
International Journal of Computer Applications (0975 – 8887)

International Conference on ICT for Healthcare(ICTHC-2015)

25

Enhancing Relevancy of Search Engine using Schema

Matching Techniques

Sumit Jain
ATC Indore

Sanjay Tanwani
SCSIT Indore

NitikaDohan
MITM Indore

ABSTRACT

We are living in the age of global interconnectivity where

Internetand related communication technology reign supreme

and has taken aplace of basic necessity in business as well as

daily routine. Thisinterconnectivity is enhanced extremely

with the help of SearchEngine. Tools of Search Engine enable

us to find information on theweb database rapidly. On the

other hand this rapidity of informationavailability has not

been relevant to actual user need. There have beencontinuous

efforts to find relevant contents accurately but still theyare far

from satisfactory. Therefore there is a need to design efficient

and optimum Search Engine to surmount this problem of

relevancy.

In this paper, we are proposing few novel methods to enhance

SearchEngine relevancy in terms of user query. The key aim

is to addressand resolve issues that crops up in search

outcomes.Existing Schema matching technique identify

meaningful documentand their essential features for document

selection. It helps inreducing the amount of user efforts.

Several matching techniques areused currently for improving

the search. Still the results obtainedfrom these matching

techniques are far from perfect. So in this paperwe are

proposing more efficient schema matching technique

namedInstance Based Schema Matching for enhancing the

search result.

This Instance based schema matching is having an automatic

approach to find the name of schema elements, the structure

of theschema and formal ontology to improve the search

outcomes byretrieving accurate data from web databases. In

order to implementSchema Matching Technique for

unstructured data requires WrapperGeneration process. This

process is used to obtain common format ofdata from

different source. It also implements a query engine

whichextracts the user query relevance data from target data

source. Toobtain accurate and relevant information out of the

raised query thereis a need to bring result that displays the list

of matched documents.

Keywords
Wrapper Generation, Query Engine, Formal Ontology

1. INTRODUCTION
The problem of accurate data extraction on World Wide Web

has gained significant attention in recent years. With the

advent of World Wide Web a new platform for sharing

information has emerged. This has led to unprecedented level

of information available at one‟s disposal. But shift from

under availability of information to overloading of

information has brought its own problem. Availability of

huge database of information has also created a necessity to

develop a tool for sifting and managing this information

efficiently. Inrecent years, variousintelligentsmarttoolshave

been developedforinformationretrieval. Thesesmarttools are

able to find more userquery relevantdata thatencouragesthe

listingofa particular typeofdata. Searchengineis one ofthe

smarttools to explore many researchareasandto

performsearchona large numberof data sources. Though it

helps in retrieval of information but still it lacks in accuracy.

Existing Search system has been implementedwiththree

differentmodules.

In the Fig 1 shows the architecture of existing search system.

Input query is fire on the query interface. It is an interface

where user can express his requirements in the form of input

query and this query is submitted on the web database.

Fig-1 Existing System Architecture of Search Engine

In searchmethodology, the systemis recognizingthe

inputqueryandthen after a separate methodology will perform

search operation on the available data.The search results

generate by the search engine which are sorted or ranked for

providing the query relevant data to the end user [7][3]. On

the other hand sometimes it will return a few irrelevant results

that may be caused by insufficient query and semantic gap

between query keywords and database available knowledge.

Existing Schema Matching techniques overcome these issues

by applying appropriate technique, which bridges the

semantic gap between user query and database knowledge.

Instance Based Schema Matching is more efficient method of

Schema Matching which enhances search outcome and

provides more accurate result [1].

Fig 2: Proposed Architecture of SM

In this work [2][4], we proposed a novel instance-based

schema matching approach is based on three observations

about web database. The availability of data in web domain is

found in both the formats structured as well as unstructured.

Thus the entire implementation of the system is given in two

major modules first for data search using the unstructured data

format and using the structured formats. In this paper the data

search using the unstructured data base is presented.

In the Fig 2describes how the structured data and unstructured

data is processed using the proposed architecture. That

includes Wrapper Generation, Query Engine and Schema

Mapping. In this given system, initially user will write down

input query on its query interface then the qualified input

elements are located by an element identification component.

After query submission on the Query interface, the result set

is collected from heterogeneous format. In wrapper generation

International Journal of Computer Applications (0975 – 8887)

International Conference on ICT for Healthcare(ICTHC-2015)

26

[8], heterogeneous information from web pages is collected

and then create a general model that can be recognized easily

in common schema format. This common format produces as

input to query engine for query optimization process. In the

query engine, instance-based matchers are implemented

which includes five the component such as Similarity

Matcher, Tokenizer, Formal Ontology, Instance Recognition

Process and Annotation Generation Process. Using all these

operations, search results with semantic meaning are

preserved and eliminate meaningless information. The

combined outcome of the query engine will recognize with

various mapping process. After mapping process, accurate

search results are reported according to end user query.

Our system will use different methodology which works

behind query interface in order to minimize effort of user.

From this hidden methodology which works behind the

interface makes searching tools very easy to learn and use. As

part of our approach, system will mainly focus on detail

design of wrapper generation and the query engine module for

extracting relevant documents from the large databases.

The main contributions of this paper are:

 Introduction of a Wrapper Generation to generate

common format from heterogeneous Web database.

 Introduction of instance-based matchers that includes

five components that is added in Query Engine.

 Benefiting from the above instance-based matchers with

semantic meaning and remove meaningless information.

The rest of paper is organized as follows. In section- 2 we

describe Wrapper Generation. In section-3 Query Engine

Concept.Section-4 Result Combination.In sections-5

Experiment Evaluation. Finally section-6 terminates with

drawing conclusion.

2. WRAPPER GENERATION
Wrapper-generation is the first phase of proposed architecture

of schema matching for heterogeneous Web Database [8][9].

The role of wrapper generation is as shown below in Fig 3.

Fig 3: Role of Wrapper Generation

Wrapper Generation is an intermediate format of data where

all the heterogeneous formats of data are normalized into a

single common format. This common format is essentially

generates for relevant information to a specific domain.

Therefore, at this stage, data is manipulated and grouped

according to their identification in offline environment. In

other words that is a training phase of the search engine where

data is processed and categorized in a specific domain labels.

In this process, all the available data is read first and then

features are computed to recognize the data for long term, and

by which the whole text or web document is represented by a

small amount of data. In order to prepare the document

features two basic parameters namely term frequency and

sentence formation frequency is measured. For approximating

these features the following formulas may helpful.

𝑇𝑓 =
𝑇𝑜𝑡𝑎𝑙𝑤𝑜𝑟𝑑𝑐𝑜𝑢𝑛𝑡

𝑡𝑜𝑡𝑎𝑙𝑤𝑜𝑟𝑑 ∈ 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

And

𝑆𝑓 =
𝑇𝑜𝑡𝑎𝑙𝑠𝑒𝑛𝑡𝑎𝑛𝑐𝑒𝑠𝑤𝑖𝑡ℎ𝑤𝑜𝑟𝑑

𝑡𝑜𝑡𝑎𝑙𝑠𝑒𝑛𝑡𝑎𝑛𝑐𝑒𝑠 ∈ 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

Where the 𝑇𝑓 ∧ 𝑆𝑓 are known as term frequency and sentence

formation frequency. That can be easily understood by the

below given algorithm steps in Fig 4:

Input: D set of documents

Output: relational domain features

Processing:

1. For i=0 to D.length()

2. String S= D[i].tostring();

3. String[] token= S.split(„ ‟);

4. String[] sen=S.split(„.‟);

5. totalCount= token.length()

6. For j=0 to token.length()

7. Tokencount= count(token[j])

8. Tf= Tokencount/ totalCount

9. If sen.contains(token[j])

10. SentenceCount+1;

11. End if

12. End for

13. Sf= SentenceCount/sen.lenth();

14. Return <C, D, Tf, Sf>

Fig 4: Wrapper Generation Algorithm

The following diagram shows the flowchart for Wrapper

Generation Algorithm in Fig 5.

Fig 5: Flowchart for Wrapper Generation Algorithm

The proposed wrapper generation algorithm is described

above. In first phase, the data is read and the most common

words named just like stop words (such as is, am, are, this,

that) are removed. Then term frequency and sentence

formation probability is estimated for unique terms of

document. On the basis of estimated attributes a tuple <C, D,

Tf, Sf> is calculated where C is denoted as the class name on

which the word or token is found, D stands for document

which is represented by the token, Tf and Sfare the current

document‟s word and sentence formation frequencies.

Now the amount of words in a web document is found in a

significant amount, thus the numbers of estimated features are

required to reduce first. Thus only those words are remaining

that having a significant importance in the document,

therefore the constructed tuple is sorted according to the Tf

and Sf. And top 50 tuples with higher Sfare selected.

International Journal of Computer Applications (0975 – 8887)

International Conference on ICT for Healthcare(ICTHC-2015)

27

This can be easily understood by an example suppose we have

a set of document in a directory named “data structure”. Thus

the directory contains a number of documents of subject data

structure. Thus class is data structure which is representing by

C. Now during data processing stop words will be removed

(such as I, we, they and other similar words). Total number of

words in a document is suppose 50 and in this document the

word „Array‟ is occurred thrice then here the term frequency

is (3/50= 0.06). Now if the document contains 20 sentences

and word „Array‟ found twice in a sentences, then the

sentence formation probability of word „Array‟ is (2/20=0.1).

3. QUERY ENGINE

Fig 6: Role of Query Engine

In Fig 6, Query Engine is a part of proposed search engine,

that accepts both ends of data, first from the wrapper of data

and second from the user query to finding the correlation

between query and available resultant data, in order to find the

more accurate and relevant results. Therefore, required to

refine and optimize the user query, because wrong or

ambiguous query results the unexpected outcomes. For this

purpose, we will apply instance based schema matcher which

is added into query engine. Instance based schema matcher

have five components, namely Similarity matcher, Tokenizer,

Formal Ontology, Instance Recognition Processes and

Annotation Generation Process.

3.1 Similarity Matcher
In this process, the similarity matcher is utilized to find the

nearest documents from the available data features. From the

nearest data two different kind of distance are evaluated

namely Euclidian distance and secondly the absolute distance.

Suppose there are two instances of data P and Q

Such that

𝑃 = 𝑝1, 𝑝2, 𝑝3,… , 𝑝𝑛

And

𝑄 = 𝑞1, 𝑞2, 𝑞3,… , 𝑞𝑛

In order to find distance between two data instances P and Q

Euclidian distance

𝐷 𝑃,𝑄 = 𝑝𝑖 − 𝑞𝑖
2

𝑛

𝑖=1

And absolute distance

𝐷 𝑃,𝑄 = 𝑃 − 𝑄

The most relevant text features are estimated using the parsing

of the user query data. Parsing is basically a process where the

input text is converted in number of words. Then after using

these words a number of similar strings are constructed. In

order to describe Similarity Matcher is given using the below

given steps in Fig 7.

Similarity Matcher Algorithm

Input : user query U, extracted features tuple T

Output: similar data list L

Process:

1. Query←readInterface(U)

2. For each feature in T

3. Find 𝑑 𝑥, 𝑦
4. If d(x,y)< 0.5

5. L[i]=document

6. End if

7. End for

8. Return L

Fig 7: Query Engine Algorithm

The following diagram shows the flowchart for Similarity

Matcher Algorithm in Fig 8.

Fig 8: Flowchart for Similarity Matcher Algorithm

In the above given similarity matching algorithm first using

user interface the input text is read as string this string is a set

of words for instance “how to read text”. This query having

four words these words are compared or searched over

extracted feature tuples for that purpose if all these words

found in feature sets then the document can be representing

able with the user query.

3.2 Tokenizer
In the next step the query is processed using the tokenizer,

new sequences are created for finding the suitable query that

represents user query more accurately. In order to describe

Tokenizer algorithm is given using the below given steps in

Fig 9.

Fig 9: TokenizerAlgorithm

TokenizerAlogorithm

Input : user query

Output : number of similar queries Q

Process:

1. Query= User_query.split(“ ”)

2. For i=0 to Query.length()

3. For j=0 to Query.length()

4. Str[]=str + query[I, j]

5. End for

6. End for

7. Return Str

The following diagram shows the flowchart for Tokenizer

Algorithm.

International Journal of Computer Applications (0975 – 8887)

International Conference on ICT for Healthcare(ICTHC-2015)

28

Fig 10: Flowchart for Tokenizer Algorithm

After tokenization n number of new query sequences is

generated from a single instance of query. For instance user

query “how to read text” the read word having different

means in different aspects for instance using a code block of

JAVA, C# or other kind of computer language Or the text

book is written in Chinese or other language. Therefore the

query is extended using synonyms and different aspects of

previous search methodology. That is semantically checked

and meaningless strings are removed from the „str‟ array.

3.3 Formal Ontology
Moreover using formal ontology process the new query

tokens are generated in the step [5][6]. In order to describe

overall process of formal ontology algorithm is given below

steps in Fig 11.

Input : string array with number of query sequences

Output : refined queries

Process:

1. For each query in string[]

2. If is_correct(string[i])==true

3. Temp[i]=string[i];

4. Else

5. Remove(string[i])

6. End if

7. End for

8. Findsynonyms(querytoken)

9. Replaceword(querytoken)

10. Create a list(new generated queries)

Fig 11: Formal Ontology Algorithm

The following diagram shows the flowchart for Formal

Ontology Algorithm in Fig 12.

Fig 12: Flowchart for Tokenizer Algorithm

The above given process can be explained using a simple

scenario suppose the user having a query “how to describe the

formula of frequency paper” that can be also written as “how

to define the formula of occurrence paper” or “how to

designate the formulation of incidence paper” or others. In

this context the last query not having a significant means

semantically. Therefore this query can be removed from the

list of query list using the above given algorithm steps.

3.4 Instance Reorganization Process
After processing the formal ontology steps and preparing the

multiple queries from a single user query. The domain or

subject of query is estimated by the prepared queries and

similar class or subject of documents are explored for finding

the appropriate data from the available data tuples. The

process of instance reorganization process algorithm is

described in the below given steps in Fig 13.

Instance Reorganization Process

Input : refined queries, document features

Output:most relevant document classes

Process:

1. FindUniqueTokens(query_list)

2. For each feature in featurelist

3. If tokensexist(feature list)

4. ExtractClassName and frequency(token)

5. End if

6. End for

7. SortList(frequency)

8. Find top 3 classes where query is satisfied

9. Return classNames

Fig 13: Instance Reorganization Process Algorithm

International Journal of Computer Applications (0975 – 8887)

International Conference on ICT for Healthcare(ICTHC-2015)

29

Fig 14: Instance Reorganization Process Algorithm

Suppose a query “how to describe the formula of frequency

paper” matched with the domain of computer science,

statistics, communication, text processing and the extracted

tokens of match is respectively 12, 15, 18, 3 and 19 then a

sorted listed is prepared 19, 18, 15, 12, and 3 times

respectively. Therefore finally the above block of algorithm

returns the subjects text processing, communication and

statics.

3.5 Annotation Generation Process
Finally the annotation for each instance of data is generated

which are required to align with the similar data instances in

the schema matching for data. Thus in this stage all the

necessary features from the data (offline) is extracted and the

user targeted information is also extracted in terms of query

tokens, refined queries, and the classes which are targeted in

the user query.

4. RESULT COMBINATIONS
The outcome shows the combined approach to remove wrong

matching proposal and improve searching process. These

combined processes are utilized for schema mapping

technique to give accurate result.

5. EXPERIMENTAL EVALUATION
We have implemented search engine using schema matching

techniques. Our experiments are done on a Pentium 4 1.9

GH, 512 MB PC. The experiment is done using J2EE with

HTML-based approaches. A user interface is also developed

for all type of domain website where user enters his query for

search. The output results are given in the form of screenshots

as follows.

Fig 15: Search Page

Fig 16: Search Result Page

6. CONCLUSION
This paper presented instance based Schema Matching, a

system for the automatic creation of accurate result. The

system uses a 2-step for accurate result. In the first step,

wrapper generation process is to obtain common format of

data from different source. Next is query engine, which

extracts the user query relevance data from target data source.

The approach are experimentally evaluated when user fire

query and to obtain accurate and relevant information out of

the raised query.

In the future we plan to utilize combined approach with

schema mapping to remove wrong matching proposal and

improve searching process.

7. REFERENCES
[1] Sumit Jain and Sanjay Tanwani.A Survey of current

Research in Schema Matching Technique.In: IJCA Issue

4, Vol 3 (June 2014)

[2] Sumit Jain and Sanjay Tanwani.Schema Matching

Technique for Heterogeneous Web Database.In Proc. of:

ICRITO 2014

[3] Sumit Jain.Developed a General Schema Matching using

Formal Ontology.CTRJ Vol II & Issue II Dec 2014.

[4] Wang, J., Wen, J. Lochovsky, F.H. and Ma, W. (2004).

Instance-based schema matching for web databases by

domain-specific query probing, In Proceedings of 30th

Intl. Conference on Very Large Data Bases, pp. 408-419,

2004.

[5] Mario AuxilioMeina Nieto, An Overview of Ontologies

(2003)

[6] Do, H.; Rahm, E.: COMA - A system for flexible

combination ofschema matching approaches. In Proc.

28th Int. Conference onVLDB. Springer, 2002; pp. 610-

621

[7] Z. Wu, W. Meng, V. Raghavan, C. Yu, H. He,

H.Qian,R.Vuyyuru. Towards Automatic Incorporation of

SearchEngines intoa Large-Scale Metasearch Engine.

IEEE/WIC WI-2003 Conference,October 2003.

[8] U. Irmak and T. Suel. Interactive wrapper generation

withminimal user effort. Technical Report TR-CIS-2005-

02, PolytechnicUniversity, CIS Department, 2005.

[9] Hongkun Zhao, WeiyiMeng, “Fully Automatic

WrapperGeneration For Search Engines”,ACM,2005

IJCATM : www.ijcaonline.org

