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ABSTRACT 

Fractional-order (FO) systems are a special subset of  linear 

time-invariant (LTI)  systems. The  transfer functions 

(TFs) of these  systems  are  rational  functions  with  

polynomials of rational powers  of the  Laplace  variable 

‘s’.  FO systems are of interest for both controller design and  

modelling  purpose. It has been shown that  FOPID  

controller  gives better  response as compared to integer-

order(IO) controllers. FO systems provide the accurate 

models for many real systems. The stability analysis of  FO  

systems,  which  is  quite  different  from  that  of  integer- 

order(IO)  systems  analysis,  is  the  main   focus  of  this  

paper. Stability is defined using Riemann surface because 

of their multi- valued nature of the FO transfer functions 

(FOTFs). In this paper, various approaches viz., time 

domain analysis, frequency domain analysis, state space 

representation are discussed. Both the types of FO systems, 

with commensurate and  incommensurate TFs, are 

discussed. 

Keywords 
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1. INTRODUCTION 
The mathematical modelling of FO systems and processes, 

based on the description of their properties in terms of frac- 

tional derivatives (FDs), leads to differential equations of in- 

volving FDs that must be analyzed. These are generally termed 

as Fractional Differential Equations (FDEs). The advantages 

of fractional calculus have been described and pointed out in 

the last few decades by many authors in [1], [2], [3], [8], 

[9], [24]. The latest and very exhaustive literature survey 

about the FC and FO systems is given in [17]. It has been 

shown that the FO models of real systems (especially 

distributed parameter type and memory type) are more 

adequate than the usually used IO models. 

Fractional derivatives (FDs) provide an excellent instrument 

for the description of memory and hereditary properties 

of various materials and processes. This is the main 

advantage models, which possess limited memory. The 

advantages of FDs become apparent in applications including 

modelling of damping behaviour of visco-elastic materials, 

cell diffusion processes [8], transmission of signals through 

strong magnetic fields, modelling mechanical and electrical 

properties of real materials, as well as in the description of 

rheological properties of rocks, and in many other fields 

[25]. 

In feedback control, by introducing proportional, integral and 

derivative control actions of the form sα, 1/sα,             

αR+, we can achieve more satisfactory compromises 

between positive and negative effects, and combining the 

actions we could develop more powerful and flexible design 

methods to satisfy the controlled system specifications. 

Studies have shown that an FO controller can provide better 

performance than integer order (IO) controller and leads to 

more robust control in many practical applications. 

The  rest  of  the  paper  is  organised  as  follows  :  Section 2 

and 3 give special functions and definitions of fractional 

calculus theory. Section 4 describes the stability analysis of 

fractional-order systems, Section 5 explains the 

representations of fractional-order systems and in Section 6 

analytical results of two examples with the conclusion in 

Section 7. 

2. SPECIAL FUNCTIONS OF 

FRACTIONAL CALCULUS  (FC) 
Some special functions need to be used in FC.   

2.1  Gamma Function 
One of the most basic functions of FC is Euler’s gamma 

function  Γ(z),  which  generalizes  the  factorial  function  z! 

and  allows  z  to  take  also  non-integer  and  even  complex 

values. The gamma function (Γ(z))  is given by the following 

expression,   





0

1)( duuez zu
                                         (1) 

Note that when zZ+  we have Γ(z + 1) = z! 

2.2 Mittag-Leffler Function 

The exponential function ez  plays a very important role 

in the theory of integer order differential equations. Its 1 

parameter generalization function for a complex number z is 

given by, 
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,                                        (2) 

The 2 parameter function of the ML function, which 

is also important in FC is defined as, 
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(3) 

This basic definition is very useful in deriving the 

response of an FO system to any forcing function, for 

example, step response, ramp response. 
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3. DEFINITIONS FOR FRACTIONAL-

DIFFERINTEGRALS 
The three equivalent definitions most frequently used for the 

general fractional derivatives (FD) are the Grunwald-Letnikov 

(GL) definition, the Riemann- Liouville and the Caputo def- 

inition [10]. In all the definitions below, the function f (t) 

is assumed to be sufficiently smooth and locally integrable. 

1)  The  Grunwald-Letnikov definition  using Podlubny’s 

limited memory principle [4] is given by 
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where [.] means the integer part. 

 

2)  The  Riemann-Liouville definition  obtained using the 

Riemann-Liouville integral is given as, 
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for (n − 1 < α < n) and Γ(.) is the Gamma function. 

3)  The Caputo  definition  can be written as, 
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for (n − 1 < r < n),  where f n (τ )  is the nth -order 

derivative of the function f (t). Since we deal with causal 

systems in control theory, the lower limit is fixed at 0a . 

We see that the Caputo definition is more restrictive than the 

RL. Nevertheless, it is preferred by engineers and physicists 

because the FDEs with Caputo derivatives have the same 

initial conditions as that for the IODEs. Note that the FDs 

calculated using these 3 definitions coincide for an initially 

relaxed function (i.e. 0)0( tf ). 

4. STABILITY OF FRACTIONAL-

ORDER (FO)  SYSTEMS 
The stability analysis is important in control theory. Re- 

cently,  there has been some advances  in  control theory 

of fractional differential systems for stability. In the FO 

systems the delay differential equation order is non-integer 

which makes it difficult to evaluate the stability by simply 

examining its  characteristic equation or  by finding its  

dominant roots or by using other algebraic methods. The 

stability of FO systems using polynomial criteria (e.g., 

Routh’s or Jury’s type) is not possible due to the fractional 

powers. A generalization of the Routh-Hurwitz criterion 

used for stability analysis for fractional-order systems is 

presented in [12]. However, this metho d  is  very  

complicated. Thus  there  remain  only geometrical methods 

of complex analysis based on the argument principle (e.g; 

Nyquist type) which can be used for the stability check  in  the  

BIBO  sense  (bounded-input bounded-output). These  are 

the techniques that inform about the number of 

singularities of the function within a rectifiable curve by 

observing the evolution of the function’s argument 

through this curve. Root locus is another geometric method 

that can be used for analysis for FO systems. Also, for linear 

fractional differential systems of finite dimensions in state-

space form, stability can be investigated. The stability of a 

linear fractional differential equation either by transforming 

the s -plane to the F -plane )( sF  or to the w -

plane )( 1 vsw  , is explained in [13]. The robust stability 

analysis of a Fractional Order Interval Polynomial (FOIP) 

family is presented in [15] and [16]. 

4.1 Stability using Riemann surfaces 
In a general way, the study of the stability of FO systems 

can be carried out by studying the solutions of the differential 

equations that characterize them. To carry out this study it 

is necessary to remember that a function of the type 

01

01 ...
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with 
Ri , is a  multivalued  function of  the  complex 

variable s  whose domain can be seen as a Riemann 

surface of  a  number  of  sheets.  The  principal  sheet  is  

defined by    )arg( s .  In the  case  of  

Qi , that is, v/1 , v  being a positive integer, 

the v  sheets of the Riemann surface are determined by, 

jess  ,        ,)32()12(   kk        (8) 

2,...,0,1  vk  

Correspondingly, the case of 1k  is the principal 

sheet. For the conformal mapping (transformation) 
sw  , these sheets become the regions of the plane 

w defined by : 

jeww  ,    ,)32()12(   kk   (9) 

Thus,  an equation of the type (7) which in general is 

not a polynomial, will have an infinite number of roots, 

among which only a finite number of roots will be on the 

principal sheet of the Riemann surface. It can be said that the 

roots which are in the secondary sheets of the Riemann 

surface are related to solutions that are always monotonically 

decreasing functions (they go to zero without oscillations 

when t → ∞) and only the roots that are in the principal sheet 

of the Rie- mann surface are responsible for a different 

dynamics: damped oscillation,  oscillation of  constant 

amplitude, oscillation of increasing amplitude. For the case 

of commensurate-order systems, whose characteristic 

equation is a polynomial of the complex variable 
sw   

the stability condition is expressed as, 

2
)arg(


iw ,                                                      (10) 

where iw   are the roots of the characteristic polynomial in 

w . For the particular case of 1  the well known 

stability condition for linear time-invariant systems of integer-
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order is recovered: 

2
)arg(


iw .                                                          (11) 

4.2  Frequency Response - Bode Plot 
In general, the frequency response has to be obtained by the 

direct evaluation of the irrational-order transfer function of the 

FO system along the imaginary axis for js  , 

),0(   [6].  The frequency response can be obtained by 

the addition of the individual contributions of the terms of 

order  resulting, 
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where kz   and k    are the zeros and poles respectively. For 

each of these term the magnitude plot will have a slope which 

starts at zero and tends to 20 dB/dec,  and the phase plot 

will go from 0 to 2/ . 

4.3 Root Locus 
The closed loop stability can be determined using root locus. It 

can be used to obtain the values of gain, k  at which the 

closed loop system may be stable and become unstable for 

which values of gain, k . Thus stability is obtained as a 

function of gain. The locus of roots of the characteristic 

equation as k varies is obtained. An algorithm for the 

calculation of the root locus of fractional linear systems is 

presented in [14]. 

5. REPRESENTATION OF 

FRACTIONAL-ORDER SYSTEMS 

5.1 Laplace Transform 
In system theory the analysis of dynamical behaviors is of- 

ten made by means of transfer functions. With this in view, the 

introduction of the Laplace transform (LT) of non integer order 

derivatives is necessary for an optimal study. Fortunately, not 

very big differences can be found with respect to the classical 

case, confirming the utility of this mathematical tool even for 

fractional systems [10]. Inverse Laplace transformation (ILT) 

is also useful for time domain representation of systems for 

which only the frequency response is known. The most general 

formula is the following: 
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Eq.(13)  is  very  useful  in  order  to  calculate  the  inverse 

Laplace transform of elementary transfer functions, such 

as non integer order integrators 
ms/1 . 

 

5.2 State-space Representation 
For linear fractional differential systems of finite dimensions in 

state-space form, stability is investigated [6]. Consider the 

commensurate-order TF defined as, 
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where 1na ,  nm  . 

Associated with this TF, canonical state-space representa tions 

can be proposed, which are similar to the classical ones 

developed for IODE systems. 

Controllable   Canonical  Form  :   Defining the 

first state in terms of its Laplace transform as, 
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and the remaining elements of the state vector in a 

recursive away from this one as 

ii xDx 1 ,    1,..,2,1  ni                               (16) 

the state representation, expressed in the controllable canonical 

form, is given by the matrix equations 

,BuAxxD 
               (17) 

where 
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Controllability criterion is that the system is controllable 

if and only if matrix C  defined by Eq.(18), which is 

called as controllable matrix is full-rank. Rearranging the 

above FO state equations, the observable canonical form can 

be obtained with  the  matrices A,  B  and  C  matrices. The 

observability condition is also same as for integer-order LTI 

systems. 

6. ANALYTICAL RESULTS OF 

FRACTIONAL-ORDER SYSTEMS 

Some FO systems are analyzed in this section. Their sta- 

bility, step response, frequency response, and the SS 

representation is discussed. The analysis is done using 

MATLAB [20]. The standard commercially available 

simulation softwares cannot be used for evaluating the step, 

ramp, frequency response of the FO systems. Recently, in 

MATLAB two toolboxes dedicated to FO systems are 

available. They are CRONE [19] and NINTEGER toolbox 

[18]. 

6.1 Example 1 
Consider the FO integrator system with TF of the form, 

s
sF

1
)(   .                                                          (19) 

Initial Analysis of the System: For the FO integrator 

if 5.0 , then consider 
5.0sw  , hence 

w
wF

1
)(

~
  

The system with the above function has one open-loop 

pole at origin. The Riemann surface of the function 
vsw 1   has two Riemann sheets. 

Now if 5.1 , and consider 
5.0sw  , then 

3

1
)(

~

w
wF   

The system with the above TF has three open-loop poles at 

origin. 

Step Response:  The system transfer function is, 

ssU

sY 1
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Consider step input, ssU 1)(  , 

1

11
)(




 sss
sY .        (21) 

Taking inverse Laplace transform of the equation we get 

.
)1(

)(





t
ty         (22) 

The fig.(1) shows the step response of the system for α  
= 0.1, 0.5, 0.8, 1 and 1.5. 

 

Fig. 1.    Step response of Example (1) 

 

Frequency Response: Put s = jω in the system function 

given  by  Eq.(19)  we  can  plot  the  magnitude  and  phase 

plots. The magnitude and phase plot of the system for α  = 

0.1, 0.5, 0.8, and 1 is plotted as shown in the fig.(2). From the 

above response we can conclude that: 

1)  The magnitude has a constant slope of  −20α 

dB/decade. 

2)  The phase plot is a horizontal line at −απ/2. 

 

Fig. 2.    Frequency response of Example (1) for 

different values of α 
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6.2 Example 2 
Consider the incommensurate system given by the 
following 

transfer function [6] [7] 

15.08.0

1
)(

9.02..2 


ss
sF .        (23) 

Initial Analysis of the System: The system given 

in the equation can be written as 

15.08.0

1
)(

9)
10

1
(22)

10

1
(





ss

sF .        (24) 

Consider w = s1/10 , the system has 10 Riemann sheets. 

15.08.0

1
)(

~
922 


ww

wF .         (25) 

The open-loop poles and their appropriate arguments of the 

system are shown in table I.   Physical significant roots 

are in  the  first Riemann sheet, which is  expressed  by  

relation vv //   , where )arg(w .   

 

In  this example complex conjugate roots in first Riemann 

sheet are ,1684.00045.122,21 jw   

1661.0)arg( 22,21 w , which   satisfy conditions 

20/2/)arg( 22,21   vw  is  as  shown  in Pole-

zero plot shown in fig.(3).  

Table1: Open loop poles and corresponding arguments 

Open-loop  Poles Arguments  in radians 
w1,2  = −0.9970 ± 0.1182j 
 
 
 

|arg(w1,2 )| = 3.023 

w3,4  = −0.9297 ± 0.4414j |arg(w3,4 )| = 2.698 

w5,6  = −0.7465 ± 0.6420j |arg(w5,6 )| = 2.431 

w7,8  = −0.5661 ± 0.8633j |arg(w7,8 )| = 2.151 

w9,10  = −0.259 ± 0.9625j |arg(w9,10 )| = 1.834 

w11,12  = −0.0254 ± 1.0111j |arg(w11,12 )| = 1.595 

w13,14  = 0.3080 ± 0.9772j |arg(w11,12 )| = 1.265 

w15,16  = 0.5243 ± 0.8359j |arg(w15,16 )| = 1.010 

w17,18  = 0.7793 ± 0.6795j |arg(w17,18 )| = 0.717 

w19,20  = 0.9084 ± 0.3960j |arg(w19,20 )| = 0.411 

w21,22  = 1.0045 ± 0.1684j |arg(w21,22 )| = 0.1661 
 

 

Fig. 3.    Pole-zero plot of Example (2) 

 

The roots in first Reimann sheet satisfy the stability 

criteria, hence the system is stable. Other roots of the system 

lie  in  region  v/   which  are  not  physical  

(outside of  the  closed  angular  sector  limited  by  the  

thick  line  in the fig.(3). The first Riemann sheet is 

transformed from s plane to w - plane as follows:  

10/)arg(10/   w                                          and 

  )arg(10 w .            (26) 

 Therefore from this consideration angle obtained is  

)arg(10)arg( ws  .                      (27) 

Step Response:  The system TF is, 

15.08.0

1

)(

)(
9.02..2 


sssU

sY
 .          (28) 

For step response of the system, ssU 1)(  .  

Calculating the  residues and  poles  by  partial  fractions are 

shown in table II. 

Table2: Open loop poles and corresponding arguments 

Residues Poles 

−0.0264 ± 0.0209i 0.7793 ± 0.6796i 

0.0147 ± 0.0313i −0.5662 ± 0.8633i 

0.0355 ± 0.0079i −0.9298 ± 0.4415i 

−0.0006 ± 0.0391i 0.3080 ± 0.9772i 

−0.0422 ± 0.0068i 1.0045 ± 0.1684i 

−0.0142 ± 0.0447i −0.0254 ± 1.0112i 

0.0467 ± 0.0210i −0.9970 ± 0.1182i 

0.0271 ± 0.0477i −0.2597 ± 0.9625i 

−0.0476 ± 0.0323i 0.9085 ± 0.3960i 

−0.0369 ± 0.0464i 0.5243 ± 0.8360i 

0.0441 ± 0.0409i −0.7466 ± 0.6420i 

 

Using inverse Laplace transform 
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where E  is the special function called as Mittag Leffler 

(ML) function, ir  are the residues and ip are the 

corresponding  poles for 1i  to 22 . To  plot  step  

response  the  use  of  ML  function  code  [21] in MATLAB 

is done. It is concluded that the ML function calculation is 

time consuming and may not give proper results in all the 

cases. In such cases they can also be plotted u sing 

invlap.m subroutine (numerical ILT) [22], [23]. The step 

response plot is plotted as shown in fig.(4). The step 

response shows it gives bounded output for a bounded input. 

Frequency Response:  Put js   in the given 

system function. The magnitude plot and phase plot of the 

system using MATLAB is plotted as shown in the fig.(5). 

State-space Representation: The canonical form of 

the system is obtained as, 

15.08.0

1

)(

)(
9)1.0(22)1.0( 


sssX

sY
.           (30) 

)(25.1)()25.1)(625.0)(( 91.0221.0 sXsYss  . 

                                                                                         (31)  

Consider input  u(t) and taking inverse Laplace transform 

we get, 

)(25.1)(25.1)(625.0)( 9.02.2 tutytyDtyD 
              (32) 

Case 1:  Let   )()( 1 txty       and  

)()( 21

1.0 txtxD                                           (33) 

 

 
Fig. 4.    Step response of Example (2) 

 

 

Fig. 5.    Frequency response of Example (2) 
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The controllable canonical form is therefore given by, 
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Case 2: Let )()( 1 txty  and )()( 21

9.0 txtxD     (36) 

The controllable canonical form is therefore given by, 
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                      (37) 

The controllable matrix of this system is full rank and hence 

the system is controllable. It is also shown that there can 

be no  unique  state  space  representation for  a  fractional-

order system. In the analysis of this incommensurate FO 

system we conclude that the system is stable and its step 

response, states-space representation and frequency response 

have been obtained successfully. 
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7. CONCLUSION 

The fractional order models of real systems are more 

adequate than the usually used integer order models. At the 

same time fractional integrals and derivatives are 

applied to the  theory of control of dynamical systems, 

when the controlled system and/or the controller is described 

by fractional dif- ferential equations. The most important 

features of fractional systems  are  studied  during  the  work.  

They  are  discussed using Bode diagrams, time response, state 

space representation usually adopted for integer order systems 

which allow an easy comparison  among the two  different 

behaviors. The multi- valued function is expressed as single-

valued function by replacing 
vs1  by w and analysis is 

done. Also it is  shown that there can be no unique state 

space  representation  for a fractional-order system. 
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