
International Journal of Computer Applications (0975 – 8887)

International Conference on Systems Engineering And Modeling “ICSEM-2013”

29

Quantitative Evaluation of AO based SOA Application for

University Automation using an Experimental TestBed

Dhivya S
PG Scholar

SSN college of Engineering

Chennai, India

Senthil Velan S
Associate Professor

SSN college of Engineering

Chennai, India

ABSTRACT
Service Oriented Architecture (SOA) is a framework for

building information systems by composing web services to

form a business work flow. By introducing Aspect Oriented

Programming in the logic of web service, it is possible to

improve the quality attributes like maintainability, reusability

and evolution. The functionalities modeled through the web

services fuses the implementation of core and cross-cutting

concerns. Business Process Execution Language (BPEL) is

used for the composition of web services and models both

core business logic and crosscutting functionalities. This

paper address the evaluation of AO based SOA application for

an application by using an experimental TestBed. The

application developed for testing purpose is named as

University Automation System. The services needed to model

the application are created and deployed in Axis2 framework.

By introducing Aspect Oriented Programming in the web

services, a case can be made that the process improves the

quality properties of the SOA application. A TestBed is a

platform for conducting experiments on large development

projects and evaluation of concepts using measurements. The

proposed metrics focuses tier on three different tiers of

software namely, core business tier, interface tier and access

tier.

General Terms
Web service, composition, AOP

Keywords
AOP, SOA, BPEL, TestBed.

1. INTRODUCTION
Service Oriented Architecture (SOA) [1] modeled as an

architecture for designing software that provides distributed

web services based solution reflecting the requirements of a

web enabled business application. The goal of SOA is to

make available services to either end user applications or to

other services in the web. The SOA applications are

implemented through the knowledge of web services. The

general characteristics of web services are reusable business

components; which are loosely coupled and also considered as

the building blocks of an SOA application. Web services can

be described, published and invoked over the Internet using

XML-based standards namely WSDL (Web Service

Description Language) which contains description about web

service, SOAP (Simple Object Access Protocol) which allows

switch over of data between different applications and UDDI

(Universal Description Discovery and Integration) is a

registry of web service interfaces described by WSDL.

A typical SOA application development involves designing

software components for reuse and converting realized

software components as web services and for service

consumptions in end user applications. In SOA architecture

model, the functionality is combined and packaged as inter

operable services around business practice. The architecture

also defines the IT infrastructure of a business and allows

different applications to switch over data with one another as

they participate in the business practice. By using web

services Business Process Execution Language (BPEL) is a

used for the definition and execution of business processes. It

allow the top down approach of SOA[2] through composition,

coordination and orchestration of web services.

Aspect Oriented Software Development (AOSD)[3] is a

relatively new methodology to efficiently encapsulate the

functionalities of a software and consequently increasing the

modularity of the software. The methodology is able to

achieve this property by modeling and implementing various

functionalities of software into core and cross-cutting

concerns. Core concerns represent the base functionalities that

addresses the core businesses like customer and account of a

banking application. Cross-cutting concerns are functionalities

that are scattered and tangled across the core business logic.

These include logging, security, concurrency and transaction

management that usually cuts across many other modules of

the software. Aspect Oriented Programming (AOP)[3] is a

programming methodology to encapsulate these cross-cutting

features through well defined unique constructs.

TestBed is an environment containing hardware and

software tools to experiment and evaluate key ideas, methods

and implementation for the application. The TestBed[4],[5]

environment is designed to determine the impact using Aspect

Oriented Software Development (AOSD) methodology for the

development of an AO based application.

2. EXISTING WORK
In the literature survey, TestBed environment to test the

working of a single web service has been proposed and

implemented. To extend there are also proposed framework

for generating TestBed infrastructure for SOA applications.

 Tsai[6] proposed a XML-based Object Oriented

framework to test the web services. They perform

various analysis such as dependency, completeness

and consistency of the web service based

applications.

3. PROBLEM AND SCOPE
Most of the existing work do not address TestBed for AO

based SOA application. There is a need of TestBed to

measure the impact on those application. This research work

International Journal of Computer Applications (0975 – 8887)

International Conference on Systems Engineering And Modeling “ICSEM-2013”

30

was based on creating a AOSD TestBed environment[5],[9]

and to measure the impact on design properties for an AO

based SOA application.

4. SERVICE ORIENTED

ARCHITECTURE (SOA)
Service Oriented Architecture is modeled as an architecture to

enables a designer to efficiently compose network enabled

services resulting in development of SOA based applications.

The Service Oriented Architecture models web services into

three basic components:

 The Service Provider

 The Service Requester

 The Service Registry

The Service provider will publish (or unpublish) the offered

services through the registry. This will enable the service

requester to find the available services by searching the

descriptions available in the service registry. Once the

requester locates the desired service, the client binds with the

identified service that is proposed by the service provider and

invokes the service.

5. BUSINESS PROCESS EXECUTION

LANGUAGE (BPEL)
Business Process Execution Language[2] is a language used

for composing services available in the registry. In a BPEL

process, any party to which the process interacts is called a

partner, they may be the clients that invoke an available

individual or composed service. It can also be a case in which

external services can use this in individual or in their

composition. A link defined to that party is called as partner

link, so that some client can invoke the service. The WS-

BPEL process workflow might look similar to the process

flow shown in Fig 1.

Fig. 1. Sample BPEL process

The basic steps involved in the working model of BPEL

process is as follows,

1) Client invokes the BPEL process by sending a

message.

2) The receive operation copies received data into

variable A.

3) Assign operation crates variable B with data from

variable A.

4) Invoke creates a service request from variable B.

5) Request sent to service by Invoke.

6) Response received by the Invoke.

7) Response message copied to variable C.

8) Assign creates variable D from variable C.

9) Reply creates service reply from variable D.

10) Service response is sent by the sub-process.

BPEL has two types of activities. They are primitive activities

and structured activities. Some of the primitive activities

includes invoke, receive, reply and assign. Some of the

structured activities include sequence, flow, switch, while and

pick.

6. ASPECT ORIENTED SOFTWARE

DEVELOPMENT (AOSD)
Aspect Oriented Software Development is a new

methodology, it aims to address the cross-cutting concerns in

software systems. Aspect Oriented Programming (AOP) [10]

is a methodology that provides mechanisms for separation of

cross-cutting concerns by introducing new constructs for

encapsulating cross-cutting functionalities into modular units

called, aspect. With AOP[3], we can model cross-cutting

concerns as aspects instead of fusing them with the core

modules.

An Aspect Weaver compile the final system by combining the

core and cross-cutting modules through a process called

weaving. AOP addresses the ability to separate concerns at

multi-dimensional level and consequently increasing the

modularity of the software. There are three steps in AOP

methodology.

1. Aspectual decomposition - Decompose the

requirements to identify cross-cutting and core

concerns.

2. Concern implementation - Implementing the core

and cross-cutting concerns independently.

3. Aspectual recomposition - Specifying the

recomposition rules by creating modularization

units, or aspect.

The cross-cutting constructs in the AOP model

consists of two categories Common cross-cutting constructs

and Dynamic cross-cutting constructs. A few common

constructs consisting of

 Joinpoint - the point where the non-primary concern

 cross-cuts the primary functions of the code.

 Pointcut - a program construct that identifies join

points.

 Aspect - the unit of encapsulation for cross-cutting

concerns similar to classes in OOP.

Aspect supports dynamic cross-cutting constructs named as an

advice. Advice are routines that are executed when a joinpoint

is reached in the base code. It can be executed before, after or

around the joinpoint.

7. ASPECT AWARE WEB SERVICE
We introduced aspect in web service to overcome the

problems of tangling and scattering of concerns of a software.

The web services need to be created in Axis2[11] Framework.

Axis2 handles SOAP processing. Some of the identified

requirements of Axis2 are

 Provide a framework to process the SOAP message.

 Ability to deploy a web service.

Receive

Assign

Invoke

Assign

Reply

Client Service

Input

Message

Output

Message

Variable A

Variable B

Variable C

Variable D

Input

Output

International Journal of Computer Applications (0975 – 8887)

International Conference on Systems Engineering And Modeling “ICSEM-2013”

31

 Provide a client API to invoke web service.

The Axis war file is placed in the server. Axis2 is a service

engine for deploying the web services. The Aspect for web

service[12] need to be created separately. The Aspect Weaver,

weave the aspect code into the web service at the run time is

clearly depicted in Fig 2. Then the web service and aspect

embedded web services are deployed by using Axis2. And

they are composed by using BPEL Engine[13].

Fig. 2. Aspect Embedded Web Services

8. EXPERIMENTAL TESTBED
TestBed is an experimental environment designed using

hardware's, software's and tools to implement, execute,

measure and infer on concepts related to technologies and

methodologies. The SOA application services are created

using the Axis framework[11], while some of the services are

composed and deployed in the server. The AO based SOA

application that was developed can be deployed in the

experimental TestBed to infer on the implications of

introducing AO in an SOA application. In this research on

development of an AOSD TestBed environment[5], an

experimental TestBed has been created to measure the impact

on design level properties for a Aspect Oriented SOA

application.

9. SYSTEM ARCHITECTURE
The introduction of Aspect in a web service plays a vital role

in weaving of cross-cutting functionalities with the core

functionalities. Once, the core web services and aspect

embedded web services are created, they are composed to

provide composite functionalities, ie, the core and aspect

embedded web services are composed and interfaces are

published to be used by a client. These services are then

deployed so that the client can invoke the interfaces provided

by the composed service[14]. Further, a TestBed environment

is created to deploy the Aspect Oriented (AO) based SOA

application, and to measure the impact on its design

properties.

Fig. 3. AO Based TestBed Architecture

9.1 Application Scenario
The workflow for implementing this task, is clearly depicted

in Fig 4. The student, who is going to register for the course

will see the course from the course catalog. The schedule for

the courses like timing, venue, and other necessary

information can be obtained from the course schedule. The

students can select and register for the course by specifying

whether the course is counted as credit or only audit. The

registered course can also be dropped until a date specified by

the registration office. Students can also register courses

without credit and considered as audit, to gain knowledge

about the recent developments in a specific domain.

After registering for the course, classes are conducted,

assignments are given to them, and finally they have to take

the final exam. The exam pattern, mark distribution and other

related activities depends upon the rules set by the faculty

handling the course. The exam paper is evaluated by the

faculty, and finally the result will be published on the web. If

the result is success then the credits of the course are added,

or else they need to re-appear for the exam.

The candidate admitted as a student needs to file a original

plan of study one month from the date of starting the program.

During the course the student can submit a revised plan of

Encapsulating

(Cross-cutting

Concern)

Web Service

Web Service

with Aspect

Aspect

Weaver

Aspect Code

TestBed Environment

Web

Service

A

Web

Service B

Web

Service

C

Web

Service D

Composition

Using BPEL

Deployment Using

Axis Framework

Measuring Using Metrics

Encapsulating

(Core Concern)

International Journal of Computer Applications (0975 – 8887)

International Conference on Systems Engineering And Modeling “ICSEM-2013”

32

study. Students need to get required credits for completion of

the course. The student has to apply for the degree and to be

included in the graduates list for the next convocation.

Fig. 4. Work Flow of University Automation System

The functionalities that are modeled as web services are listed

below:

 createScheduleWS

 viewScheduleWS

 editScheduleWS

 studentEnrollWS

 addExtraCourseWS

 dropCourseWS

 examRegisterWS

 studentLoginWS

 staffLoginWS

 calInternalWS

 calSemMarkWS

 gradeCalculationWS

 displayResultWS

 stuRegWS

 staffRegWS

 applyForDegreeWS

 degreeStatusWS

 assignInternalsWS

9.2 Architectural view of University

Automation System
Set of modules are identified in building the University

Automation System are Web Service Creation, Web Service

Composition, Web Service Deployment

1. Web Services Creation: The following are the ist of

services that need to be created for University

Automation System:

i. createScheduleWS- The schedule for the classes

will be created by the faculty.

ii. viewScheduleWS- The Schedule can be viewed by

both students and faculty.

iii. editScheduleWS- The Schedule can also be edited

by faculty.

iv. studentEnrollWS- The Student should enroll for the

courses offered during the next semester before

the last date set by the University.

v. addExtraCourseWS- Any number of courses can be

added by the students for each semester. They

can add a ourse as either credit or audit.

vi. dropCourseWS- The course can also be dropped by

the students during the progress of the

semester.

vii. examRegisterWS- All registered students need to

register in order to take the exam.

viii. studentLoginWS- A Student can login and register

or drop the course.

ix. staffLoginWS- Each staff has a individual loginID.

x. CalInternalWS- Calculate total internal mark foe

each course.

xi. calSemMark- Calculate the sum of internal mark

and final exam mark and save the details in the

table.

xii. GradeCalculationWS- Calculate grade for total

marks and update in the table.

xiii. displayResultWS- Display the result for the

requested register number.

xiv. stuRegWS- Student those who are newly admitted

will register their details.

xv. staffRegWS- Staff those who are newly joined will

register their details.

studentRegWS

stuLoginWS

studentEnrollWS

addExtraCourseWS

dropCourseWS

viewScheduleWS

examRegisterWS

Result

applyForDegree

createScheduleWS

editScheduleWS

viewScheduleWS

assignInternalsWS

staffRegisterWS

staffLoginWS Staff

Web Service

(Encapsulating Cross-

cutting Concern)

Web Service

(Encapsulating

Core Concern)

Composed

Web Service

Student

International Journal of Computer Applications (0975 – 8887)

International Conference on Systems Engineering And Modeling “ICSEM-2013”

33

xvi. applyForDegreeWS- Check the condition whether

the student completed all the courses and the

total credits are reached.

xvii. degreeStatusWS- Calculate the cgpa earned and

display the result.

xviii. assignInternalsWS- Staff register the internal

marks earned by the students.

Some of the non-functional requirements in the

University Automation System are

i) Logging - It contains the details about the service

name, date and time of invocation of

studentLoginWS, staffLoginWS services.

ii) Persistence - permanently stores student register

number, course name, final exam mark and

grade of gradeCalWS of the University

Automation System.

The above listed non-functional cross-cutting concerns are

encapsulated as aspects in AOP. The Aspect weaver will

inject the aspects into the web services.

2. Web Services composition: BPEL[15] is used for the

composition of web service and aspect embedded web

services.

Fig. 5. BPEL Composition of web and aspect embedded

web services

The services involved in composition are calInternalWS,

calSemMarkWS, gradeCalculationWS and displayResultWS.

The student will type the register number for seeing the result.

In the background process four services are composed and

that will display the final result.

3. Deployment of Service: Web service and aspect

embedded web services.[12] that are created must be

deployed. Aspects are included to provide runtime

process change, it is taken as the functionality where it is

injected to the base process without altering the existing

one. It can be (un)plugged at any point of time without

touching or modifying the base processes.

10. PROPOSED MEASURES
Any proposed concept need to be evaluated to understand its

strength and weakness. In order to do so an environment is

necessary to implement and test the concept. Also a good

mechanism is necessary to quantitatively evaluate the concept

using metrics.

Considering the proposed concept of AO TestBed, an

environment has been proposed with a clearly defined

architecture. In order to test its impact a set of metrics need to

be clearly defined and evaluated. The set of metrics will focus

on three parts, i.e., core business metrics, interface metrics

and access metrics.

While considering the core businesses, all the functionalities

of the University Automation System need to be measured.

And while calculating the quality of the interface the

efficiency, usability, etc of the interface need to be quantified.

Considering the access to permanent data storage the

properties affecting the storage and retrieval of data from the

database need to be evaluated. The non-functional

requirements like logging and persistence, that are

implemented using aspects need to be measured using well

defined metrics.

11. CONCLUSION AND FUTURE

DIRECTION
In order to measure the impact of using a methodology to

develop an application software a good environment is

essentially needed for testing. In this project an attempt has

been made to develop and deploy base and aspect enabled

web services for the automation of the processes in an

University. The aspect enabled web services were used to

encapsulate the cross-cutting functionalities of the application.

The services are deployed in machines loaded with Windows7

and Ubuntu Operating Systems. The deployed services are

then composed by the BPEL engine using the composition

rule specified in the BPEL configuration file. University

Automation System was successfully tested for its execution.

Three different parts of the application were identified for the

definition of metrics. The future work is to measure the

impact on design properties of University Automation System

12. REFERENCES
[1] T. Erl, Service-Oriented Architecture: Concepts,

Technology, and Design. Upper Saddle River, NJ:

Prentice Hall Professional Technical Reference, 2005.

[2] Y. Vasiliev, SOA and WS-BPEL, ser. From technologies

to solutions. Packt, 2007. [Online]. Available:

http://books.google.co.in/books?id=quRbYxaQ8wcC.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Lopes, J. marc Loingtier, and J. Irwin, “Aspect Oriented

Programming,” in European Conference on Object

Oriented Programming. SpringerVerlag, 1997.

[4] “TAO: A TestBed for Aspect Oriented Software

Development,” http://www.comp.lancs.ac.uk/

greenwop/tao/.

[5] P. Greenwood, A. Garcia, A. Rashid, E. Figueiredo, C.

Sant’Anna, N. Cacho, A. Sampaio, S. Soares, P. Borba,

M. Dosea, R. Ramos, U. Kulesza, T. Bartolomei, M.

Pinto, L. Fuentes, N. Gamez, A. Moreira, J. Araujo, T.

Batista, A. Medeiros, F. Dantas, L. Fernandes, J. Wloka,

C. Chavez, R. France, and I. Brito, “On the contributions

of an end-to-end AOSD TestBed,” in Proceedings of the

CalInternalWS

A

CalSemMark
B

displayResult

D

GradeCalWS

C

A

B

C

D Student

Reply

Network

BPEL Process

Request

International Journal of Computer Applications (0975 – 8887)

International Conference on Systems Engineering And Modeling “ICSEM-2013”

34

Early Aspects at ICSE: Workshops in Aspect-Oriented

Requirements Engineering and Architecture Design, ser.

EARLYASPECTS ’07. Washington, DC, USA: IEEE

Computer Society, 2007, pp. 8–. [Online]. Available:

http://dx.doi.org/10.1109/EARLYASPECTS.2007.8

[6] W. Tsai, R. Paul, W. Song, and Z. Cao, “Coyote: an xml-

based framework for web services testing,” in High

Assurance Systems Engineering, 2002. Proceedings. 7th

IEEE International Symposium on, pp. 173–174.

[7] H. Holanda, G. Barroso, and A. Serra, “Spews: A

framework for the performance analysis of web services

orchestrated with BPEL4WS,” in Internet and Web

Applications and Services, 2009. ICIW ’09. Fourth

International Conference on, May, pp. 363–369.

[8] L. Juszczyk and S. Dustdar, “Script-based generation of

dynamic TestBeds for SOA,” in in ICWS. IEEE

Computer Society, 2010.

[9] P. Greenwood, A. Garcia, T. Bartolomei, S. Soares, P.

Borba, and A. Rashid, “On the design of an end-to-end

AOSD TestBed for software stability,” in In Proceedings

of the 1st International Workshop on Assessment of

Aspect-Oriented Technologies (ASAT.07), 2007.

[10] R. Laddad, AspectJ in Action: Enterprise AOP With

Spring, ser. Manning Pubs Co Series. Manning, 2009.

[Online]. Available:

http://books.google.co.in/books?id=ZmniOgA CAAJ

[11] “Apache axis2 architecture guide,”

http://axis.apache.org/axis2/Axis2Architectur

Guide.html.

[12] N. C. Mendonca and C. F. Silva, “Aspectual services:

Unifying service- and Aspect-Oriented Software

Development,” in Proceedings of the International

Conference on Next Generation Web Services Practices,

ser. NWESP ’05. Washington, DC, USA: IEEE

Computer Society, 2005, pp. 351–. [Online]. Available:

http://dx.doi.org/10.1109/NWESP.2005.20

[13] A. Charfi and M. Mezini, “Ao4bpel: An Aspect Oriented

Extension to BPEL,” World Wide Web, vol. 10, no. 3,

pp. 309–344, Sep. 2007. [Online].Available:

http://dx.doi.org/10.1007/s11280-006-0016-3

[14] J. Zhang, F. Meng, and G. Liu, “Research on SOA-based

applications based on AOP and Web Services,” in

Proceedings of the 2008 International Conference on

Computer and Electrical Engineering, ser. ICCEE ’08.

Washington, DC, USA: IEEE Computer Society, 2008,

pp. 753–757. [Online]. Available:

http://dx.doi.org/10.1109/ICCEE.2008.107

[15] A. Charfi, Aspect-Oriented Workflow Languages:

AO4BPEL and Applications, 2007. [Online].Available:

http://books.google.co.in/books?id=YV2mNwAACAAJ

S.Dhivya is currently pursuing M.E in Computer Science and

Engineering at SSN College of Engineering. She has

completed B.Tech in Computer Science and Engineering at

Kalasalingam University.

S. Senthil Velan is currently an Associate Professor in the

Department of Computer Science and Engineering at SSN

College of Engineering. He has completed B.E in Electronics

and Communication Engineering at Madurai Kamaraj

University and M.S in Computer Science at Wichita State

University. He is currently pursuing the Ph.D program at

Anna University in the field of Aspect Oriented Software

Development. The author has a teaching experience of around

15 years and 3 years of industrial experience.

