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ABSTRACT 

In this paper, we propose two tools for fractional systemsH∞ 

norm computation; one is based on an extension of 

widelyused tools designed for integer systems that is by 

manipulating properties of singular values. The other is the 

computing H∞ norm graphically as peak value of bode 

magnitude plot. 
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1. INTRODUCTION 
In recent years there has been an increasing attention to 

fractional-order systems. These systems are of interest for 

both modelling and control purposes. In general, Fractional 

differentiation is now a well known tool for controller 

synthesis. Several presentations and applications of the 

fractional PID controller [1], [2], [3] [4] and of CRONE 

control [5] demonstrate their efficiency. Fractional 

differentiation also permits a simple representation of some 

high order complex integer systems [6]. Consequently, basic 

properties of fractional systems have been investigated these 

last ten years and criteria and theorems are now available in 

the literature concerning stability [7], observability, and 

controllability [8] of fractional systems. Thus, several studies 

have been made on FOS stability and the most well known 

stability criteria is Matignon’scriteria which enables to test 

systems stability through thelocation of the state matrix Eigen 

values in the complex plane. 
 The H∞ norm reflects how much a dynamic system 

amplifies or attenuates its input at the frequency at which the 

amplification is maximal.This control technique may be 

applied to both SISO (single-input, single-output) and MIMO 

(multiple-input, multiple-output) plants, and its results achieve 

a remarkable robustness (Lublin et al., 1996; Doyle et al., 

1989)[11].By computing H∞ norm we continue to explore the 

use of frequency domain techniques for design of feedback 

systems. H∞ control is strongly linked to the weighted 

sensitivity functions. Performance specification is then of 

great importance inH∞ control approach as means of loop 

shaping[9]. 

 In this paper, we propose two tools for fractional 

systemsH∞ norm computation; one is based on an extension of 

widelyused tools designed for integer systemsthat is by 

manipulating properties of singular values[13]. The other is 

the computing H∞ norm graphically as peak value of bode 

magnitude plot. 

 

2. NOTATIONS AND DEFINATIONS 

2.1 Fractional Calculus 
Riemann-Liouville [10] fractional differentiation is used and 

the fractional integral of a function f(t) is defined by 

 

D-αf t =Dm Jm-αf t =
dm

dtm
 

1

Γ(𝑚 − 𝛼)
  𝑡 –  𝜏   α−m−1 f(τ)dτ

𝑡

0

  

where 

Γ 𝑥 =  tx−1
∞

0

𝑒𝑥𝑝−𝑡𝑑𝑡 

is the Gamma function which is an important special function 

in fractional calculus. It is an extension of the factorial 

function, that is, if n is a positive integer. 

Γ 𝑛   = (𝑛 − 1)! 
 

2.2 LTI COMMENSURATE 

FRACTIONAL ORDER SYSTEMS 
In case of commensurate-order system [9], the transfer 

function is given by 

𝐺 𝑠 =
𝛴𝑘=0

𝑚 𝑏𝑘(𝑠𝛼)𝑘

𝛴𝑘=0
𝑛 𝑎𝑘(𝑠𝛼)𝑘

 

which can be considered as pseudorational function, H(λ), of 

the variable λ = sα,as in equation  

 

𝜆 = 𝑠𝛼 =
𝛴𝑘=0

𝑚 𝑏𝑘𝜆
𝑘

𝛴𝑘=0
𝑛 𝑎𝑘𝜆

𝑘
 

The pseudo state space representation is of the form 

𝐷𝛼 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 (1) 

𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡) 

where x(t)ϵ Rnis the pseudo state vector, u(t) ϵ Rmis the input 

vector, y(t)ϵ Rpis theoutput vector, α is the fractional order of 

the system and A, B, C and D are constantmatrices. Dαis the 

fractional differentiation operator of order α and the transfer 
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functionrepresentation for fractional order is given as in 

equation 

𝐺 𝑠 = 𝐶(𝑠𝛼 𝐼 − 𝐴)−1𝐵 + 𝐷 

2.3 Stability 
Stability analysis for fractional-order systems is difficult by 

simply examining the characteristic equation, either by 

finding its dominant roots or by using algebraic methods. LTI 

IOS stability can be checked via the location of the state 

matrixAEigenvalues in the complex plane. This result was 

extended to LTI commensurate FOS of order 0 < ν <1 byD. 

Matignon. 

Theorem 1 (Matignon, 1996 [7]):System, with minimal triplet 

(A,B,C) and 0 < ν <1, is BIBO stable if 

 𝑎𝑟𝑔  (𝑒𝑖𝑔(𝐴)) > 𝛼
𝜋

2
 

This result remains valid when 1 < ν <2.Stability domain is 

thus defined as follow 

𝐷𝑠 =  𝑧𝜖𝐶 𝑎𝑟𝑔   𝑒𝑖𝑔 𝐴   > 𝛼
𝜋

2
 . 

3. H∞   NORM FOR FRACTIONAL 

ORDER SYSTEMS (FOS) 
As for LTI IOS, the H∞ norm of stable FOS from its transfer 

function G(s) as follows: 

Defination1:H∞norm of stable FOS system (1) is: 

 𝐺 𝑠  ∞ ≜ max
𝜔𝜖𝑅

𝜎   𝐺 𝑗𝜔  , 

where𝜎  𝐺 𝑗𝜔   is the largest singular value  G jω  at 

frequency 𝜔: 

𝜎  𝐺 𝑗𝜔  = max𝑖={1…min ⁡(𝑚,𝑝)} 𝜎𝑖  𝐺 𝑗𝜔    

= max
𝑖={1…min ⁡(𝑚,𝑝)}

 𝜆𝑖 𝐺 𝑗𝜔  
∗
 𝐺 𝑗𝜔  (2) 

Steady state response of FOS (1) to sinusoidal input 

u 𝑗𝜔 is y 𝑗𝜔 =G 𝑗𝜔 u 𝑗𝜔 . At frequency𝜔, the gain 
 𝑦(𝑡) 2

 𝑢(𝑡) 2
, depending on vector u (𝑗𝜔) is: 

𝜎  𝐺 𝑗𝜔  = max
𝑢(𝑗𝜔)≠0

 𝑦(𝑗𝜔) 2

 𝑢(𝑗𝜔) 2
 

Worst case frequency gain is thus given by H∞ norm of 

FOS: 

 𝐺 𝑠  ∞ = max
𝜔𝜖𝑅

 max
𝑢(𝑗𝜔)≠0

 𝑦(𝑗𝜔) 2

 𝑢(𝑗𝜔) 2
 

In time domain, above equation can be written as: 

 𝐺 𝑠  ∞ =  max
𝑢(𝑡)≠0

 𝑦(𝑡) 2

 𝑢(𝑡) 2
=  max

 𝑢(𝑡) 2=1

 𝑦(𝑡) 2 

Therefore, H∞ norm can be interpreted in time domainas  

the largest energy among output signals resulting from 

all inputs of unit energy. Consequently, H∞ norm physical 

interpretation, in frequency and time domains, is the same 

for FOS as for IOS. 

4. COMPUTATION OF FRACTIONAL 

SYSTEM H∞   NORM BASED ON 

SINGULAR VALUES 
Definition 1 and relation (2) imply that H∞norm of FOS 

is less than γ if: 

∀𝜔𝜖𝑅, max
𝑖={1…min ⁡(𝑚,𝑝)}

 𝜆𝑖 𝐺 𝑗𝜔  
∗
 𝐺 𝑗𝜔  < 𝛾(3) 

where𝛾denotes a real positive number satisfying  

 

𝛾 > 𝜎𝑚𝑎𝑥  𝐷 . 

H∞norm of the FOS described in (1) is bounded by 𝛾 and 

equation (3) can be written as 

∀𝜔𝜖𝑅,   𝜆𝑖    𝐺 𝑗𝜔  
∗
 𝐺 𝑗𝜔   < 𝛾2 

Due to Eigenvalue properties, above relation can be 

rewritten as: 

∀𝜔𝜖𝑅,   𝜆𝑖   𝛾
2𝐼 − 𝐺 𝑗𝜔  

∗
 𝐺 𝑗𝜔   > 0 

which is equivalent to the Linear Matrix Inequality (LMI): 

∀𝜔𝜖𝑅,   𝜆𝑖   𝛾
2𝐼 − (𝐺 𝑗𝜔  

∗
 𝐺 𝑗𝜔   > 0 

Above equation is satisfied if and only if  

∀𝜔𝜖𝑅, 𝛾2𝐼 − (𝐺 𝑗𝜔  
∗
 𝐺 𝑗𝜔  isnon singular, that is if and 

only if  𝛾2𝐼 − (𝐺 −𝑠  
𝑇
 𝐺 𝑠   has no zero on imaginary 

axis. 

Hence, the H∞ norm is bounded by 𝛾if and only if system 

whose   transfer matrix 

is 𝐺𝛾 𝑠 =  𝛾2𝐼 − (𝐺 −𝑠  
𝑇
 𝐺 𝑠  

−1
 is asymptotically 

stable. 

5. COMPUTATION OF FRACTIONAL 

SYSTEM H∞   NORM BASED ON PEAK 

MAGNITUDE  
A control engineering interpretation of the infinity norm of a 

scalar transfer functionis the distance in the complex plane 

from the origin to the farthest point on the Nyquistplot. As in 

equation, H∞ norm can also be evaluate as the peak value on 

the Bode magnitude plot a transfer function 

 𝐺 𝑠  ∞ = sup⁡( 𝐺(𝑗𝜔   ) : 𝜔𝜖𝑅) 

5.1 Procedure 
H∞ norm of fractional systemcan be computed graphically 

based on following steps, 

Step1:Check that transfer function given is proper (order of 

denominator is greater thannumerator). 

Step2: Prove that transfer function given is stable. 

Step3: If it satisfies step1 and step2, i.e., it belongs to RH∞. 

Step4: Locate the peak magnitude from Bode magnitude plot. 



International Journal of Computer Applications (0975 – 8887)  

International Conference and Workshop on Emerging Trends in Technology 2013 

32 

5.2 Examples 
In this section, H∞ norm of two fractional systemsare 

calculated by using the above mentioned procedure. 

5.2.1 Example 1 
Podlubny Transfer Function:  

𝐹1 𝑠 =
1

0.8𝑠2.2 + 0.5𝑠0.9  + 1
 

Step1:F1(s) is proper. 

Step2 : F1(s) is stable as poles in higher reimann sheet are 

always stable, thus poles inprincipal reimann sheet is to verify 

whether they fulfil the following condition forstability,  
𝜋

𝑚
<  𝑎𝑟𝑔  (𝜔) <

𝜋

2𝑚
 

Step2.1 Mapping, ω=s1/10 

𝐹1 𝑠 =
1

0.8𝜔22 + 0.5𝜔9  + 1
 

Step2.2 solve 

0.8𝜔22 + 0.5𝜔9  + 1 = 0 

The poles that are on the principal Riemann sheet 

areω=1.0045±0.1684jas shown in Fig (1) 

 

Step2.3:Take absolute value of the poles that are on the 

principal Riemann sheetwhich is 1.661. 

 

Step2.4:Check the condition for stability 
𝜋

10
< 1.661 <

𝜋

20
 

Hence, F1(s) is stable. 

 

Fig 1:ω plane for F1(s) 

Step3:Hence, F1(s)ϵRH∞. 

 

Step4:The peak magnitude is 13.2875db as shown in figure 

(2) is the H∞ for F1(s). 

Fig 2: Bode plot for F1(s) 

 

5.2.2 Example 2 

𝐹2 𝑠 =
1

𝑠2.3+3.2𝑠1.4+2.4𝑠0.9 + 1
 

Step1:F2(s) is proper. 

Step2 : F2(s) is stable as poles in higher reimann sheet are 

always stable, thus poles inprincipal reimann sheet is to verify 

whether they fulfil the following condition forstability,  
𝜋

𝑚
<  𝑎𝑟𝑔  (𝜔) <

𝜋

2𝑚
 

Step2.1 Mapping, ω=s1/10 

𝐹2 𝑠 =
1

𝜔23+3.2𝜔14+2.4𝜔9 + 1
 

Step2.2 solve 

𝜔23+3.2𝜔14+2.4𝜔9 + 1 = 0 

The poles that are on the principal Riemann sheet 

areω=0.0149±0.1906j as shown in Fig (3) 

Step2.3:Take absolute value of the poles that are on the 

principal Riemann sheetwhich is 0.1912. 

Step2.4:Check the condition for stability 
𝜋

10
< 0.1912 <

𝜋

20
 

Hence, F2(s) is stable. 
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Fig 3:ω plane for F2(s) 

 

Step3:  Hence, F2(s)ϵ RH∞. 

 

Step4: The peak magnitude is 94.4323dbas shown in figure 

(4) is the H∞ for F2(s). 

 

Fig 4: Bode plot for F2(s) 
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7. CONCLUSION 
Fractional PID regulator and CRONE [8] robust regulatorsare 

now well known in the field of fractional differentiation 

application in control theory. H∞ norm plays a vital role in 

designing an efficient controller and to handle systems with 

uncertainties and disturbances and with high performance. In 

order to develop control methods for more complex fractional 

systems than the linear one, this paper proposes two tools for 

the computation of a fractional system H∞ norm. The first one 

is based singular value properties of an integer order system 

and the other is based on peak magnitude plot of bode plot. 

Computing the H∞ norm with these methods includes stability 

analysis of a fractional system and can be easily implemented. 

Our goal is now to design a H∞ controller for fractional order 

system. 
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