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ABSTRACT 
Texture features have long been used in remote sensing 

applications for representing and retrieving regions similar to a 

query region. Various representations of texture have been 

proposed based on the power spectrum, grey-level co-

occurrence matrices, wavelet features, Gabor features, etc. 

Analysis of several co-occurring pixel values may benefit 

texture description but is impeded by the exponential growth of 

histogram size. Multidimensional histograms can be reduced by 

using methods like linear compression, dimension optimization 

and vector quantization. Experiments with natural textures 

showed that multidimensional histograms provided higher 

classification accuracies than the channel histograms and the 

wavelet packet signatures.  
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1. INTRODUCTION 
Texture is an important characteristic for the analysis of many 

types of images. It can be seen in all images from multispectral 

scanner images obtained from aircraft or satellite platforms to 

microscopic images of cell cultures or tissue samples (which the 

biomedical community analyzes). Despite its importance and 

ubiquity in image data, a formal approach or precise definition 

of texture does not exist. The texture discrimination techniques 

are, for the most part, ad hoc. In this paper, some of the 

extraction techniques and models which investigators have been 

using to measure textural properties are reviewed and analyzed. 

Texture is considered as an organized area phenomenon. When 

it is decomposable, it has two basic dimensions. The first 

dimension is for describing the primitives out of which the 

image texture is composed, and the second dimension is for the 

description of the spatial dependence or interaction between 

the primitives of an image texture. The first dimension is 

concerned with tonal primitives or local properties, and the 

second dimension is concerned with the spatial organization of 

the tonal primitives. 

Tonal primitives are regions with tonal properties. The tonal 

primitives can be described in terms such as the average tone, 

or maximum and minimum tone of its region. The region is a 

maximally connected set of pixels having a given tonal 

property. The tonal region can be evaluated in terms of its area 

and shape. The tonal primitive includes both its gray tone and 

tonal region properties. 

An image texture is described by the number and types of its 

primitives and the spatial organization or layout of its 

primitives. The spatial organization may be random, may have a 

pair wise dependence of one primitive on a neighboring 

primitive, or may have a dependence of n primitives at a time. 

The dependence may be structural, probabilistic, or functional 

(like a linear dependence). Image texture can be qualitatively 

evaluated as having one or more of the properties of fineness, 

coarseness, smoothness, granulation, randomness, lineation, or 

being mottled, irregular, or hummocky. Each of these adjectives 

translates into some property of the tonal primitives and the 

spatial interaction between the tonal primitives. Unfortunately, 

few experiments have been done attempting to map semantic 

meaning into precise properties of tonal primitives and their 

spatial distributional properties. To objectively use the tone and 

textural pattern elements, the concepts of tonal and textural 

feature must be explicitly defied. With an explicit definition, 

tone and texture are not independent concepts. They bear an 

inextricable relationship to one another very much like the 

relation between a particle and a wave. There really is nothing 

that is solely particle or solely wave. Whatever exists has both 

particle and wave properties and depending on the situation, the 

particle or wave properties may predominate. Similarly, in the 

image context, tone and texture are always there, although at 

times one property can dominate the other and we tend to speak 

of only tone or only texture. Hence, when defining tone and 

texture, instead of using two concepts a single one tone-texture 

concept is used. The basic interrelationships in the tone-texture 

concept are the following when a small-area patch of an image 

has little variation of tonal primitives; the dominant property of 

that area is tone. When a small-area patch has wide variation of 

tonal primitives, the dominant property of that area is texture. 

Crucial in this distinction are the size of the small-area patch, 

the relative sizes and types of tonal primitives, and the number 

and placement or arrangement of the distinguishable primitives. 

As the number of distinguishable tonal primitives decreases, the 

tonal properties will predominate. In fact, when the small-area 

patch is only the size of one resolution cell, so that there is only 

one discrete feature, the only property present is simple gray 

tone. As the number of distinguishable tonal primitives 

increases within the small-area patch, the texture property will 

dominate. When the spatial pattern in the tonal primitives is 

random and the gray tone variation between primitives is wide, 

a fine texture results. As the spatial pattern becomes more 

definite and the tonal regions involve more and more resolution 

cells, a coarser texture results. In summary, to characterize 

texture, the tonal primitive properties as well as the spatial 

interrelationships between them can be used. This implies that 

texture-tone is really a two-layered structure, the first layer 

having to do with specifying the local properties which manifest 

themselves in tonal primitives and the second layer having to do 

with specifying the organization among the tonal primitives. 
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2.  REDUCED 

MULTIDIMENSIONALHISTOGRAMS 
Monochrome textures are conventionally described by one 

dimensional difference histograms or two-dimensional co-

occurrence histograms of gray levels. Histograms may be used 

as such for texture description [2] but, typically, the description 

is based on various statistics computed from the histogram [3]. 

Histograms with more than two dimensions have only 

occasionally been applied to monochrome texture description 

[4], [5].  Kimmo Valkealahti and Erkki Oja [1] suggests that an 

increase in the co-occurrence dimensionality, which improves 

the description of spatial relationships, benefits both 

monochrome and color texture classification [6]. In the present 

study, ways are explored to speed up the collection of 

multidimensional histograms. The method of [1] is compared 

with the channel histogram method of Unser [7] which is a 

well-justified improvement of the co-occurrence matrix method, 

and with the wavelet packet signature method of Laine and Fan 

[8] exemplifying recent developments in texture analysis 

without histogram basis. Moreover, a comparison is made with 

multidimensional channel histograms which are somewhat 

related to the method of He and Wang [4]. All comparisons are 

performed using Brodatz textures, and to increase the 

generalizability of the results, the textures are also rotated and 

scaled. 

2.1 Texture Preprocessing 
The 32 Brodatz textures [14] used in the study (Fig. 1) were 

equalized to 256 X 256 pixels and 256 gray levels. The images 

were selected according to visual judgement so that 64 X 64 

subimages captured the essential substructures. Otherwise, the 

selection was independent of the classifiers used. Each image 

was divided into 16 disjoint 64 X 64 blocks, and each block 

was independently histogram-equalized to abolish luminance 

differences among textures. Each texture block was transformed 

into three additional blocks: a block rotated by 90 degrees, a 64 

X 64 scaled block obtained from 45 X 45 pixels in the middle, 

and a block which was both rotated and scaled. The 32 texture 

categories included 2,048 blocks altogether. Construction and 

testing of the classifiers were carried out with disjoint sets of 

blocks: Eight blocks in each texture image, together with the 

corresponding 24 transformed blocks, were randomly selected 

into a design set and the other 8 + 24 blocks were used for the 

evaluation of classifier performance. The classifier performance 

was evaluated statistically with 10 different randomly selected 

design and test sets. 
 

 
Fig 1. Twelve of the thirty-two histogram-equalized Brodatz 

textures used in the study. 

2.2 Co-Occurrence Vectors 
Two kinds of co-occurrences were analyzed: mean-subtracted 

gray levels and variance-equalized discrete cosine transform 

coefficients. Let matrix G represent the gray levels in a 4 X 4 

neighborhood at some location in a texture block. A 16-

dimensional gray level vector g is formed by collecting entries 

Gi,j of matrix G into vector g = (g1, g2, …, g16) = (G1,1, G1,2, 

…,, G4,4). The components of the mean-subtracted gray-level 

co-occurrence vector s = (s1, s2, …, s16) are defined as 

 
in which binary coefficients bi determine the active components 

of s. The co-occurring gray levels are selected from adjacent 

positions because then their mutual dependence is strongest. 

During feature selection as mentioned in section 2.6, the 

coefficients are adjusted to find the subset of vector 

components which minimize the classification error rate. 

Setting one or more coefficients bi to zero annuls the 

corresponding elements in the co-occurrence vectors. 

Therefore, the effective dimensionality of the co-occurrence 

vectors is 

 

As an alternative representation, the discrete cosine transform 

(DCT) was used to decorrelate the gray-level co-occurrences 

[7]. Let matrix C be the DCT matrix with un-normalized 

column vectors, 
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The DCT-coefficient vector is collected from entries Fi,j of 

matrix 

F = CTGC into vector f = (f1, f2, …, f16) = (F1,1, F1,2, …, 

F4,4). Vector f contains the same information as vector g, but 

the components of f are almost uncorrelated. The components 

of the variance equalized DCT co-occurrence vector s are 

defined by 

 
in which the denominator is the estimated standard deviation of 

the numerator. The equalization of component variances means 

that the DCT coefficients with small variance are assumed to 

possess similar discriminatory power as the coefficients with 

large 

variance. 

2.3 Histogram Classification 
Using the vector quantizer, sample histograms were computed 

for each texture block separately. The histograms were 

represented as sequences {hijq} = {hij1, …, hijN}, in which i = 

1, …, 32 indexes the different texture categories, j = 1, …, 32 

indexes the 64 X 64 blocks in the design set of the ith texture, 

and N is the histogram size equaling the number of code words. 

A texture model histogram 

 
was obtained by summing up the histograms computed from 

each block of the modeled texture. A new histogram {hq} was 

classified according to the model histogram that maximized the 

log-likelihood function 

 

2.4 Quadtree Vector Quantizer 
In a quadtree vector quantizer, each non-terminal node branches 

to four nodes at each succeeding level. In the present case, the 

tree structured codebook had six levels l = 1, 2, …, 6, each with 

4l vectors. Each codebook with N = 4,096 code words was 

trained with 41,000 vectors s which were randomly sampled 

from a design set of all 32 textures. At the beginning of 

training, the first level is initialized with four distinct vectors 

close to the mean of all training vectors. The code vectors are 

trained by repeating the Lloyd iteration [12] until the decrease 

of quantization error in succeeding iterations is less than 5 

percent. During Lloyd iteration, each code vector is replaced 

with the mean of the sample vectors closer to it than to any 

other code vector. After one level has been trained, vector 

values are fixed and each value is copied to the descendant code 

vectors, which are then made unequal by changingtheir values 

slightly. The search for the best-matching code vector always 

starts from the first level and proceeds to the subtree descending 

from the code vector which is closest to the sample vector. 

Decisions among branches are made until the level under 

training is reached. During vector quantization with a trained 

quadtree, only 6 × 4 = 24 code vectors, instead of 4,096, are 

matched to a sample. 

 

 

2.5 Tree-Structured Self-Organizing Map 
The quadtree-structured self-organized map [11], [6] consisted 

of six levels in which the nodes were arranged in squares. The 

levels are trained using repeated Lloyd iterations as the 

quadtree vector quantizers. After training of one level, each 

code vector value is copied to the four descendant code vectors 

and the succeeding level is initialized by giving each code 

vector the mean value of its four-connected neighbor nodes. 

The search for the best-matching code vector always starts from 

the first level, and when proceeding to the succeeding levels it 

is limited to the descendant nodes of the current best-matching 

code vector and its four-connected neighbors. The similarity of 

neighboring code vectors emerges during the training from the 

initialization of tree levels and limited lateral searches. In a 

trained map, about 90 code vectors are matched to a sample 

during the quantization. 

2.6 Selection of Co-Occurrence Components 
The classifier was adjusted to the current task by selecting the 

co-occurrence vector components which minimized the 

classification error rate of a design set. The error rate was 

determined with the leave-one-out method: When a sample 

histogram for a texture block was compared with the model of 

the same texture, shares of the histogram itself and the 

histograms collected from all other rotated and scaled variants 

of the same texture block were subtracted from the model 

histogram (changing Mi accordingly) prior to the likelihood 

computation of [5]. A genetic algorithm was used to find the 

values of coefficients bi in [2] and [4]. Vector b = (b1, b2, …, 

b16) which minimized the error rate determined the component 

selection. The genetic algorithm was implemented according to 

the instructions given by Davis [15]. The optimization was 

carried out using a population of 50 vectors with random initial 

values. A new unique vector was reproduced from two parent 

vectors which were selected with the roulette wheel method. 

Each component was randomly assigned the value of either of 

the parents. The value was inverted with probability 0.04. If the 

classification error rate of the reproduced vector was lower than 

that of the worst population member then a replacement was 

made. The number of evaluated vectors was 500. 

3 CHANNEL HISTOGRAMS 
Channel histograms estimate one-dimensional marginal 

densities of a decorrelated feature distribution [7]. Thus, a K 

dimensional co-occurrence distribution is represented by K one 

dimensional histograms. The components of co-occurrence 

vectors s in (4) are approximately decorrelated by the discrete 

cosine transform. Therefore, the ith channel histogram is 

collected from the values of component si. The component 

values were scalar-quantized to N1 = 2, 4, 8, …, 256 levels so 

that each bin of the ith histogram had about the same share of 

the distribution of si. This means that the channel histograms 

over the whole texture data are flat. Each  

 
texture is modeled with a combination of channel histograms. 

Multidimensional channel histograms were also used as texture 

models. The component values were scalar-quantized to a small 

number of levels, N2 = 2, 3, …, 8, and were collected into K 

dimensional histograms. The optimization of channel histogram 

classifiers included selection of the number of quantization 

levels N1 or N2. For the selection, component b17 is added to 

vector b. Components b1, b2, …, b17 were constrained so that 

histogram size N = KN1 or N =NK2 ensuing from their values 

did not exceed 4,096 bins. During the selection, component b17 

was given a random value within its range with probability 
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0.04, and it was increased or decreased by one step with 

probability 0.3. The number of evaluated vectors was 2,000. 
 

4 RESULTS AND DISCUSSION 
4.1 Reduced Multidimensional Histograms 
The reduced multidimensional histograms provided 

significantly higher classification accuracies than the channel 

histograms or wavelet packets. The results of different methods 

are shown in Table 1, where they are in descending order of 

classification accuracy; each accuracy is an average of ten 

experiments with different design and test sets. Each P value in 

the table shows the significance of the difference between two 

consecutive test set classification accuracies (analysis of 

variance with Tukey test). As shown in Table 1, the two vector 

quantizers provided similar classification accuracies. There was 

a significant difference (p < 0.002; paired sign test) between the 

quantization error per dimension of the tree-structured self-

organizing map (median 0.362) and the quadtree vector 

quantizer (median 0.418). This shows that the quantization 

accuracy was not critical for the classification performance. 

Table 1 also shows that the DCT-coefficient and gray-level 

vectors performed equally well. During the optimization, the 

reduction of the mean-removed gray-level components was 

modest: The median number of selected components was 13.5 

(lower quartile 12, upper 15). The high number of selected 

components demonstrates that our method can represent quite 

high dimensional co-occurrences. The reduction of DCT 

coefficients was more pronounced: The median number of 

selected components was 8 [8, 9] with both vector quantizers. 

The DCT coefficients with the highest variance preceding the 

normalization in [4] were most frequently selected and those 

with the lowest variance were most frequently rejected. The 

optimization of DCT coefficients thus resembled principal-

component-type feature reduction: 

The “principal” DCT coefficients captured most of the 

discriminatory information, whereas the “minor” DCT 

coefficients 

could be regarded as noise. As a separable two-dimensional 

transform, the DCT is faster to compute than the principal 

component transform. Suppose that it takes 100 time units to 

compute a multidimensional histogram of the optimized mean-

removed gray-level vectors with the tree-structured self-

organizing map. The time was decreased to 72 units by the use 

of the optimized DCT coefficients. Replacing the tree-

structured self-organizing map with the quadtree vector 

quantizer decreased the time further to 32 units. 
 

Table 1: Average classification results in 10 experiments 

 
Where, SD: sample standard deviation. 

DCT: discrete cosine transform. 

TSOM: tree-structured self-organizing map. 

QVQ: quadtree vector quantizer. 

 

 

 

4.2 Minimization of Leave-One-Out Error 
Table 1 shows no significant differences between the design 

and test set accuracies for any method. Thus, the minimization 

of the leave-one-out error during the optimization did not result 

in significant over fitting of the texture models. Owing to the 

leave-one out method, a lower number of texture blocks were 

used to compute the models of the design than the test sets. This 

may have 

somewhat favored the test set accuracies. The suitability of 

genetic algorithms for complex tasks, such as the optimization 

of classifiers, is well documented [17] but it is not excluded that 

simpler search methods [18] might perform equally well in the 

present case. 

 

5 CONCLUSION 
In comparison with the other methods, the reduced 

multidimensional histograms provided the highest classification 

accuracies. In our previous study [6], the tree-structured self-

organizing map was chosen instead of the traditional tree-search 

vector quantizer because it was suggested to provide lower 

quantization error. The present results verified this suggestion, 

but they also showed that the significant difference in the 

quantization 

error was not reflected in the classification performance. In 

comparison to the previous study, the use of traditional tree-

search vector quantizer and optimized linear compression 

significantly speeded up the classification. 
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