
International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

Proceedings published in International Journal of Computer Applications® (IJCA)

24

An Approach to Web Services Configuration based on

QoS

Yogini Marathe
Department of Computer Engineering, Pune

Institute of Computer Technology
Pune, India

Pravin Game
Department of Computer Engineering, Pune

Institute of Computer Technology
Pune, India

ABSTRACT

In a Web environment, Web services will typically be

configured together to serve a specific purpose. Many web

services provide similar functionality however they have

different nonfunctional properties (e.g. price). A lot of

research is being made on how to configure, discover, and

compose web services on the basis of their non functional

characteristics. This paper aims at studying approaches for

QoS based configuration of Web Services, analyze the

advantages and drawbacks of the various approaches and later

we propose an advancement needed in the approach in order

to make the QoS aware configuration more effective in the

real time environment.

General Terms

Web Services

Keywords

Quality of Service, Service selection, Web Services

1. INTRODUCTION
In today’s world, many Enterprises are adopting Service-

Oriented Architecture for business processes within the

organization and Web Services are the obvious choice for

SOA implementation. Web service providers publish their

web services in common registry called Universal

Description, Discovery and Integration (UDDI). Then,

application programs search the registry for required web

services. These registered web services are combined together

to form a configuration in order to serve all the needs of the

end users. Run time performance of these composite web

services is of utmost importance for distributed applications.

While choosing the Web services for configuration, it is

important to evaluate functional as well as non functional

characteristics. Functional aspects include, the functionality

provided by the service and under what circumstances the

functionality is provided. Non functional characteristics

include quality of service (QoS). It is always possible that

there are multiple services that can meet functional

requirements however have different QoS attributes.

 Norbert Bieberstein et al. have identified various non

functional requirements that should be satisfied by the SOA

based systems in [16]. They classify the non functional

requirements as business constraints, technology constraints,

runtime qualities and non runtime qualities. Our scope of QoS

includes the runtime qualities such as performance, reliability,

scalability, capacity, robustness, exception handling,

accuracy, integrity, accessibility, availability, interoperability,

security and network related QoS requirements [1]. These

properties are applicable to both stand-alone Web services and

Web services compositions [2]. Several researches are being

done and approaches have been suggested to make use of QoS

parameters while choosing web services.

The rest of the paper is organized as follows: Highlights of the

similar work done are given in Section 2. An enhanced

configuration approach is presented in Section 3. Results

based on test data are shown in Section 4. Section 5 lists the

conclusion and future work.

2. RELATED WORK
All S.Ran has proposed UDDI extension model in order to

make it possible to discover the web services based on QoS

attributes [3]. Middleware based approaches have been

presented for creating web services compositions as well as

for managing dynamically changing QoS requirements[2],[4].

Z. Zheng et al. have proposed collaborative filtering approach

to predict QoS values of the web services [6]. C.Zhou et al.

designed the QoS ontology to help in services discovery with

required QoS as well as for measuring the QoS [7]. More and

more research is being done on how to dynamically configure

web services to meet user’s non functional needs. To address

this need, P. C. Xiong et al.have proposed a service function

dependency configuration net based on Petri nets. Later an

algorithm is proposed for choosing the best configuration that

has the highest quality of service [5].

Work done by Xiong et al. [5] is being analyzed, appreciated

and used as a reference by many others. Yang Huaizhou, Li

Zengzhi highlight that the work done in [5] is good for

modeling of service dependent relationship. However it is

difficult to integrate the solution with current service

orchestration engines because Orchestration process is not

considered in the models. Two composite services, which are

comprised of same component services, will differ in terms of

QoS when their orchestration processes are different. To do

appropriate evaluation whether the user’s QoS requirements

are satisfied or not orchestration process needs to be

considered. To address the need, the service dependent

relationships and the possible orchestration processes are

synthetically reflected by an extended hierarchical Petri nets.

Also a series of QoS formulas are presented [8].

George Zheng and Athman Bouguettaya propose web service

mining framework that enables proactive discovery of

interesting and useful service compositions. Usefulness and

interestingness parameters are considered. Weighted function

is used to compute overall Quality of the service. E.g.

reliability attribute contributes positively whereas response

time attribute contributes negatively while calculating QoS.

They also use skyline approach for identifying interestingness

of a particular service composition [9].

Authors of [5] themselves have improved the algorithm to

consider multiple QoS attributes. Simple additive weighting is

used to find overall QoS value of the configuration [10]. W.

International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

Proceedings published in International Journal of Computer Applications® (IJCA)

25

Tan et al. have used colored Petri nets to capture both control

and data aspects of business processes as well as services.

Based on data relations and composition rules a method is

proposed to derive all the possible composition candidates

given a service portfolio. [11] tackles the problem of service

composition using Petri nets decomposition.

D. Bruneo et al. present a novel technique that, starting from

the WS-BPEL statements and assuming that the non-

functional parameters of the services involved in the process

are known, investigates the QoS of composed services. This is

done by mapping the WS-BPEL process into non-Markovian

stochastic Petri nets (NMSPNs). Both synchronous and

asynchronous WS-BPEL invocation of external Web services

is taken into account. The main advantage of the proposed

technique is to implement a stochastic analysis of the

evaluated quantities so as to make both transient and steady

state evaluations. This helps in evaluating several different

conditions ranging from the worst to the best case, and not

only the average case as provided by the other existing

techniques [12].

Xitong Li et al. proposed to model web services using colored

Petri nets. Web services are modeled as SWN (Service

Workflow Net) based on colored Petri nets. It shows

observable data flow between the component web service. As

stated in [5], due to dynamic environment, a web service

involved in a composition may fail to respond to client’s

requests or to maintain satisfying QoS level. In any case, an

alternative Web Service of similar behavior needs to be

identified and used as a substitute for failed service. In this

paper, authors provide sufficient conditions of context

independent similarity and corresponding algorithm to verify

similarity. Also a tool is developed to automate the

verification of similarity between web services using this

algorithm [13].

3. APPROACH
In addition to the various approaches suggested above, we

suggest an enhancement to use historical data of the

composite services. This should help to find out a

configuration which is optimal as well as has been

consistently giving the better performance in terms of user

requested QoS parameters. Historical data of various QoS

parameters such as response time, availability of the

composition can be calculated as per the approaches

suggested in [15]. There is a possibility that we can construct

multiple optimal configurations from the available service

candidates. So we should find out all possible optimal

configurations as a first step. From this set of configurations,

select the configuration that has consistently given better

performance in the past. Advantage of selecting configuration

based on past performance data is that we can guarantee the

given configuration will meet user’s requirements at runtime.

All the approaches mentioned in section 2 use some formulae

to calculate the Composite QoS value based on the values of

atomic candidate services. However when these atomic

services are combined together, the flow logic, calling

sequences would introduce the delay, thus actual QoS

achieved might be different than the calculated QoS. So it is

important to consider the past performance of the

configuration though theoretically the configuration is

optimal.

3.1 Modeling
For modeling of the web service compositions, Petri nets and

Directed Acyclic Graphs have been used widely [5], [14]. As

shown in one of the approaches in [14] we use directed

acyclic graph (DAG) for modeling the web services

configuration. Following are various components in the

system:

 C = {S1, …, Sn} Composite service flow made up of

individual service functions

 Si = Service function class representing collection of

services with same functional but different QoS

properties; Si C

 Sij = Service j providing functionality for service

function class i

 Qij = {qij
1, … , qij

x} is a QoS vector for service Sij

;The values can be average or worst case.

 Ψ = { Ψ1, … Ψm} is expected QoS vector for

configuration

 G = {V,E} is a service candidate graph generated

during processing where V is set of vertices

representing all individual services and E is set of

edges representing service interactions

 H = {Ci, Ψi} is past runtime QoS data for

configurations

 R = Optimal configuration suggested = { S1, …, Sk |

Sk Sij}

 F = utility function that computes weighted QoS

value for each service candidate

3.2 Utility Function Definition
Users would typically have multiple QoS objectives such as

minimizing the response time while maximizing the

throughput. All such requirement should be met while

choosing the services. We will be using simple additive

weighting while calculating the composite QoS value for each

service. As described in [14] the utility function can be

defined as below:

Suppose there are x QoS parameters to be maximized and y

QoS parameters to be minimized then

F =

x

1

ωα * ((qij
α – μα)/σα) +

y

1

 ωβ * (1 - ((qij
β – μβ)/σβ))

Where ωα and ωβ are weights for each QoS attribute (0 < ωα,

ωβ < 1) and

x

1

ωα +

y

1

 ωβ = 1. μ and σ are average and

standard deviation values respectively for all candidates in a

service class.

International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

Proceedings published in International Journal of Computer Applications® (IJCA)

26

Table 1. Service Candidate List

Service

Function
Candidates

Response

Time
Availability

S1 S11 1 0.9

S1 S12 2 0.8

S2 S21 1.25 0.7

S2 S22 2 0.88

S3 S31 2.5 0.76

S3 S32 3 0.85

S3 S33 3 0.9

S4 S41 1.6 0.75

S4 S42 1.5 0.7

S5 S51 1 0.8

S5 S52 2 0.7

S5 S53 3 0.6

3.3 Algorithm

Fig 1: Service Flow Information

1. Inputs are the service functional flow information C

as shown in Fig.1 and Service candidates list Sij is

as shown in Table 1.

2. From C and Sij create Service candidate graph G

(shown in Fig. 2) as below:

a. Sij add a node v in G

b. Add a link from every node Sij to Sjj if

there was a link from Si to Sj in C

c. Add a dummy Start node Ss and End

Node Se whose QoS value is 0.

d. v V, add weight w to the incoming

edges as value obtained by applying

utility function for corresponding Sij

3. Traverse the graph from start node to end node such

that wj is maximum and QoS value of path

meets the user defined QoS criteria. Function for

graph traversal in explained in next section.

4. From the list of paths above, select the path such

that historical QoS value Ψ is maximum

Fig 2: Service Candidate Graph

3.4 Graph Traversal Function Pseudo code
This function is based on shortest path finding algorithm,

however instead of striving for minimum distance, the

algorithm looks for nodes such that value of utility function is

maximized [14].

startNode = Ss

nodeStack = Ss

pathsLists[0][0] = φ

while nodeStack !empty do

 X = adj(Ss)

 for all x X do

 if w = maximum or w = 0 then

 if Composite ofthepath _ expected then

 push x

Add Ss as previous node in x

 end if

 end if

 Ss = pop nodeStack

 end for

end while

pathLists = GetAllMarkedPaths()

GetAllMarkedPaths will traverse the graph from end node in

backward direction and with the help of previous node

information added at each traversed node, get all the paths.

4. EVALUATION EXAMPLE
We checked the correctness of the algorithm by considering

two QoS parameters, Response time and Availability.

Response time is the parameter that needs to be minimized

whereas Availability is the parameter that should be

maximized. As per the test data in Table 1, and weights used

as 0.5 and 0.5, Table 2 shows the values for utility function of

each service candidate.

International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

Proceedings published in International Journal of Computer Applications® (IJCA)

27

Table 2. Utility values for Services

Service

Name
Utility Value

S11 1.207

S12 -0.207

S21 0.5

S22 0.5

S31 0.537

S32 0.305

S33 0.657

S41 0.5

S42 0.5

S51 1.5

S52 0.5

S53 -0.5

Let expected QoS values of the configuration be Response

time <= 7 ms. and service should be available at least 70

percent of the time. Using the utility values in table 2,

algorithm produces following 4 different optimal paths out of

48 feasible paths:

1. Ss S11 S21 S33 S51 Se

2. Ss S11 S22 S33 S51 Se

3. Ss S11 S41 S51 Se

4. Ss S11 S42 S51 Se

Based on the historical data, suppose path 2 has yielded the

best results in past, the output will be service configuration

R = {S11; S22; S33; S51}

5. CONCLUSION AND FUTURE WORK
Several approaches have been specified earlier for optimal

QoS based compositions or configurations of web services.

Our approach is an add-on to these approaches where we use

information about historical behavior of entire composition

for creating optimal service configurations. Advantage of

selecting the configuration based on historical data is that the

system will be more robust than the system if the

configuration was selected as first available choice. The

proposed approach is well suited for service compositions

with sequential flow, in future we plan to work on other

possible composition structure like parallel, conditional, loop

structures.

6. REFERENCES
[1] QoS for Web Services: Requirements and Possible

Approaches: http://www.w3c.or.kr/kr-

office/TR/2003/ws-qos

[2] L.Z. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J.

Kalagnanam and H. Chang, ”QoS-aware middleware for

Web services composition”, IEEE Transactions on

Software Engineering, Vol. 30, Iss. 5, May 2004, pp.

311-327.

[3] S. Ran, ”A Model for Web Services Discovery with

QoS”, SIGecom Exchanges, vol. 4, no. 1, pp. 110, Mar.

2003.

[4] E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, and P.

Devanbu, ”GlueQoS: Middleware to sweeten quality-of-

service policy interactions”, in Proc. 26th Int. Conf.

Softw. Eng., Edinburgh, U.K., May 2004, pp. 189-199.

[5] P. C. Xiong, Y. S. Fan, and M. C. Zhou,”QoS-aware

Web service configuration”, IEEE Trans. Syst., Man,

Cybern. A, Syst., Humans, vol. 38, no. 4, pp. 888-895,

Jul. 2008.

[6] Zibin Zheng; Hao Ma; Lyu, M.R.; King, I,”QoS-Aware

Web Service Recommendation by Collaborative

Filtering”,IEEE Transactions on Services Computing,

Vol 4. Issue 2, pp 140-152Feb 2011.

[7] Chen Zhou; Liang-Tien Chia; Bu-Sung Lee,”Semantics

in service discovery and QoS measurement”,IT

Professional, Vol 7. Issue 2, pp 29 - 34, Mar-Apr 2005.

[8] Yang Huaizhou, Li Zengzhi,”Improving QoS of Web

Service Composition by Dynamic

Configuration”,Information Technology Journal, Vol.9

Issue.3, pp.422, 2010.

[9] G. Zheng, A. Bouguettaya,”Service mining on the

web”,IEEE Transactions on Services Computing, Vol 2,

Issue 1, Jan-Mar 2009.

[10] P. C. Xiong, Y. S. Fan, and M. C. Zhou,”Web Service

Configuration Under Multiple Quality-of-Service

Attributes”,IEEE Transactions on Automation Science

and Engineering, Vol. 6 Issue 2, Apr 2009.

[11] W. Tan, Y. Fan, M. Zhou, and Z. Tian,”Data-Driven

Service Composition in Enterprise SOA Solutions: A

Petri Net Approach”,IEEE Transactions on Automation

Science and engineering, Vol. 7, No. 3, Jul 2010

[12] D. Bruneo, S. Distefano, F. Longo, M. Scarpa,”QoS

Assessment of WS-BPEL Processes through non-

Markovian Stochastic Petri Nets”, IEEE, 2010

[13] X. Li, Y. Fan, Q. Z. Sheng, Z. Maamar, and H. Zhu,”A

Petri Net Approach to Analyzing Behavioral

Compatibility and Similarity of Web Services”,IEEE

Transactions on Systems, Man, and Cybernetics-Part A:

Systems and Humans, Vol. 41 Issue 3, May 2011

[14] Yu, Tao and Zhang, Yue and Lin, Kwei-Jay,”Efficient

Algorithms for Web Services Selection with End-to-End

QoS Constraints”,ACM Trans. Web 1 1, Article 6, May

2007.

[15] Fauvet, Marie-Christine and Dumas, Marlon and

Benatallah, Boualem,”Collecting and Querying

Distributed Traces of Composite Service Executions”,

Confederated International Conferences DOA, CoopIS

and ODBASE 2002, Robert Meersman and Zahir Tari

(Eds.). Springer-Verlag, London, UK, UK, 373-390.

[16] Norbert Bieberstein, Sanjay Bose, Marc Fiammante,

Keith Jones, Rawn Shah,”Service-Oriented Architecture

Compass: Business Value, Planning, and Enterprise

Roadmap”,IBM Press Publication, 2005.

