
International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

 Proceedings published in International Journal of Computer Applications® (IJCA)

27

Designing Application Framework using WSDL

G M Tere
Thakur College of Science and Commerce,

Mumbai, Maharashtra - 400101, India
Mobile: 091-9920319945

B T Jadhav
Y.C. Institute of Science,

Satara, Maharashtra - 415001, India
Mobile: 091-9421215973

ABSTRACT

Because of loose coupling, interoperability and reusability in

a service-oriented architecture (SOA) many business

applications are developed using SOA. Main components os

SOA based applications are service provider, service

consumer and service repository. Communication between

these components is achieeved by exchanging SOAP

messages, which are XML documents. XML to Java mapping

is difficult process. This process is time consuming.

WSDL2WS is an application framework for developing Java

web services. Using XML and WSDL we can develop a Java

web service. Our application framework attemps to remove

some drawbacks in developing web services using Java EE

approaches. Web services interfaces, in the form of WSDL

files, can be published to a business registry; these interfaces

can then be dynamically looked up by clients. We compared

performance of our framework with Apache Axis 1.0 and 1.2.

for simple Web services.

General Terms

Performance, Design

Keywords

Application framework, Web services, WSDL, XML,

WSDL2WS

1. INTRODUCTION
Application frameworks are set of guidelines and

specifications that provide platforms, tools, and programming

environments for addressing the design, integration,

performance, security, and reliability of distributed and multi-

tiered applications. An application framework includes the

presentation services, server-side processing, session

management, business logic framework, application data

caching, application logic, persistence, transactions, security,

and logging services for applications.

Application development tools and application servers are

built on top of application frameworks. The aim of the

application framework is to provide a single and unified

software infrastructure that reduces the number of enterprise

software products to support, maintain, and integrate.

WSDL2WS is built on top of Jax-WS. Jax-WS is a toolkit,

and WSDL2WS is an application framework on top of the

toolkit, much like servlets is a toolkit, and Struts is an

application framework that runs on top of the

servlets. Consider example of a purchase order object. Using

Jax-WS mappings to that, it will create a purchase order XML

document, but it may not be the same structure as the

purchase order document that business partners are using [4].

So more efforts are needed for mapping out one to the other.

Using tools provided by WSDL2WS Java purchase order

looks like the standard purchase order.

1.1 Introduction to SOA
Because robust Web Services technology is the foundation for

implementing SOA[10], Java now provides the tools modern

enterprises require to integrate their Java applications into

SOA infrastructures. SOA is a distributed software model.

The key components of SOA include services, dynamic

discovery, and messages. Basic SOA architecture is shown in

Figure 1.

Fig 1: Basic SOA Architecture

1.2 Web services for SOA
Web services constitute a distributed computer architecture

made up of many different computers trying to communicate

over the network to form one system. They consist of a set of

standards that allow developers to implement distributed

applications - using radically different tools provided by many

different vendors - to create applications that use a

combination of software modules called from systems in

disparate departments or from other companies. Web services

are built on top of open standards and platform-independent

protocols. A web service uses SOAP over HTTP for

communication between service providers and consumers [2].

Services are exposed as interfaces defined by WSDL (Web

Service Definition Language), whose semantics are defined in

XML. UDDI, a language-independent protocol, is used for

interacting with registries and looking for services. All of

these features make web services an excellent choice for

developing SOA applications [6][7][10]. Web services can be

developed from WSDL file. This is called as Contract first

approach.

1.3 WSDL
WSDL is an XML-based language for describing Web

services and how to access them. It specifies the location of

the service and the operations the service exposes. WSDL is a

specification defining how to describe web services in a

Lookup
Services

Get Service
Provider

Service

Registry

Service

Provider

Service

Consumer

Invoke
Services

International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

 Proceedings published in International Journal of Computer Applications® (IJCA)

28

common XML grammar. WSDL describes four critical pieces

of data [13]:

1. Interface information describing all publicly available

functions

2. Data type information for all message requests and

message responses

3. Binding information about the transport protocol to be

used

4. Address information for locating the specified service

Fig 2: WSDL Document

Figure 2 show structure of typical WSDL document. WSDL

describes a the Web service interface. It consists of messages

that are exchanged between the client and server. The

messages are described abstractly and then bound to a

concrete network protocol and message format. Web service

definitions can be mapped to any implementation language,

platform, object model, or messaging system. WSDL

represents a contract between the service requestor and the

service provider, in much the same way that a Java interface

represents a contract between client code and the actual Java

object. The crucial difference is that WSDL is platform- and

language-independent and is used primarily to describe SOAP

services [9]. Using WSDL, a client can locate a web service

and invoke any of its publicly available functions. With

WSDL-aware tools, one can also automate this process,

enabling applications to easily integrate new services with

little or no manual code. WSDL therefore represents a

cornerstone of the web service architecture, because it

provides a common language for describing services and a

platform for automatically integrating those services [16].

2. WSDL2WS ARCHITECTURE
This paper introduces the application framework, WSDL2WS,

for SOA. This framework is WSDL-centric. Using

WSDL2WS we can develop web services which can be used

as components within SOA. WSDL2WS can be used to map

existing Java applications into an SOA framework. Using

Java Web Services (JWS) standards we designed a framework

that facilitates WSDL-centric construction of Web Services.

Using WSDL2WS, a Web service can be created by building

its WSDL and annotating that WSDL document with

references to the Java elements that implement it. WSDL-

centric approach is perfect for situations where thesre is need

to create Web services that integrate into a standard corporate

or eBusiness framework [15][16]. We designed this

application framework to support service orientation for Java

applications.

Fig 3: Server side architecture of WSDL2WS

WSDL2WS is designed to run inside a Java EE container and

to leverage the Web Services infrastructure provided by JAX-

WS, JAXB, WS-Metadata, and WSEE. WSEE defines the

programming model and run-time behavior of Web Services

in the Java EE container.Unlike Apache Axis [1] and other

standalone Web Services server solutions, WSDL2WS does

not replace the internal Web Services capabilities of the Java

application server, but enhances them. Figure 3 explain basic

WSDL2WS architecture. WSDL2WS is deployed as a Web

module (WAR). WSDL2WS is packaged as a port component

implementing the JAX-WS Provider interface [4] and

therefore can be deployed as a servlet endpoint. In this

manner WSDL2WS is built on top of the JAX-WS

implementation provided by the Java EE container [6].

WSDL2WS also takes advantage of WSEE and WS-Metadata

for packaging and deployment, and JAXB for serialization.

Serialization is the process of transforming an instance of a

Java class into an XML element. The inverse process,

transforming an XML element into an instance of a Java class,

is called deserialization. Because it is built on these portable

technologies, WSDL2WS can be deployed and run on any

Java application server that supports Java EE .

As shown in Figure 3, WSDL2WS binds Web services to

endpoints. Each endpoint published by WSDL2WS has an

associated URL where SOAP requests can be posted. A

definition

Binding

Service

port

type

message

type

portType

Input
output

International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

 Proceedings published in International Journal of Computer Applications® (IJCA)

29

WSDL document is also associated with an endpoint to

describe the Web services available at that URL. Endpoints

are dynamically configured and can be created and removed at

runtime. There is no need to undeploy the WSDL2WS

module, or restart the Java EE server, in order to create,

change, or delete an endpoint. WSDL2WS can receive SOAP

requests at any of the endpoints that have been configured by

the user [9]. When WSDL2WS receives a SOAP request at a

configured endpoint, it invokes all the components of the Web

Services Platform Architecture to process that request: the

deployment unit, the invocation unit, and the serialization

unit. The deployment unit determines which Java class and

method to invoke—based on the structure of the SOAP

request and how the endpoint has been configured.

The invocation unit invokes the proper class and method,

using the serialization unit to translate between XML and Java

objects. Let us understand how WSDL2WS is configured to

publish its endpoints. Figure 4 shows the configuration

process.

Fig 4: WSDL2WS configuration

An endpoint is configured using a WSDL/Java mapping. The

set of WSDL/Java mappings that is used to configure

WSDL2WS is called the WSDL2WS Configuration. Each

WSDL/Java mapping defines pairings of Java class/methods

with wsdl:operation instances from a particular wsdl:port

defined in a WSDL document. The Java class/method

associated with a wsdl:operation gets invoked when a SOAP

message is received that references that wsdl:operation.

Configuration of WSDL2WS also requires a Serialization

Context. The Serialization Context is a set of type mapping

rules. Each type mapping rule tells WSDL2WS how to either

(i) serialize instances of a particular Java class to instances of

a particular XML type; or (ii) deserialize instances of a

particular XML type into instances of a particular Java class.

The serialization unit uses this Serialization Context to

deserialize SOAP parameters into Java parameters, and to

serialize the Java return type instance into a SOAP parameter

[9]. The type mapping rules are written in a declarative XML

language defined by the Adaptive Serialization Framework.

The WSDL2WS invocation unit manages the sequence of

events from receiving the SOAP request, to dispatching it to

the correct Java class/method, to invoking the serialization

unit. Next sections describe in detail how WSDL2WS is

implemented.

3. WSDL-CENTRIC DEVELOPMENT
As discussed in Section 2, WSDL2WS is configured using an

WSDL2WS Configuration file. We construct a Web service

by creating its WSDL via the WSDL2WS Configuration. The

structure of the WSDL2WS Configuration file is same as the

WSDL structure.

The core components of an WSDL2WS Configuration file are

the W2WOperation elements. Such operation elements define

a mapping from a Java class/method to a wsdl:port and

wsdl:operation. The wsdl:operation is specified by the

operationName attribute. The wsdl:port is defined by the

surrounding W2WPort element [11][14]. The W2WOperation

elements are grouped under W2WPort elements to define a

wsdl:port. Hence, WSDL2WS can create a wsdl:port using a

variety of Java classes and methods. This is more flexible than

the JWS model, where all the operations on a single wsdl:port

must be implemented by methods from the same Java class.

4. Invocation Unit
The invocation unit is responsible for receiving SOAP

messages. As implemented in WSDL2WS, the invocation unit

is responsible for:

1. Receiving a SOAP message

2. Determining the message’s target service—i.e., which

WSDL operation is the message intended to invoke Given the

target WSDL operation, dispatching the message to the

correct Java class/method to invoke

4. Handing off the SOAP message to the Serialization unit to

deserialize it into Java objects that can be passed to the Java

target as parameters

5. Invoking the Java target using the parameters generated by

the Serialization unit and getting the Java object returned by

the target method

6. Handing off the returned object to the Serialization unit to

serialize it into an XML element conformant with the return

message specified by the target WSDL operation

7. Wrapping the returned XML element as a SOAP message

response conforming to the target WSDL operation and, if an

exception has occurred, mapping it to a SOAP Fault that will

be the response

8. Sending the SOAP response

Figure 5 provides a static class UML diagram showing the

highlevel implementation of the WSDL2WS invocation unit.

SOAP requests are first received by the W2WDispatcher. The

W2WDispatcher is an HttpServlet that simply provides a base

context root for all WSDL2WS endpoints managed within a

single WSDL2WS configuration. For each SOAP request

received, the W2WProvider instantiates a

RequestController—the class that handles WSDL2WS request

processing. The RequestController contains an

InputDataProcessor instance for processing the SOAP request

and creating an instance of WSRequest—the WSDL2WS

internal representation of a SOAP request message and its

context. In addition, the RequestController contains a

FlowInterpreter instance, which is responsible for

instantiating the appropriate WSDL2WS operation (i.e.,

dispatching), invoking it, and creating a WSResponse instance

to contain the results.

International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

 Proceedings published in International Journal of Computer Applications® (IJCA)

30

Fig 5: Invocation process used in WSDL2WS

WSResponse is the WSDL2WS internal representation of a

SOAP response message. As shown in Figure 5, the

RequestOperation (an abstract class) has two subclasses:

ServiceRequest-Operation and WsdlRequestOperation. That

is because this invocation unit handles WSDL requests and

SOAP requests. WSDL2WS follows the convention that

HTTP GET requests posted to the endpoint suffixed with

“?wsdl” result in HTTP responses containing the target

WSDL. Figure 6 shows the high-level structure of the

WSRequest and WSResponseclasses. Focusing on

WSRequest first, notice that it has two subclasses:

WsdlRequest for encapsulating a request for the WSDL

document, and ServiceRequest for encapsulating a SOAP

request posted to a Web service endpoint. In addition, the

WSRequest contains a reference to the W2WConfiguration.

The ServiceRequest contains the XML parameters—the

children of the wrapper element in the SOAP request body.

These will be deserialized to become the Java parameters used

to invoke the method that implements the target service. In

addition, the ServiceRequest class contains the

operationName (the wrapper element’s name) and the

endpoint (from the HTTP request headers) in order to dispatch

the request.

Similarly, the WSResponse class has two subclasses:

WsdlResponse and ServiceResponse. In this case, the

ServiceResponse has, at most, one XmlParameter—the

serialized instance of the return type produced by the target

Java class/method. The WsdlResponse contains the

WSDL2WS-generated WSDL.

Fig. 6: The WSRequest/WSResponse structures

Fig 7: ServiceRequestOperation creates a ServiceInvoker

that invokes the W2WOperation.

Figure 7 shows the class structure, related to

ServiceRequestOperation, that handles the processing of the

ServiceRequest (WSRequest) to invoke a Web service. As

shown in Figure 7, the perform() method implements

invocation using locally created instances of W2WOperation

and ServiceInvoker. W2WOperation is created from the

WSDL2WS configuration file information accessed through

the ServiceRequest. It is an encapsulation of the Java

class/method to be invoked.

5. SERIALIZATION UNIT
It is very difficult to deploy existing Java classes against an

existing schema. With JAXB 2.0 and JAX-WS 2.0 [4], We

basically get WSDL based on the schema JAXB 2.0 generates

from classes and annotations. Annotations are not a good way

to implement such type mappings because of their following

limitations:

International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

 Proceedings published in International Journal of Computer Applications® (IJCA)

31

1. To change a type mapping, one need to edit the source,

recompile, and redeploy.

2. Annotations are a very unintuitive way to create type

mappings. We need to keep regenerating the resulting schema

(via JAXB), and try to see whether we can “come close” to

the target schema. This approach reduces performance.

3. Many type mappings are impossible to generate with JAXB

annotations.

4. Good design practice show that a mapping layer should

insulate the XML (WSDL) representation of Web services

from the Java implementation. JAXB annotations, although

convenient, destroy that mapping layer inside the Java source

code. This makes it difficult to understand and maintain.

6. COMPARISON OF WSDL2WS WITH

 OTHER FRAMEWORKS

We have tested the performance of WSDL2WS application

framework with other such as Apache Axis 1.1 and Apache

Axis 2.0 and Eclipse IDE. Our experiment show that using

WSDL2WS application framework which is based on

Contract first give better performance than the mentioned

framworks.

Table 1. Comparison of different Application Frameworks

 Time required to get response from Web

service in msec

Web

Service

Apache Axis 1

with Eclipse

Apache Axis 2

with Eclipse

Using

WSDL2WS

Application

Framework

Hello

World

250 346 156

Adder 367 487 202

Experiment were performed using Dell Inspiron Laptop with

Intel Core 2 Duo CPU, Physical Memory 4 GB, Processor

Speed 2 GHz with Windows XP OS. We used JWS, J2EE,

Eclipse, Apache Axis and Tomcat 6 server and GlassFish. We

developed Hello World and Adder Web service which add

two integers. Results are shown in Table 1 and graphically in

Figure. 8.

Fig 8: Comparison of different Application frameworks

7. CONCLUSIONS
We developed the application framework WSDL2WS which

is used for developing Web services. Using Java Web

Services technology the application framework WSDL2WS

was developed. Web services are used for developing SOA

based application. Different contemporary SOA

characteristics are observed in the process of developing Web

services. Using WSDL2WS framework, leveraging the power

of JWS, we can efficiently develope Java applications in a

contemporary SOA. We have tested the performance of

WSDL2WS application framework with other such as Apache

Axis 1.1 and Apache Axis 2.0. Our experiment show that

using WSDL2WS application framework which is based on

Contract first give better performance than the mentioned

framworks.

8. FUTURE WORK
Currently, WSDL2WS handles only SOAP over HTTP. We

need to extend it to handle other transport protocols, such as

JMS. The framework need to be tested for bigger Web

services.

9. ACKNOWLEDGMENTS
We wish to thanks to teachers of Department of Computer

Science, Shivaji University, Kolhapur and Principal of Thakur

College of Science and Commerce, Mumbai for motivating us

for this research work.

10. REFERENCES
[1] Apache Axis 2.x., http://ws.apache.org/axis2

[2] Ben Shil, A.; Ben Ahmed, M.; Additional Functionalities

to SOAP, WSDL and UDDI for a Better Web Services'

Administration, 2nd International Conference on

Information and Communication Technologies, 2006.

ICTTA '06. Volume : 1, pp: 572 - 577

[3] Crockford D. “The application/json Media Type for

JavaScript Object Notation (JSON).” The Internet

Engineering Task Force (Network Working Group)

RFC-4627, July 2006, http://tools.ietf.org/html/rfc4627

International Conference & Workshop on Recent Trends in Technology, (TCET) 2012

 Proceedings published in International Journal of Computer Applications® (IJCA)

32

[4] Eckstein, and Robert Rajiv Mordani. “Introducing JAX-

WS 2.0 with the Java SE 6 Platform, Part 2,” November

2006.http://java.sun.com/developer/technicalArticles/J2S

E/jax_ws_2_pt2/Monson-Haefel, Richard. J2EE Web

Services. Addison-Wesley Professional, ISBN

0130655678, October 2003.

[5] Haidar, A. N.; Abdallah, A. E.; Abstractions of Web

Services, 14th IEEE International Conference

on Engineering of Complex Computer Systems, 2009,

pp: 182 - 191

[6] Jen-Yao Chung; An industry view on service-oriented

architecture and Web services, IEEE International

Workshop on Service-Oriented System Engineering,

2005. SOSE 2005. pp:59

[7] Sandy Carter, “The New Language of Business: SOA &

Web 2.0”, IBM Press, 2007

[8] Siblini, R.; Mansour, N.; Testing Web services, The 3rd

ACS/IEEE International Conference on Computer

Systems and Applications, 2005. pp: 135

[9] SOAP Version 1.2 Part 0: Primer. W3C

Recommendation, June 24 2003,

www.w3.org/TR/soap12-part0

[10] Thomas Erl, “Service-Oriented Architecture: Concepts,

Technology, and Design”, Pearson Education, Inc., 2007.

[11] Tsai, W.T.; Paul, R.; Yamin Wang; Chun Fan; Dong

Wang; Extending WSDL to facilitate Web services

testing, Proceedings of 7th IEEE International

Symposium on High Assurance Systems Engineering,

2002, pp: 171 - 172

[12] Walmsley, Priscilla. Definitive XML Schema. Prentice-

Hall PTR, ISBN 0321146182, December 2001.

[13] Web Services Description Language (WSDL) 1.1. W3C

Note, March 15, 2001, www.w3.org/TR/wsdl

[14] Web Services Addressing 1.0—Core. W3C

Recommendation, May 9, 2006, www.w3.org/TR/ws-

addr-core/

[15] Web Services Description Language (WSDL) Version

2.0 Part 1: Core Language. W3C Working Draft, August

3, 2005. www.w3.org/TR/wsdl20/

[16] Web Services Description Language (WSDL) Version

2.0 Part 2: Adjuncts. W3C Working Draft, August 3,

2005. www.w3.org/TR/wsdl20-adjuncts

http://java.sun.com/developer/technicalArticles/J2SE/jax_ws_2_pt2/
http://java.sun.com/developer/technicalArticles/J2SE/jax_ws_2_pt2/
http://java.sun.com/developer/technicalArticles/J2SE/jax_ws_2_pt2/
http://www.w3.org/TR/soap12-part0

