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ABSTRACT 

The paper presents the inverse kinematic analysis, modeling 

design and fabrication of each part of a four axes SCARA 

indigenously developed robot with indigenous components and 

to control it with a personal computer using the visual basic 

language. The work was carried out as a sponsored consultation 

project taken up by the authors. The main objective of this work 

is to design a inverse kinematic mathematical model of an 

educational stationary robotic model that can do pick and place 

of objects by avoiding the obstacles in its path of motion from 

the source to the destination. 
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1. INTRODUCTION 

Robotics is an interdisciplinary field that mixes various 

engineering disciplines such as electrical, electronics, 

instrumentation, mechanical, computer science, control 

engineering, mathematics, communications and many other 

fields into one. In this, work a unique 4 axes system is designed 

and fabricated with indigenous components with a brief 

kinematic analysis of the designed robot.  The kinematically 

modeled designed robot is used for performing some PNP 

operations and was named as a Selective Compliance Assembly 

Robot Arm (SCARA). The primary motive behind the work was 

to develop a modular educational robotic system, the CRUST 

2002 (Computerized Robotic Unit with Selective Tractability 

system) with the help of locally available components and sub-

systems as shown in Fig. 1 and also to develop a user friendly 

GUI to control it [1].  

The paper is organized as follows. First, a introduction to 

robotics, robots and the design of the mechanical assembly is 

presented in section 2. In section 3, the block diagram of the 

inverse kinematic model is presented. Fourthly, the inverse 

kinematic algorithm is presented in section 4. Section 5 gives the 

link coordinate diagram design and the kinematic parameter table 

of the robot.  In Section 6, computation of the joint variables of 

the robot, i.e., q1 , q2 , q3 and q4  is presented.  Section 7 gives the 

advantages of the inverse kinematically modeled robot and the  

conclusions are finally presented in section 8 followed by the 

references.   

 

 

 
 

Fig. 1.    The designed SCARA robot 

2. PHYSICAL STRUCTURE DESIGN 

A  four  axis / four  DOF designed SCARA  robot  arm as  

shown  in  Fig. 1.  A  SCARA  robot  is  a  4  DOF  stationary  

robot  arm  having  base,  elbow,  vertical  extension  and  tool  

roll  and  consisting  of  both  rotary  and  prismatic joints [2].  

There  is  no  tool  yaw  and  tool  pitch  (only  tool  roll) [1]. 

There are 4 joints,  4 axis (three major  axes - base, elbow, 

vertical  extension  and  one  minor  axis - tool roll).  The 4  

DOF’s  are  given  by  Base, Elbow, Vertical Extension and  

Tool Roll, i.e.,  there  are  three  rotary  joints  and  one  

prismatic  joint.  Since n  =  4;  16  KP’s are to be obtained and   

5  RHOCF’s are to be attached to the various joints [3].  
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Fig. 2.   Tool  Roll  DOF 

 

3. BLOCK DIAGRAM OF INVERSE 

KINEMATIC MODELLING 
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Fig.  3.  Inverse Kinematic Model of the robot 
 

The inverse kinematic model states as “given the geometric 

link parameters and the position and orientation or the tool 

configuration vector w, finding the sets  of  joint  variables  

which  will satisfy  the  same  position  and  orientation”.   

Referring Fig. 3 [9] for the IK block diagram, IK can also be 

defined as mapping from the Tool Configuration Space to the 

Joint Space. The link parameters are constant and are the 

physical dimensions or the geometric link parameters, which are 

constant for a given robot arm [8].   

 
 

Fig. 4.  The computer controlled SCARA robot 
 

4. INVERSE KINEMATIC ANALYSIS 

ALGORITHM 
The inverse kinematic algorithm is as follows [2].  

      Input  the  arm  matrix  T
4

0   

      

Input  the  GLP ; a  d     

 

  

Compute  the  TCV

w (q) = 




w

1

w
2

    

 

  Compute ( w1
2  

+  w2
2
 )    

 

  

Compute  shoulder  angle

 

q2 =   arc cos  




 w1

2
 +  w2

2
  –  a1

2
  –  a2

2 

 2a1a2 
   

  

 

 

Compute  base  angle

 

q1 = a tan 2 




(a1 + a2C2) w2 + a2S2w1

(a1 + a2C2) w1 – a2S2w2

     

 

 

Compute  GTRA 

  

q3 = d1 – d4 – w3

   

 

 

Compute  GTRA 

 q1 – 2 – 4 = a tan 2 




 R21 

 R11 

     

 

Compute  tool  roll  angle 

  

 q4  =   ln | w6 |

 OR 

 q4  =  q1 – q2 – q1 – 2 –  4

  

 

Fig. 5.    IK algo  of  the designed four  axis  SCARA  robot 

 

5.  DEVELOPMENT  OF  THE  LCD AND 

KPT 
The analysis of the robot is developed in 2 passes, viz., 

development of the link coordinate diagram as shown in Fig. 4 

and development of the kinematic parameter table as shown in  

the Table 1 [10]. The  link  coordinate  diagram  is  developed  as  

shown  in  the  Fig. 6  with  the  kinematic  parameter  table  as  

shown  in  Table 1 [2].  
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6. COMPUTATION  OF  THE  JOINT  

VARIABLES 
 

Rows  of 

KP  Table 

Type  of  

Joint 
k dk ak k 

1st  row  of  

KPT 

1 , d1 ,  

a1 , 1     

Base q1 = 1 

 

d1 

 

a1   

2nd row  of 

KPT 

2 , d2 ,  

a2 , 2     

Elbow q2 = 2 0 a2 0 

3rd  row  of 

KPT 

2 , d3 ,  

a3 , 3   

Vertical 

Extn. 
3 = 0° 

q3 = d3 

(variabl

e) 

0 0 

4th  row of 

KPT 

4 , d4 ,  

a4 , 4   

Roll q4 = 4 d4 0 0 

 

Table  1   Kinematic  parameter  table  of  the   robot 
 

 
 

Fig. 6    L.C.D.  of  a  four  axis  SCARA  robot 
 

L0  to  L4 :  Five  RHOCF’s ; 1 , 2 , 3 , 4     :  Joints 

d4 :  Tool  length / length  of  gripper 

q1  to  q4 :  Joint  variables  (q  =   , d ) 

p   :  Tool – tip ; d3      :  Vertical  extension 

 

The output of the direct kinematics of the SCARA is  [2] 
 
 

T
Tool

Base
 =  T

4

0
  =  









C1–2–4

 

S1–2–4

 

0

 

0

     

S1–2–4

 

– C1–2–4

 

0

 

0

     

0

 

0

 

–1

 

0

        

a1 C1 + a2 C1–2

 

a1 S1 + a2 S1–2

 

d1 – q3 – d4

 

1

  

 

T
4

0
    =    









   R11

   R21

   R31

 

   0

           

R12

R22

R32

 

0

        

R13

R23

R33

 

0

             

p1 

p2 

p3 

 

1 

  ; n = 4   

        =   








  

r
1

 

0
           

r
2

 

0
            

r
3

 

0
                 

p 

 

1 
     

        =      n            s             a           tip position 

                       p1 =  w1  =   a1 C1  +  a2 C1–2 

                       p2 =  w2  =   a1 S1  +  a2 S1–2 

                       p3      =  w3  =   d1 – q3 – d4 

R13  =  R23  =  R31  =  R32   =   w4 , w5    =  Constant  =  0 

 R33 = – 1 

 n  = 4 

 R11    =   C1 – 2 – 4 

 R21  =  R12    =   S1 – 2 – 4  

 R22   =   – C1 – 2 – 4 

 The first 3 columns of the above matrix gives the orientation 

of the gripper w.r.t. the base, i.e., the yaw (normal vector), pitch 

(sliding vector) and the roll (approach vector), while the last 

column [11] gives the position of the gripper tip w.r.t. base, thus 

solving the direct kinematic modeling of the robot [2].  

 

The assumptions  made in our IK analysis are 

 cos  q1  =  C1     

 sin  q1   =  S1 

 cos  ( q1  –  q2 )  =  C1–2  =  C1C2  +  S1S2 

 sin  ( q1  –  q2 ) =  S1–2  =  S1C2  –  C1S2 

 sin  ( q1  –  q2  –  q4 )  =  S1–2–4 

 cos  ( q1  –  q2  –  q4 )  =  C1–2–4 

Check  the  norms of  the  rotation  matrix  of  T
4

0
 .  They  are  

all  unity.  For  ex., the  norm  of  the  1st  column  of  the  matrix 

T
4

0
  is  || r1 || =  (C1–2–4)

2 + (S1–2–4)
2 + (0)2   =  1. 

 

 These  assumptions [2] are  made  to  simplify  the  

calculations [12].  The inverse kinematic equations are obtained 

by equating the output of direct kinematics to the soft home 

position matrix  T
4

0
  = T

4

0
  (SHP) . 

 

        









C1–2–4

S1–2–4

0

0

     

S1–2–4

– C1–2–4

0

0

     

0

0

–1

0

        

a1C1 + a2C1–2

a1S1 + a2S1–2

d1 – q3 – d4

1

   =    

 

        









0

–1

0

0

     

–1

0

0

0

     

0

0

–1

0

       

a1 + a2

0

d1 – d3 – d4

1

  

 

(1) C1–2–4 =  0 

(2) – C1–2–4   = 0 

(3) S1–2–4  = –1 

(4) S1–2–4  = –1 

(5) a1 C1 + a2 C1–2 =  a1 + a2  

(6) a1 S1 + a2 S1–2  =  0 

(7)   d1 – q3 – d4  =  d1 – d3 – d4   
 

We  get  seven  inverse kinematic  non - linear  equations  in  

4  unknowns  (Base , Elbow , VE , Roll).  

The Tool Configuration Vector (TCV) is given by [2] [9] 
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w (q)  = 






w

1

….

w
2

  = 









p

……………….









exp 



q4


 r

3
  =  











w1

w 

w3

………

w4

w5

w6

 

   

         =   













p1

p2

p3

……………….

exp 



q4


 R13

exp 



q4


 R23

exp 



q4


 R33

   =  











a1C1 + a2C1 – 2

a1S1 + a2S1 – 2

d1 – q3 – d4

…………….

0

0

– exp 



q4



  

 

Note  :  To  find  out  q1 , q2  , q3 , q4 ; apply  row  operations  

used  in  mathematics  to  the  components  of  w  using  various  

trigonometric  identities [2], [11].   

To  Extract  Elbow  Joint  Variable  q2 =  2 

                       p1 =  w1  =   a1 C1  +  a2 C1 – 2 

                       p2 =  w2  =   a1 S1  +  a2 S1 – 2 

                       p3 =  w3  =   d1 – q3 – d4 

 w6  =   – exp 



q4


  

                       w4 =  w5 = 0 

 Squaring  and  adding  w1  and  w2 ,  we  get  q2 , since  it  is  

easier  to  extract  the  elbow  angle  as  it  is  independent  of  

base  angle [2].   

w1
2  +  w2

2  =  ( a1 C1 + a2 C1 – 2 )
2 +  ( a1 S1  +  a2 S1 – 2 )

2 

             =  a1
2 + a2

2 + 2a1a2 C2 

   2a1a2 C2    =   w1
2 +  w2

2  –  a1
2  –  a2

2                    

      cos q2     =   
w1

2
 +  w2

2
  –  a1

2
  –  a2

2

2a1a2
  

        q2         =     cos 
–1

 




w1

2
 +  w2

2
  –  a1

2
  –  a2

2

2a1a2
   Eq

n
  3.12:4 

          q2      =    arc cos (w1
2
 +  w2

2
  –  a1

2
  –  a2

2
, 2a1a2 ) Eq

n
  3.12:5 

From  the  above  equations  ,  we  see  that  the  IK  solution  is  

not  unique  and  hence  we  get   two   solutions   when  looked  

from  the  top  in  the  x-y  plane given  by 

q2 =  +   ;  left  handed  solution , i.e., > 0 ; link  a2  moves  to  

right  ( from  top ) [13].       

q2 =  –   ;  right  handed  solution , i.e., < 0 ;  link  a2  moves  to  

left ( seen from top ) [14].       

Hence , solution  to  IKP  to the shoulder is  not  unique [10]. 

 

To  Extract  Base  Joint  Variable  q1 =  1 

w1 =  a1 C1  +  a2 C1 – 2 

w2 =  a1 S1  +  a2 S1 – 2 

Expand  C12  and  S12  using  sum  of  sines  and  cosines ; 

isolate  C1 , S1  write  in  matrix  form , collect  all  C1  terms  and  

S1  terms , find  A–1  and  | A | , solve  for   q1 [2], [15]. 

w1 =  a1 C1  +  a2 (C1 C2  +  S1 S2)  = (a1 + a2 C2) C1 + (a2 S2) S1  

w2  =  a1S1  +  a2 (S1C2  –  C1S2)  =  (– a2S2) C1 + (a1 + a2C2) S1  

Writing  equations  for  w1  and  w2  in  matrix  form ; 

 







w1

 

w2

 =  








 

a1 + a2C2

 

– a2S2

     

a2S2

 

a1 + a2C2

    






C1

 

S1

  

 







C1

 

S1

 =  








 

a1 + a2C2

 

– a2S2

     

a2S2

 

a1 + a2C2

  

–1

  






w1

 

w2

  

Let  A  = 








 

a1 + a2C2

 

– a2S2

     

a2S2

 

a1 + a2C2

    

Determinant  = | A |  = ( a1  + a2 C 2 )
2 +  ( a2 S2 )

2 

  = a1
2 + a2

2  + 2 a1 a2 C2  

  = w1
2  +  w2

2 

              A–1   =  






a1 + a2C2

 

a2S2

     

– a2S2 

 

a1 + a2C2 

 

w1
2  +  w2

2    

                     =  









 

a1 + a2C2

 w1
2  +  w2

2

 

a2S2

 w1
2  +  w2

2

 

     

– a2S2

 w1
2  +  w2

2

 

a1 + a2C2

 w1
2  +  w2

2

    

Substituting  the  value  of  A–1  [16] 











 

 C1

 

 

S1

 

  = 









 

a1 + a2C2

 w1
2  +  w2

2

 

a2S2

 w1
2  +  w2

2

 

     

– a2S2

 w1
2  +  w2

2

 

a1 + a2C2

 w1
2  +  w2

2

   











 

w1

 

 

w2

 

  

C1=  
(a1 + a2C2) w1 – (a2S2) w2

 w1
2  +  w2

2    =  cos  q1 

q1 =   cos –1 






(a1 + a2C2) w1 – (a2S2) w2

 w1
2  +  w2

2    

S1=  
(a1 + a2C2) w2 + (a2S2) w1

 w1
2  +  w2

2    =  sin  q1 

q1 =  sin 
–1

 






(a1 + a2C2) w2 + (a2S2) w1

 w1
2
  +  w2

2    

Using  C1  or  S1 , we  can  find  the  value  of  q1 .  But , it  gives  

the  base  angles  only  over  the  range  (– 90 ,  + 90)  or 









– 


2
 , + 



2
 , i.e., 180°  range [17].  

 , dividing  S1  by  C1 , we  get 
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tan  q1 =  
S1

C1
  =  

sin q1

cos q1
   = 



 (a1 + a2C2) w2 + (a2S2) w1 

 (a1 + a2C2) w1 – (a2S2) w2
  

q1 = arc tan 2 {(a1 + a2C2) w2 + a2S2w1 , (a1 + a2C2) w1 – a2S2w2) 

}  

q1     =      tan–1  







 (a1 + a2C2) w2 + (a2S2) w1 

 (a1 + a2C2) w1 – (a2S2) w2
    

 This  solution  given  by  this gives  the  values  of  the  base  

angle  q1  over the complete  range  (– , + ) ; since , we  had  

used  the arc tan 2  function .  Hence , if  we  use  the  arc tan 2  

function , we  can  recover  the  base  angles  over  the  complete  

range , i.e., 360° [17], [18] 

 

To  Extract  Vertical  Extension  Joint  Parameter , q3 = d3  

    This  is  a  prismatic  motion  and  d3  is  variable  in  this  

case .  This  is  associated  with  the  movement  of  sliding  the  

tool  up / down  along  tool  roll  axis  or  along  the  approach  

vector  r3 .  The  third  variable  is  the  easiest  to  extract  since  

it  involves  only  distances [12], [19]. 

 

From  the  3rd  component  of  TCV ; w , we  have 

w3  =   d1  –  q3  –  d4 

The  3rd  variable  q3  is  extracted  as [13] 

q3     =   d1  –  d4  –  w3    

 

where  d1 =  Height of the  SCARA  robot  from  the  base . 

and  d4 =  Length  of  the  tool [20]. 

 

To  Extract  Tool  Roll  Angle , q4 = 4 [2] 

 The  tool  roll  angle  is  computed  from  the  last  

component  of  the  TCV , i.e., w6 [14].  

From  TCV, we  have ; 

w4  =  w5  =  0 , i.e.,  there  is  no  yaw  and  pitch .  

Using  the  equation   [15] 

 qn =   ln   w4
2 + w5

2 + w6
2   =  ln   02 + 02 + w6

2  

q4       =     ln  w6    

 

Calculating  Joint  Variables  from  the  Components  of  the  

Rotation  Matrix [2]:   

From  the  arm  matrix T
4

0
  , we  have 

R =






C1 – 2 – 4

S1 – 2 – 4

0
     

S1 – 2 – 4

– C1 – 2 – 4

0
       

0

0

– 1
  = 








 

R11

R21

R31

     

R12

R22

R32

     

R13

R23

R33

   

R21

R11
  =  

S1 – 2 – 4

C1 – 2 – 4
    =   tan q1 – 2 – 4 

q1 – 2 – 4 =  tan–1 





 R21 

 R11 
 ;  

            =  arc tan 2 ( R21 , R11 ) 

            =  (q1 – q2 – q4 ) 

Since  q1  and  q2  are  already  found  out , we  can  find  q3  

using  the  GTR  angle [2], [16] 

                 q4      =   q1 – q2 – q1 – 2 – 4   

q1 – 2 – 4  =  Global  tool  roll  angle , i.e.  angle  made  by  

tool  roll  q4 w.r.t. the  x – axis.  

Thus, we have found out joint variables using different 

methods as  

There  is  1  methods  of  finding  q1 , viz.,  

q1 = tan–1  







 (a1 + a2C2) w2 + (a2S2)w1 

 (a1 + a2C2) w1 – (a2S2)w2
   

and  1  method  of  finding  q2 , viz.,  

q2  =    cos –1 



w1

2 +  w2
2  –  a1

2  –  a2
2

2a1a2
  

and  1  method  of  finding  q3 , viz., 

q3 = d1  –  d4  –  w3 

and  there  are  2  methods  of  finding  q4 , viz., 

q4       =       ln  w6  

q4      =   q1 – q2 – q1 – 2 – 4 

 

Methods  of  Obtaining  Solutions  to  the  IKP : 

q = {q1 , q2 , q3 , q4 }
T    

 

 I K P

 
   

                                                 

              w(q)  =  { w1 , w2 , w3 , w4 , w5 , w6 }
T 

 In  the  Tool  Configuration  Vector  TCV [18], three  major  

axes  variables ( p ) and  three  minor  axes  variables (R)  has  to  

be  given as  the  input  to  the  IKP with  the  GLP  to  compute  

the  set  of  joint  variables .  w1 , w2   are  used  to  compute q1  

and  q2 .  Using  w3 , q3  can  be found  out [19].  Using  w6 , q4 

can  be  found  out . w4  and  w5 are  not  used  in  the  

computation  of  the  joint  variables  as  they  are  constants  and  

equal  to  zero [2]. 

q1  to q4
 

 

 I K P

 
    w


 (q) ={ p1 , p2 , p3 ,q1– 2 – 4}

T 

   In  the  Reduced  Tool  Configuration  Vector  RTCV , three  

major  axes  variables ( p ) and  one  minor  axes  variable ( 

orientation  variable )  is  given  as  the  input  to  the  IKP  with  

the  GLP  to  compute  the  set  of  joint  variables .  p1 , p2  are  

used  to  compute q1  or  q2 . From  p3 , q3  can  be  found  out . 

From  the  global  tool  roll  angle ; q1 – 2 – 4 , q4  can  be  found  

out .  The  advantage  of  using  RTCV  is  there  is  need  to  

[20] specify  only  four  variables  instead  of  six  in  the  TCV , 

thus  reducing  the  number  of  computations .   

7. ADVANTAGES  OF  THE  INVERSE 

KINEMATICALLY  MODELED SCARA 

ROBOT 
 

 Approach  vector  r3  is  fixed ;  r3  =  –i3  =  –z0  =  –1  and  

r3  r  x0 y0  plane , 

 Tool  is  always  pointing  vertically  down .   

 Hence , SCARAS  are  used  to  manipulate  objects  

directly  from  above  the  object  and  in  applications  

where  exact  perpendicularity  is  required such as in  
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 Example :   

o Insertion  of  components  onto  PCB ’ s . 

o Inserting  peg  into  holes . 

o Fastening  a  nut  onto  a  bolt . 

o Performing  straight  line  motions .  

o Performing  screw  transformations . 

o Doing  light  assembly  tasks  where  high  precision  is  

required .  

o Threading  and  unthreading  operations .  

 

The thing is, if we just give the amount of rotation or 

translation as input to this algorithm, it just goes and stops at that 

prescribed position and orientation. This is what is called as 

direct kinematics as kinematics is defined as the study of motion 

of objects without taking the forces / torques / moments into 

consideration [7]. 

8. CONCLUSION 

A four axes inverse kinematic analysis was performed for the 

designed robot and was successfully implemented in the 

laboratory. The robot was controlled using a GUI developed in 

visual basic language in various modes. A number of pick and 

place operations were successfully performed by the developed 

robot by using teaching mode, manual mode and programming 

modes and the inverse kinematic model. 
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