasick NFA Multiple Pattern Search Algorithm

Execution Time in Second for a file size 60 MB in sequential Manner

Number of patterns

1 5 10 20 50

 P
a

tt
er

n

le
n

g
th

:

 m

m1=5 10.2

6

30.68 44.89 60.24 72.45

m2=10 13.3

4

40.93 59.10 78.97 94.05

m3=15 14.2

6

42.24 63.07 83.58 100.93

m4=20 16.4

2

49.38 72.58 96.84 116.57

m5=25 17.6

5

52.73 78.05 103.4

5

124.38

m6=50 20.1

2

60.22 88.14 117.2

3

142.34

m7=100 24.9

4

74.28 110.0

9

146.8

2

176.25

International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

16

m8=250 29.7

2

89.61 131.5

1

174.9

7

210.58

m9=500 32.2

7

96.78 142.3

1

189.4

4

228.07

m10= 750 34.5

6

103.8

6

152.9

8

202.6

7

244.15

m11=1000 36.7

8

110.4

3

162.7

7

215.7

8

260.22

m12=2000 39.1

7

117.1

5

173.4

8

229.8

7

277.45

m13=5000 44.3

3

133.3

4

196.7

1

259.1

4

313.77

m14=10000 45.2

2

135.6

6

201.3

4

265.4

8

320.67

Table 2: Aho-Corasick NFA Multiple Pattern Search Algorithm

Execution Time in Second for a file size 60 MB in Dakshina-I with 5

nodes

Table 3: Aho-Corasick NFA Multiple Pattern Search Algorithm

Execution Time in Second for a file size 60MB in Dakshina-I with 10

nodes

Table 4: Aho-Corasick NFA Multiple Pattern Search Algorithm

Execution Time in Second for a file size 60 MB in Dakshina-II with

5 nodes

Table 5: Aho-Corasick NFA Multiple Pattern Search Algorithm

Execution Time (sec) for a file size 60 MB in Dakshina-II with 10 nodes

Number of patterns

1 5 10 20 50

P
a

tt
er

n

le

n
g

th
:

 m

m1=5 1.87 5.61 8.28 11.03 13.88

m2=10 2.44 7.32 10.80 14.23 17.22

m3=15 2.65 7.78 11.51 15.22 18.76

m4=20 3.03 9.05 13.40 17.63 21.33

m5=25 3.23 9.78 14.67 18.95 22.93

m6=50 3.66 11.34 16.46 21.66 26.09

m7=100 4.65 13.86 20.66 26.24 32.56

m8=250 5.22 16.20 24.56 31.32 38.56

m9=500 5.87 17.34 26.34 34.78 41.50

m10= 750 6.32 18.67 27.45 37.98 44.28

m11=1000 6.73 20.22 29.45 39.44 47.23

m12=2000 7.35 21.67 31.95 41.44 50.82

m13=5000 8.87 24.23 35.78 47.25 57.79

m14=10000 8.88 24.97 36.98 48.87 58.23

Number of patterns

1 5 10 20 50

P
a

tt
er

n

le

n
g
th

:

 m

m1=5

m1=5

3.42 10.26 15.13 20.93 24.17
m2=10 4.44 13.25 19.76 26.88 31.72
m3=15 4.77 14.33 21.88 27.67 33.46
m4=20 5.47 16.25 24.44 32.77 38.34
m5=25 5.77 17.22 25.87 34.01 41.53
m6=50 6.77 20.22 29.83 39.82 47.96
m7=100 8.13 24.35 36.27 48.57 58.24
m8=250 9.95 29.43 43.66 58.02 70.67
m9=500 10.4

7

32.17 47.17 63.23 76.05
m10= 750 11.2

5

34.18 51.03 67.23 81.56
m11=1000 12.6

3

36.87 54.33 71.49 86.23
m12=2000 13.2

6

39.48 57.21 76.12 92.87
m13=5000 14.9

8

44.26 65.29 86.13 104.45
m14=10000 15.0

7

45.36 66.98 88.29 106.73

Number of patterns

1 5 10 20 50

P
a

tt
er

n

le

n
g

th
:

 m

m1=5

m1=5

2.12 6.73 10.83 13.45 16.23
m2=10 2.98 8.93 13.34 17.44 20.99
m3=15 3.15 9.92 14.32 18.83 22.64
m4=20 3.74 10.9

8

16.16 21.44 25.94
m5=25 3.96 11.8

4

17.44 22.82 27.85
m6=50 4.51 13.5

2

19.48 26.22 31.82
m7=100 5.73 16.7

8

24.67 32.13 39.21
m8=250 6.81 19.7

3

29.25 38.76 46.75
m9=500 7.71 21.1

5

31.24 42.07 50.67
m10= 750 7.72 23.0

8

33.99 45.52 54.36
m11=1000 8.22 24.6

5

36.24 47.97 57.92
m12=2000 8.77 26.3

2

38.56 51.34 61.34
m13=5000 9.87 29.6

2

43.64 57.77 69.57
m14=10000 10.0

8

30.2

8

44.65 58.97 71.45

Number of patterns

1 5 10 20 50

P
a
tt

er
n

le

n
g
th

:

 m

m1=5 2.82 8.46 12.67 16.42 19.57

m2=10 3.67 11.03 16.28 21.67 25.89

m3=15 3.98 11.96 17.44 22.98 27.96

m4=20 4.56 13.58 19.99 26.54 31.98

m5=25 4.95 14.62 21.56 28.95 34.39

m6=50 5.52 16.56 24.44 32.53 39.09

m7=100 6.89 20.76 30.43 40.22 48.34

m8=250 8.24 24.86 36.08 47.90 57.72

m9=500 8.94 26.65 39.28 51.89 62.66

m10= 750 9.84 28.40 41.92 55.78 67.29

m11=1000 10.0

4

30.22 44.94 59.23 71.45

m12=2000 10.7

7

32.22 47.35 62.99 76.09

m13=5000 12.3

4

36.85 53.98 71.85 86.08

m14=10000 12.4

4

37.23 54.78 72.77 87.82

Table 6: Wu-Manbar Multiple Pattern Search Algorithm Execution

Time (Sec) for a file size 60 MB in sequential Manner

Number of patterns

1 5 10 20 50

P
a
tt

er
n

le

n
g
th

:

 m

m1=5 3.44 10.33 14.44 20.44 24.22

m2=10 4.44 13.66 19.77 26.44 31.67

m3=15 4.77 14.88 21.22 27.88 33.68

m4=20 5.55 16.74 24.48 32.48 38.97

m5=25 5.95 17.65 26.30 34.85 41.55

m6=50 6.77 20.73 29.67 39.82 47.54

m7=100 8.45 24.87 36.56 48.85 58.69

m8=250 9.93 29.89 43.88 58.23 70.78

m9=500 10.77 32.33 47.54 63.43 76.04

m10= 750 11.44 34.66 51.22 67.66 81.48

m11=1000 12.27 36.44 54.55 71.89 86.55

m12=2000 13.45 39.25 57.99 76.26 92.84

m13=5000 14.77 44.58 65.88 86.67 104.76

m14=7500 15.78 47.32 68.45 89.98 107.87

m15=10000 14.23 44.12 64.55 86.33 104.78

International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

17

Table 7: Wu-Manbar Multiple Pattern Search Algorithm Execution

Time (Sec) for a file size 60 MB in Dhakshina Cluster-I with 5 nodes

Table 8: Wu-Manbar Multiple Pattern Search Algorithm Execution

Time in Second for a file size 60 MB in Dhakshina Cluster-I with 10

nodes

Table 9: Wu-Manbar Multiple Pattern Search Algorithm Execution

Time in Second for a file size 60 MB in Dhakshina Cluster-II with 5

nodes

Table 10: Wu-Manbar Multiple Pattern Search Algorithm Execution

Time in Second for a file size 60 MB in Dhakshina Cluster-II with 10

nodes.

Table 11: AC-Bitmap Multiple Pattern Search Algorithm Execution

Time in Seconds for a file size 60 MB in sequential manner.

Table 12: AC-Bitmap Multiple Pattern Search Algorithm Execution

Time (Second) for a file size 60 MB in Dakshina-I with 5 nodes

Number of patterns

1 5 10 20 50

P
a
tt

er
n

le

n
g
th

:

 m

m1=5 1.11 3.24 4.82 6.54 7.46
m2=10 1.44 4.33 6.13 8.34 10.04
m3=15 1.52 4.55 6.77 8.89 10.87
m4=20 1.77 5.25 7.77 10.36 12.49
m5=25 1.85 5.66 8.22 11.05 13.21
m6=50 2.11 6.44 9.39 12.33 15.05
m7=100 2.78 7.87 11.72 15.76 18.78
m8=250 3.16 9.55 14.40 18.67 22.55
m9=500 3.45 10.3

4

15.22 20.24 24.33
m10= 750 3.69 11.1

1

16.43 21.34 26.34
m11=1000 3.94 11.8

2

17.43 23.08 27.87
m12=2000 4.22 12.6

4

18.67 24.65 29.59
m13=5000 4.74 14.2

2

21.23 27.89 33.56
m14=7500 5.08 15.2

3

21.94 28.78 34.24
m15=10000 4.57 14.2

3

20.65 27.66 33.23

Number of patterns

1 5 10 20 50

P
a

tt
er

n

le
n

g
th

:

 m

m1=5 0.75 2.23 3.30 4.44 5.33
m2=10 .98 3.05 4.45 5.88 6.99
m3=15 1.09 3.23 4.77 6.33 7.55
m4=20 1.25 3.69 5.44 7.27 8.84
m5=25 1.33 3.95 5.84 7.71 9.32
m6=50 1.53 4.52 6.55 8.78 10.65
m7=100 1.88 5.52 8.17 10.92 13.02
m8=250 2.22 6.72 9.92 12.91 15.54
m9=500 2.40 7.25 10.62 14.23 16.92
m10= 750 2.62 7.66 11.35 15.05 18.22
m11=1000 2.77 8.38 12.01 15.88 19.22
m12=2000 2.89 8.73 12.70 17.23 20.53
m13=5000 3.29 9.81 14.51 19.22 23.15
m14=7500 3.55 10.4

4

15.22 20.22 23.76
m15=10000 3.22 9.29 14.23 19.56 23.34

Number of patterns
1 5 10 20 50

P
a
tt

er
n

le

n
g
th

:

 m

m1=5 .90 2.70 3.94 5.29 6.36
m2=10 1.17 3.60 5.20 6.96 8.29
m3=15 1.26 3.74 5.59 7.36 8.89
m4=20 1.46 4.36 6.41 8.52 10.25
m5=25 1.56 4.66 6.88 9.11 10.95
m6=50 1.77 5.28 7.77 10.4 12.6
m7=100 2.21 6.53 9.76 12.82 15.51
m8=250 2.66 7.89 11.69 15.38 18.61
m9=500 2.91 8.62 12.62 16.75 20.05
m10= 750 3.05 9.21 13.46 17.91 21.53
m11=1000 3.24 9.72 14.33 18.98 22.91
m12=2000 3.47 10.3

2

15.33 20.22 24.42
m13=5000 3.91 11.8

2

17.34 22.82 27.62
m14=7500 4.17 12.4

8

18.06 23.76 28.41
m15=10000 3.78 11.6

6

17.11 22.81 27.67

Number of patterns

1 5 10 20 50

P
a
tt

er
n

le

n
g
th

:

 m

m1=5 .66 1.88 2.76 3.69 4.41
m2=10 .83 2.51 3.62 4.83 5.76
m3=15 .89 2.59 3.86 5.13 6.17
m4=20 1 3.04 4.45 5.93 7.14
m5=25 1.05 3.13 4.77 6.35 7.65
m6=50 1.25 3.69 5.42 7.19 8.73
m7=100 1.51 4.52 6.72 8.97 10.76
m8=250 1.83 5.48 8.05 10.71 12.89
m9=500 1.99 5.94 8.72 11.62 13.45
m10= 750 2.13 6.35 9.36 12.42 14.91
m11=1000 2.21 6.71 9.88 13.11 15.81
m12=2000 2.38 7.16 10.59 14.08 17.03
m13=5000 2.71 8.14 11.98 15.85 19.15
m14=7500 2.90 8.68 12.59 16.49 19.72
m15=10000 2.62 8.09 11.88 15.81 19.22

Number of patterns

1 5 10 20 50

P
a

tt
er

n

le

n
g

th
:

 m

m1=5 13.2

9

34.0

7

48.02 63.76 75.87
m2=10 16.5

3

44.2

4

62.98 82.15 97.23
m3=15 17.7

6

45.6

5

66.27 86.93 104.2

2 m4=20 19.3

2

52.4

4

76.67 99.94 120.0

7 m5=25 20.8

6

55.9

2

82.65 107.0

5

127.3

8 m6=50 24.1

2

63.4

4

91.54 120.5

3

146.1

1 m7=100 27.9

1

77.5

7

113.8

6

149.5

3

179.7

6 m8=250 32.8

3

92.7

5

134.9

2

178.0

2

213.9

4 m9=500 35.7

9

99.9

6

145.9

3

193.1

2

231.2

5 m10= 750 37.7

7

106.

96

156.0

8

206.6

5

247.5

7 m11=1000 39.9

8

113.

89

165.9

9

218.9

8

263.7

5 m12=2000 42.4

6

119.

93

176.8

8

232.4

3

279.8

9 m13=5000 47.2

3

136.

84

199.2

2

263.1

4

317.2

3 m14=10000 48.4

4

139.

92

204.5

3

268.5

6

323.8

9

Number of patterns

1 5 10 20 50

P
a
tt

er
n

le

n
g
th

:

 m

m1=5 4.53 11.5

4

16.34 21.56 25.63
m2=10 5.78 15.0

2

21.56 27.83 32.95
m3=15 6.03 15.8

4

22.76 29.46 34.78
m4=20 6.65 17.4

9

25.86 33.68 40.58
m5=25 7.23 18.4

5

27.45 35.84 42.92
m6=50 8.10 21.3

4

30.89 40.23 49.34
m7=100 9.29 26.3

4

38.81 50.29 60.28
m8=250 11.2

3

31.4

2

45.37 59.24 71.93
m9=500 12.8

3

33.8

7

49.05 64.75 77.58
m10= 750 12.7

3

35.7

8

52.22 69.22 83.32
m11=1000 13.6

4

38.7

4

55.97 73.67 88.33
m12=2000 14.2

4

40.2

9

59.45 78.03 93.67
m13=5000 15.7

2

45.7

8

66.71 88.64 106.7

3 m14=10000 16.4

2

47.2

3

68.87 90.63 108.7

5

International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

18

Table 13: AC-Bitmap Multiple Pattern Search Algorithm Execution

Time in Second for a file size 60 MB in Dakshina-I with 10 nodes

Table 14: AC-Bitmap Multiple Pattern Search Algorithm Execution

Time(Second) for a file size 60MB in Dakshina-II with 5 nodes

Table 15: AC-Bitmap Multiple Pattern Search Algorithm Execution

Time(Second) for a file size 60 MB) in Dakshina-II with 10 nodes

Table 16: q-Grams Multiple Pattern Search Algorithm Execution

Time in Second for a file size 60 MB in sequential Manner

Table 17: q-Grams Multiple Pattern Search Algorithm Execution

Time in Second for a file size 60 MB in Dhakshina Cluster-I with 5

nodes

Table 18: q-Grams Multiple Pattern Search Algorithm Execution

Time in Second for a file size 60 MB in Dhakshina Cluster-I with 10

nodes

Number of patterns

1 5 10 20 50

P
a
tt

er
n

le

n
g
th

:

 m

m1=5 2.98 7.71 10.83 14.72 16.87

m2=10 3.77 9.93 14.23 18.73 21.46

m3=15 3.99 10.2

5

14.87 19.57 21.79

m4=20 4.37 11.7

3

17.31 22.19 26.77

m5=25 4.64 12.4

7

18.39 23.81 28.31

m6=50 5.42 14.2

7

20.37 26.97 32.95

m7=100 6.33 17.3

3

25.22 33.21 39.97

m8=250 7.33 20.6

6

29.91 39.83 47.79

m9=500 8.01 22.4

8

32.39 42.92 51.38

m10= 750 8.47 23.9

3

34.77 46.04 55.07

m11=1000 8.91 25.4

7

36.93 48.77 58.79

m12=2000 9.17 26.9

3

39.57 51.28 62.42

m13=5000 10.7

3

30.6

9

44.43 58.47 70.53

m14=10000 10.9

4

31.4

5

45.82 59.81 72.37

Number of patterns

1 5 10 20 50

P
a

tt
er

n

le

n
g

th
:

 m

m1=5 1.14 3.32 4.98 6.54 7.92
m2=10 1.49 4.49 6.32 8.49 10.11
m3=15 1.45 4.64 6.83 8.97 10.89
m4=20 1.87 5.39 7.98 10.46 12.49
m5=25 1.96 5.69 8.37 11.15 13.39
m6=50 2.24 6.18 9.36 12.47 15.12
m7=100 2.79 7.79 11.65 15.48 18.68
m8=250 3.08 9.56 14.08 18.68 22.19
m9=500 3.32 10.29 15.11 20.25 24.67
m10= 750 3.79 11.19 16.46 22.26 26.28
m11=1000 3.64 11.22 17.09 22.78 27.17
m12=2000 4.08 12.48 17.79 23.98 28.98
m13=5000 4.38 13.93 20.67 27.09 33.18
m14=10000 4.73 14.19 21.28 27.54 33.55

Number of patterns

1 5 10 20 50

P
a

tt
er

n

le

n
g

th
:

 m

m1=5 3.73 9.48 13.29 17.74 21.06

m2=10 4.58 12.5

8

17.36 22.71 26.48

m3=15 4.74 12.5

2

18.39 24.27 28.93

m4=20 5.42 14.6

2

21.43 27.87 33.43

m5=25 5.82 15.6

2

22.91 29.34 35.59

m6=50 6.72 17.4

6

25.32 33.57 40.23

m7=100 7.91 21.6

3

31.56 41.42 49.89

m8=250 9.03 25.4

3

37.19 49.83 59.48

m9=500 9.97 27.7

8

40.38 53.57 63.92

m10= 750 10.5

3

29.6

5

43.42 57.38 68.49

m11=1000 11.2

3

31.6

3

45.91 60.63 72.96

m12=2000 11.8

3

33.2

4

48.99 64.18 77.46

m13=5000 13.5

3

37.8

5

55.25 72.95 87.79

m14=10000 13.6

4

38.8

3

56.77 74.69 89.72

Number of patterns

1 5 10 20 50

P
a
tt

er
n

le

n
g
th

:

 m

m1=5 2.44 6.21 8.81 11.68 13.92

m2=10 3.04 8.23 11.45 15.09 17.82

m3=15 3.26 8.37 12.14 15.94 19.09

m4=20 3.58 9.62 14.06 18.32 21.98

m5=25 3.85 10.2

7

15.15 19.59 23.33

m6=50 4.44 11.6

5

16.77 22.08 26.78

m7=100 5.14 14.2

3

20.85 27.38 32.91

m8=250 6.04 16.9

8

24.72 32.61 39.18

m9=500 6.57 18.3

1

26.72 35.37 42.33

m10= 750 6.93 19.5

9

28.61 37.81 45.31

m11=1000 7.33 20.8

6

30.39 40.07 48.31

m12=2000 7.77 21.9

5

32.37 42.53 51.22

m13=5000 8.66 25.0

5

36.47 48.16 58.05

m14=10000 8.89 25.6

2

37.43 49.15 59.27

Number of patterns

1 5 10 20 50

P
a
tt

er
n

le

n
g
th

:

 m

m1=5 3.56 10.56 15.42 20.45 24.72

m2=10 4.46 13.84 19.85 26.44 31.67

m3=15 4.33 14.34 21.22 27.92 33.98

m4=20 5.62 16.74 24.75 32.49 38.91

m5=25 5.93 17.63 26.04 34.52 41.73

m6=50 6.84 19.07 29.02 38.76 47.04

m7=100 8.52 24.22 36.21 48.23 58.15

m8=250 9.45 29.65 43.72 58.11 69.24

m9=500 10.24 32.02 47.03 63.04 76.88

m10= 750 11.82 34.82 51.24 69.34 81.88

m11=1000 11.26 34.91 53.23 70.94 84.63

m12=2000 12.45 38.75 55.34 74.82 90.33

m13=5000 13.47 43.42 64.34 84.43 103.4

4 m14=1000

0

14.68 44.32 66.32 86.08 104.6

6

Number of patterns

1 5 10 20 50

P
a
tt

er
n

le

n
g
th

:

 m

m1=5 0.78 2.33 3.45 4.56 5.44

m2=10 0.94 3.11 4.45 5.91 7.14

m3=15 0.99 3.22 4.74 6.24 7.57

m4=20 1.28 3.76 5.55 7.27 8.66

m5=25 1.35 3.97 5.83 7.71 9.32

m6=50 1.56 4.29 6.47 8.65 10.48

m7=100 1.93 5.42 8.08 10.77 12.96

m8=250 2.14 6.63 9.78 12.94 15.43

m9=500 2.33 7.15 10.49 14.06 17.13

m10= 750 2.67 7.79 11.45 15.47 18.25

m11=1000 2.54 7.79 11.87 15.79 18.85

m12=2000 2.79 8.65 12.34 16.67 20.09

m13=5000 3.06 9.71 14.37 18.81 23.06

m14=10000 3.05 9.95 14.83 19.19 23.29

International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

19

Table 19: q-Grams Multiple Pattern Search Algorithm Execution

Time in Second for a file size 60MB in Dhakshina Cluster-II with 5

nodes

Table 20: q-Grams Multiple Pattern Search Algorithm Execution

Time in Second for a file size 60 MB in Dhakshina Cluster-II with 10

nodes

6. ANALYSIS OF THE

EXPERIMENTAL RESULTS
Aho-Corasick, is a trie of the patterns and search the text with
the aid of the trie. The trie grows quite rapidly as the pattern
set grows. For σ = 256, m = 8 and 100,000 patterns the trie
takes 500 MB of memory. So trie-based algorithms are not
practical for large pattern sets. The Aho-Corasick algorithm
can give only one character throughput per transition or clock
cycle, Searching using this algorithm will have a time
complexity of O(n) where n is the amount of letters in the

document. This algorithm allows searching for as many words
of any length without an impact on searching performance.
Another advantage is that once the DFA and failure function

have been constructed, to use on any amount of different
documents without having to reconstruct them. AC algorithm
is a linear-time algorithm and is optimal in the worst case
situations.

 The running time of Wu-Manber has improved once the

number of patterns exceeds about 7500. The reason for that is
related more to the way greps work rather than to the specific
algorithm. Agrep (and every other grep) outputs the lines that
match the query. Once it is established that a line should be
output, there is no need to search further in that line. Above
7500, the number of patterns becomes so large; most lines are
matched and matched early on. So less work is needed to
match the rest of the lines. We present this as an example of

misleading performance measures; we probably would not
have thought about this effect if the numbers had not actually
gone down.

Advantage of AC-Bitmap algorithm is to decrease the size of
memory. However, the performance of AC-Bitmap
implemented by software is bad because of the extremely
heavy cost of pop count and the search time of linked list.
When AC-Bitmap algorithm is implemented by hardware, all

data structures must be stored in wide embedded memory for
performance issue, which makes high cost. [5]

 q-Grams algorithms showed to be faster than Wu-Manber
solutions for sets mi=15, 25, 250, 500, 1000, 2000 and 5000.
The result in q grams algorithm do not provide clear
indication of better result. The result varies based on the
filtering on text. Theory of q-Grams says that pattern of
1,000–10,000 and above patterns have a good performance.

The gain is due to the improved filtering efficiency caused by
q-Grams. It is expected that by increasing the efficiency of
filtering mechanism by parallel algorithms, better
performance can be achieved with q-Grams soon.

7. CONCLUSION
Parallel implementation of Aho-Corasick NFA and Wu-

Manbar Multiple Pattern Searching algorithms, AC-Bitmap
algorithm and q-Grams Search Algorithms were tested. The
experiments recommend Wu-Manbar Multiple Pattern
Searching algorithm for any length of alphabets and patterns,
as the searching time is less compared to other method. The
performance of AC-bitmap method is not as good as the
implementation with linked list and without embedded
memory. This implementation is just a study on popular

existing algorithm on the present cluster computing
infrastructure of Dakshina Cluster Series I & II. The result
proves the order of searching for these algorithms. Speed up
factor do not exactly matches with the result. It is because of
the potential bottlenecks such as network communication
overheads, memory bandwidth and I/O bandwidth[14]. Since
size of the problem is fixed, Gustafson's Law is not applicable
with this search results. Future work of this experiment is to

find the better search results in another multiple string
matching algorithms by modifying q-Grams and find the
factors that affect searching time in a cluster computing
environment.

8. ACKNOWLEDGEMENT
This work was supported fully by the Center for High
performance Computing of Federal Institute of Science and
Technology [FISAT]TM, Angamaly, Cochin.

Number of patterns

1 5 10 20 50

P
a
tt

er
n

le

n
g
th

:

 m

m1=5 0.96 2.79 4.09 5.43 6.56

m2=10 1.23 3.69 5.27 7.03 8.41

m3=15 1.18 3.83 5.65 7.41 8.99

m4=20 1.54 4.46 6.57 8.59 10.28

m5=25 1.59 4.68 6.82 9.13 11.06

m6=50 1.82 5.07 7.64 10.29 12.40

m7=100 2.28 6.38 9.57 12.73 15.36

m8=250 2.54 7.87 11.54 15.34 18.28

m9=500 2.75 8.48 12.43 16.66 20.29

m10= 750 3.15 9.19 13.50 18.29 21.63

m11=1000 2.99 9.25 14.08 18.74 22.36

m12=2000 3.33 10.2

5

14.64 19.77 23.81

m13=5000 3.58 11.4

9

16.96 22.23 27.24

m14=1000

0

3.87 11.6

9

17.49 22.66 27.64

Number of patterns

1 5 10 20 50

P
a

tt
er

n

le

n
g

th
:

 m

m1=5 0.67 1.98 2.87 3.78 4.55

m2=10 0.87 2.56 3.68 4.87 5.83

m3=15 0.82 2.66 3.92 5.15 6.26

m4=20 1.09 3.09 4.58 5.99 7.16

m5=25 1.11 3.27 4.79 6.37 7.69

m6=50 1.27 3.53 5.37 7.13 8.63

m7=100 1.59 4.48 6.66 8.87 10.65

m8=250 1.76 5.45 8.05 10.69 12.69

m9=500 1.89 5.89 8.63 11.58 14.09

m10= 750 2.19 6.42 9.39 12.69 15.23

m11=100

0

2.09 6.43 9.78 12.97 15.53

m12=200

0

2.32 7.11 10.17 13.72 16.57

m13=500

0

2.50 7.99 11.79 15.49 18.98

m14=100

00

2.68 8.16 12.18 15.77 19.19

International Conference on Web Services Computing (ICWSC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

20

9. REFERENCES
[1] Sellers. P, The theory and computation of evolutionary

distances: pattern recognition. Journal of Algorithms 1,
359–373, 1980.

[2] http://www.snort.org

[3] A. V. Aho and M. J. Corasick. “Efficient string
matching: An aid to bibliographic search.”
Communications of the ACM, 18(6), 1975, pp.333–340.

[4] Sun Wu , Udi Manber, A fast algorithm for multi-pattern
searching (1994)

[5] http://webglimpse.net/pubs/TR94-17.pdf

[6] N. Tuck, T. Sherwood, B. Calder, G. Varghese,
“Deterministic memoryefficient string matching
algorithms for intrusion detection,” In Proceedings of the
IEEE INFOCOM Conference, 2004, pp. 333–340.

[7] L. Salmela, J. Tarhio and J. Kytojoki: “Multi-pattern
string matching with q-grams. ACM Journal of
Experimental Algorithmics”, Volume 11, 2006.

[8] Prasad J.C., K.S.M.Panicker, „Single pattern search
implementations in a cluster computing environment‟,
IEEE Xplore Digital library, Digital Ecosystems and

Technologies(DEST), 2010 4th IEEE International
Conference 13-16 April 2010 on ISSN:2150-4938, Page
391-396.

[9] A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary,[Sept
2008], HPL - A Portable Implementation of the High-

Performance Linpack Benchmark for Distributed-
Memory Computers, Innovative Computing Laboratory,
University of Tenneesse. doi:
http://www.netlib.org/benchmark/hpl/

[10] Prasad J.C., K.S.M.Panicker,[2009] „Beowulf Dakshina
Cluster Architecture with Linux Debian Operating
system for MPI Programming‟, Proceedings of

International Conference on Information Processing,,
Bangalore, India ISBN: 978-93-80026-75-2, Page 350.

[11] P.D.Michailidis, K.G.Margaritis[2000], Parallel String

Matching Algorithm: A bibliographical review,
Technical Report, Dept.of Applied Informatics,
University of Macedonia.

[12] Panagiotis D. Michailidis and Konstantinos G.
Margaritis[2001], „Parallel Text Searching Application
on a Heterogeneous Cluster of Workstations‟, IEEE
Computer Society Proceedings of the International
Conference on Parallel Processing Workshops
(ICPPW‟01), Page. 153

[13] Mansoor Alicherry, M. Muthuprasanna, Vijay Kumar,
„High Speed Pattern Matching for Network IDS/IPS‟,
2006 IEEE

[14] „Replica Selection in the Globus Data Grid‟, A. V. Aho
and M. J. Corasick. “Efficient string matching: An aid to
bibliographic search.” Communications of the ACM,
18(6), 1975, pp.333–340

http://www.snort.org/

