
International Journal of Computer Applications (0975 – 8887)

International Conference on Systems Engineering And Modeling “ICSEM-2013”

1

Smart- Store Metadata File Systems by using

Semantic R-Tree

A. Nirosha, (M.E),
Department of Computer Science and Engineering

Dhanalakshmi Srinivasan Engineering College,
Perambalur.

R. Gopi, M.Tech, Assistant Professor,
Department of Computer Science and Engineering

Dhanalakshmi Srinivasan Engineering College,
Perambalur.

ABSTRACT

 Existing search mechanisms of DHT-based P2P systems

allow every individual keyword to be mapped to a set of

documents/nodes across the network that contains the

keyword. Lookup time and Data traffic is increased. In this

design proposes a decentralized semantic-aware metadata

organization, called Smart Store, which exploits semantics

of files metadata to judiciously aggregate correlated files

into semantic-aware groups by using information retrieval

tools. The key idea of Smart Store is to limit the search

scope of a complex metadata query to a single or a minimal

number of semantically correlated groups and avoid or

alleviate brute-force search in the entire system. The

decentralized design of Smart Store can improve system

scalability and reduce query latency for Complex queries

such as range and top-k queries. Bloom Filter to decrease

space overhead and provide fast identification of stale

versions by using Hashing queried items. A query in Smart-

Store works as follows: initially, a user sends a query to a

randomly chosen storage unit (i.e., a leaf node of semantic

R-tree). The chosen storage unit, called home unit for this

request. Specifically, for a point query, the home unit

servers. After obtaining query results, the home unit returns

them to the user. To construct a semantic R-tree by

leveraging three attributes, i.e., file size, creation time, and

last modification time.

KEYWORDS

Smart-Store, Semantic R-Tree, Metadata Management

Server, Bloom Filter.

I. INTRODUCTION

FAST and flexible metadata retrieving is critical

requirements bin the next-generation data storage systems

serving High-end computing [3]. As the storage capacity is

approaching Exa-bytes and the number of files stored is

Reaching billions, Directory-tree based metadata

management widely deployed in conventional file systems

can no longer meet the requirements of scalability and

functionality. For the next-generation large-scale storage

Systems, new metadata organization schemes are desired to

meet two critical goals:

 1) To serve a large number of concurrent accesses

with low Latency and

 2) To provide flexible I/O interfaces to allow

users to perform advanced metadata queries, such as range

and top-k queries, to further decrease query latency.

Although existing distributed database systems can work

well in some real-world data-intensive applications, they are

in efficient in very large-scale file systems due to four main

reasons. [1] First, as the storage system is scaling up rapidly,

a very large-scale file system, the main concern of this

paper, generally consists of thousands of server nodes,

contains trillions of files, and reaches Exa-byte-data-volume

(EB). Unfortunately, existing distributed databases fail to

achieve efficient management of Peta-bytes of data and

thousands of concurrent requests. Second, for heterogeneous

execution environments, devices of file systems are

heterogeneous, such as supercomputers, clusters of PCs via

Ethernet, Infinite Band and Fibers, and cloud storage via

Internet.

Recently, the database research community has become

aware of this problem and agreed that existing DBMS for

general-purpose applications would not be a “one size fit all”

solution. This issue has also been observed by file system

researchers. Third, for heterogeneous data types, their

metadata in file systems are also heterogeneous. The

metadata may be structured, semi-structured, or even

unstructured, since they come from different operational

system platforms and support various real-world

applications. This is often ignored by existing database

solutions. Last but not the least, [10] Existing File Systems

only provide filename-based interface and allow users to

query a given file, which severely limits the flexibility and

ease of use of file systems.

International Journal of Computer Applications (0975 – 8887)

International Conference on Systems Engineering And Modeling “ICSEM-2013”

2

Fig 1: Comparison with Conventional File System

Our belief that semantic-aware caching, which leverages

metadata semantic correlation and combines Preprocessing

and pre-fetching that is based on range queries (that identify

files whose attributes values are within given ranges) and

top-k Nearest Neighbor (NN) queries (that locate k files

whose attributes are closest to given values), will be

sufficiently effective in reducing the working sets and

increasing cache hit rates. Semantic correlation comes from

the exploitation of high-dimensional attributes of metadata.

The main benefit of using semantic correlation is the ability

to significantly narrow the search space and improve system

performance. In this paper, we propose a novel decentralized

semantic-aware metadata organization, called Smart-Store,

to effectively exploit semantic correlation to enable efficient

complex queries for users and to improve system

performance in real-world applications. Additionally and

importantly, Smart-Store is able to provide the existing

services of conventional file systems while supporting new

complex query services with high reliability and scalability.

Our experimental results based on a Smart-Store prototype

implementation show that its complex query performance is

more than 1,000 times higher

And its space overhead is 20 times smaller than current

database methods with very small false probability Multi-

query services. To the best of our knowledge, this is the first

study on the design and implementation of a storage

architecture that supports complex queries, such as range

and top-k queries, within the context of ultra-large scale

distributed file systems. More specifically, our Smart- Store

can support three query interfaces for point, range, and top-k

queries.

II. SMARTSTORE SYSTEMS

The basic idea behind Smart-Store is that files are grouped

and stored according to their metadata semantics. Thus,

query and other relevant operations can be completed within

one or a small number of such groups, where one group may

include several storage nodes, other than linearly searching

via brute force on almost all storage nodes in a directory

namespace approach. On the other hand, the semantic

grouping can also improve system scalability and avoid

access bottlenecks and single-point failures since it renders

the metadata organization fully decentralized whereby most

operations, such as insertion/deletion and queries, can be

executed within a given group.

D1

D11

D111 D112

D12

D131
D121

S1

D13

D122 D123 D132

S7
S5 S3 S9 S6 S4 S12

S10
S8

S11 S2

I4

I1
I2

S1

I3

S7 S5 S3 S9 S6 S4 S12 S10 S8 S11 S2

Index Units

Storage Units

Mapping

Grouping

Conventional Directory Tree

Semantic R-Tree

International Journal of Computer Applications (0975 – 8887)

International Conference on Systems Engineering And Modeling “ICSEM-2013”

3

Fig 2: Smart-Stores

A. OVERVIEW

A semantic R-tree is evolved from classical R-tree and

consists of index units (i.e., Non-leaf nodes) containing

location and mapping information and storage units (i.e., leaf

nodes) containing file metadata, both of which are hosted on

a collection of storage servers. One or more R-trees may be

used to represent the same set of metadata to match query

patterns effectively. Smart-Store supports complex queries,

including range and top-k queries, in addition to simple

point query. Smart-Store that provides multi-query services

For users while organizes metadata to Smart-Store has three

key functional components:

1) The Grouping Component - that classifies

metadata into storage and index units based on the LSI

semantic analysis;

2) The Construction Component - that iteratively builds

semantic R-trees in a distributed environment; and

3) The Service Component - that supports insertion, deletion

in R-trees, and multi-query services.

Insertion

Deletion

Latent Semantic

Indexing

Semantic Grouping

Index Units Storage Units

Light-Weight Distributed Computing For Semantic R-Tree

Top-K NN Query

Range Query

Point Query

Smart Store
Key Operations

Reliable Mapping

Address of Father Node (Index

Unit)

MBR Representation for Local

Metadata

MBRs
Semantically Correlated

Metadata

Addresses of all Child Nodes

Address of Father Node

(Index Unit)

Storage Unit Index Unit

Fig 3: Storage Unit & Index Unit

International Journal of Computer Applications (0975 – 8887)

International Conference on Systems Engineering And Modeling “ICSEM-2013”

4

B. USER VIEW

A query in Smart-Store works as follows: initially, a user

sends a query to a randomly chosen storage unit, i.e., a leaf

node of semantic R-tree. The chosen storage unit, called

home unit for this request, then retrieves semantic R-tree to

locate the corresponding R-tree node. Specifically, for a

point query, the home unit checks Bloom filters stored

locally in a way similar to the group-based hierarchical

Bloom-filter array approach and, for a complex query, the

home unit checks the Minimum Bounding Rectangles

(MBR) to determine the membership of queried file within

checked servers. An MBR represents the minimal rectangle

of the enclosed data set by using multidimensional intervals

of the attribute space, showing the lower and the upper

bounds of each dimension. After obtaining query results, the

home unit returns them to the user. For example, attributes

such as access frequency, file size, volume of “read” and

“write” operations are changed frequently, while some other

attributes, such as filename and creation time, often remain

unchanged. Smart-Store identifies the correlations between

different files by examining these and other attributes, and

then places strongly correlated files into groups. All groups

are then organized into a semantic R-tree. The objective of

the semantic R-tree constructed by examining the semantic

correlation of metadata attributes is to match the patterns of

complex queries from users. In Section 3 & 6 specifies the

User Process?

III. RELATED WORKS

A query in Smart-Store works as follows: initially, a user

sends a query to a randomly chosen storage unit (i.e., a leaf

node of semantic R-tree). The chosen storage unit, called

home unit for this request. Specifically, for a point query, the

home unit checks Bloom filters stored locally in a way

similar to the group-based hierarchical Bloom-filter array

approach and, for a complex query, the home unit checks the

Minimum Bounding Rectangles (MBR) to determine the

membership of queried file within checked servers.

After obtaining query results, the home unit returns them to

the user. To construct a semantic R-tree by leveraging three

attributes, i.e., file size, creation time, and last modification

time, and then queries may search files according to their file

size, file type and creation time, or other combinations of

these three attributes.

System Initialization

Storage Units

Semantic Grouping

Index Units

Construct R-Tree

User

Top K Query

Range Query

Result

Point Query

Search Query

Fig 4: System Architecture

International Journal of Computer Applications (0975 – 8887)

International Conference on Systems Engineering And Modeling “ICSEM-2013”

5

A. Hash Based Algorithm

Bloom Filter

Bloom filter are compact data structures for probabilistic

representation of a set in order to support membership

queries (i.e. queries that ask: “Is element X in set Y?”). This

compact representation is the payoff for allowing a small

rate of false positives in membership queries; that is, queries

might incorrectly recognize an element as member of the set.

The base data structure of a Bloom filter is a Bit Vector.

Each empty cell in that table represents a bit and the number

below it its index. To add an element to the Bloom filter, we

simply hash it a few times and set the bits in the bit vector at

the index of those hashes to 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 Table 1: Bloom Filter

Description of Algorithm

Bloom filter, representing the set {x, y, z}. The colored

arrows show the positions in the bit array that each set

element is mapped to. The element w is not in the set {x, y,

and z}, because it hashes to one bit-array position containing

0. For this figure, m=18 and k=3. S is a set of n elements.

It's easier to see that that means than explain it, so enter

some strings and see how the bit vector changes:

Enter a string:

John smith: Doe: You’re set: 1

 When you add a string, you can see that the bits at

the index given by the hashes are set to 1. I've used the color

green to show the newly added ones, but any colored cell is

simply a 1.

Set of k hash functions with range {1: m} (or {0: m – 1}).

M-long array of bits initialized to 0. To insert and query on a

Bloom filter of size

m = 10 and number of hash functions k = 3.

Let H(x) denotes the result of the three hash functions which

we will write as a set of three values {h1(x); h2(x); h3(x)

g}.Start with an empty 10-bit long array:

 Insert x1: H(x1) = {4, 5, and 8}

0 1 0 0 1 1 0 0 1 0

0 1 2 3 4 5 6 7 8 9

Delete x1: H(x1) = {4, 5, and 8}

0 1 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

Fig 5: Bloom Filter Indexing Table

International Journal of Computer Applications (0975 – 8887)

International Conference on Systems Engineering And Modeling “ICSEM-2013”

6

Fig 6: Hash Function

IV. CREATION OF GROUP

The system contains the collection of two different Units

like Storage Unit, Indexing Unit. In this module first create

the Groups by giving the detail information of group such as

Group Name, Group IP Address and Group Port Number.
Each Group having different number of MDSs.

A group split operation is then triggered to divide this group

into two approximately equal-sized groups, A and B. The

split operation will be performed under two conditions: 1)

Each group must still maintain a global mirror image of the

file system, and 2) Workload must be balanced within each
group.

Fig 7: Creation of Group

v. CONSTRUCTION OF R-TREE

A semantic R-Tree consists of index units (i.e., non-leaf

nodes) containing location and mapping information and

storage units (i.e., leaf nodes) containing file metadata, both

of which are hosted on a collection of storage servers. One

or more R-trees may be used to represent the same set of

metadata to match query patterns effectively.

Smart Store supports complex queries, including range and

top-k queries, in addition to simple point query. Smart Store

that provides multi-query services for users while organizes

metadata to enhance system performance by using

decentralized semantic R-tree structures.

Each metadata server is a leaf node in our semantic R-tree

and can also potentially hold multiple non-leaf nodes of the

R-tree. We refer to the semantic R-tree leaf nodes as Storage

units and the non-leaf nodes as index units.

Smart- Store can support three query interfaces for

Point, range, and top-k queries.

Smart-Store has three key functional components:

Keys

John Smith

Lisa Smith

Sam Doe

Doe

0

Hashes

3

2

1

Hash Function

Enter the Number of Storage Unit

Create

Enter the Number of Index Unit

Enter the Details of Storage Unit

Enter the Details of Index Unit

International Journal of Computer Applications (0975 – 8887)

International Conference on Systems Engineering And Modeling “ICSEM-2013”

7

1) The Grouping Component that classifies

metadata into storage and index units based on

the LSI semantic analysis;

2) The Construction Component that iteratively

builds semantic R- trees in a distributed

environment;

3) The Service Component that supports insertion,

deletion in R-trees, and multi query services.

Fig 8: Construction of R-Tree

VI. USER QUERY PROCESSING

An MBR represents the minimal rectangle of the enclosed

data set by using multidimensional intervals of the attribute

space, showing the lower and the upper bounds of each

dimension. After obtaining query results, the home unit

returns them to the user.

To construct a semantic R-tree by leveraging three attributes,

i.e., file size, creation time, and last modification time, and

then queries may search files according to their file size, file

type and creation time, or other combinations of these three

attributes.

Smart Store is able to provide the existing services of

conventional file systems while supporting new complex

query services with high reliability and scalability. Bloom

Filter to decrease space overhead and provide fast

identification of stale versions by using Hashing queried

items.

Fig 9: User Query Processing

Indexing Unit-1

Storage Unit Storage Unit Storage Unit

Indexing Unit

Storage Unit

Indexing Unit

Storage Unit Storage Unit Storage Unit

1. Locate Group

2. Forward Request

3. Local Search

Request Arriving

If Fail Continue to

forward

International Journal of Computer Applications (0975 – 8887)

International Conference on Systems Engineering And Modeling “ICSEM-2013”

8

VII. MULTI QUERY SERVICE

Smart Store supports flexible multi-query services for users

and these queries follow similar query path. In general, users

initially send a query request to a randomly chosen server

that is also represented as storage unit that is a leaf node of

semantic R-tree.

The chosen storage unit, also called home unit for the

request, then retrieves semantic R-tree nodes by using an on-

line multicast-based or off-line pre-computation approach to

locating a query request to its correlated R-tree node. After

obtaining query results, the home unit returns them to users.

Smart Store removes attached versions when reconfiguring

index units.

The frequency of reconfiguration depends on the user

requirements and environment constraints. Removing

versions entails two operations. First apply the changes of a

version into its attached original index unit that will be

updated according to these changes in the attached versions,

such as inserting, deleting, or modifying file metadata.

On the other hand, the version is also multicast to other

remote index units that have stored the replicas of original

index unit, and then these remote index units carry out the

similar operations for local updating. Since the attached

versions only need to maintain changes of file metadata and

maintain small size.

Fig 10: Multi Query Processing

VIII. MDSS OPERATION

To create the Group of MDSs by giving the detailed

information of MDSs such as Name of the MDSs, MDSs ID

and MDSs Port Number. The maximum number of MDSs

allowed in one group. The operations of adding and deleting

MDSs are associated with group-based re-configuration (i.e.,

Group Splitting and Merging.).

To utilize an array of Bloom filters on each MDS to support

distributed metadata lookup among multiple MDSs. An

MDS, where a file’s metadata reside, is called the home

MDS of this file. Each metadata server constructs a Bloom

filter to represent all files whose metadata are stored locally,

and then replicates this filter to all other MDSs.

A metadata request from a client can randomly choose an

MDS to perform membership query against its Bloom filter

array that includes replicas of the Bloom filters of the other

servers. The Bloom filter array returns a hit when exactly

one filter gives a positive response. A miss takes place when

zero hit or multiple hits are found in the array.

IX. LRU-BF ARRAY

The query starts at the LRU BF array (L1), which aims to

accurately capture the temporal access locality in metadata

traffic streams. Each MDS maintains an LRU list that

includes the most recently visited files whose metadata are

maintained locally on that MDS. To use of the LRU BF to

represent all the files cached in this LRU list. The LRU BF

is then globally replicated to all MDSs of the entire system.

We further make use of the LRU BF to represent all the files

cached in this LRU list. The LRU BF is then globally

replicated to all MDSs of the entire system. As a

replacement occurs in the LRU list on an MDS,

corresponding insertion and deletion operations are then

performed by this MDS to update its LRU BF. The LRU BF

is then replicated to all the other MDSs when the amount

Segment BF If the query cannot be successfully served at

L1, the query is then performed at L2.

X. SEGMENT-BF ARRAY
If the query cannot be successfully served at L1, the query is

then performed at L2. L2 is a segment bloom filter array .It

contains the replica copy of the other groups. Each MDS in

the group contain n-m/m replicas. Each group maintains n-m

replicas. The Segment BF array (L2) stored on an MDS i

include only i BF replicas, with each replica representing all

files whose metadata are stored on that corresponding MDS.

Each MDS only maintains a subset of all replicas available

in the systems. A lookup failure at L2 will lead to a query

multicast among all MDSs within the current group (L3).

Semantic R-Tree

Insertion

Deletion

Point Query

Range Query

Top K Query

Key Operations

International Journal of Computer Applications (0975 – 8887)

International Conference on Systems Engineering And Modeling “ICSEM-2013”

9

XI. GLOBAL MULTICAST QUERY
At the last level of the query process, i.e., L4, each MDS

directly performs a lookup by searching its local BF and disk

drives. If the local BF responds negatively, the requested

metadata are not stored locally on that MDS. since the local

BF has no false negatives . However, if the local BF

responds positively, a disk access is then required to verify

the existence of the requested metadata, since the local BF

can potentially generate false positives.

XII. CONCLUSIONS
This paper presents a new paradigm for organizing file

metadata for next-generation file systems, called Smart-

Store, by exploiting file semantic information to provide

efficient and scalable complex queries while enhancing

system scalability and functionality. The novelty of Smart-

Store lies in it matches actual data distribution and physical

layout with their logical semantic correlation so that a

complex query can be successfully served within one or a

small number of storage units. Specifically, a semantic

grouping method is proposed to effectively identify files that

are correlated in their physical attributes or behavioral

attributes. Smart-Store can very efficiently support complex

queries, such as range and top-k queries, which will likely

become increasingly important in the next-generation file

systems. Our prototype implementation proves that Smart-

Store is highly scalable, and can be deployed in a large-scale

distributed storage system with a large number of storage

units.

XIII. FUTURE ENHANCEMENT

To increase the hash function used in the Bloom Filter for

reducing the false negatives. For any private data present in

the data collections, we apply the effective security settings.

To presents a new paradigm for organizing file metadata for

next-generation file systems, called Smart-Store, by

exploiting file semantic information to provide efficient and

scalable complex queries while enhancing system scalability

and functionality. Smart-Store can very efficiently support

complex queries, such as range and top-k queries, which will

likely become increasingly important in the next-generation

file systems.

REFERENCES

[1] B. Bloom, “Space/Time Trade-Offs in Hash Coding with

Allowable Errors,” Comm. ACM, vol. 13, no. 7, pp.

422- 426, 1970.

[2] A. Broder and M. Mitzenmacher, “Network

Applications of Bloom Filters: A Survey,” Internet

Math., vol. 1, no. 4, pp. 484-509, 2005.

[3] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary

Cache: A Scalable Wide-Area Web Cache Sharing

Protocol,” IEEE/ACM Trans. Networking, vol. 8, no. 3,

pp. 281-293, June 2000.

[4] T. Gross and V. Cate, “Combining the Concepts

of Compression and Caching for a Two-Level File

system,” ACM SIGARCH Computer Architecture

News, vol. 19, no. 2, pp. 200-211, 1991.

[5] Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L. Tian,

“Supporting Scalable and Adaptive Metadata

Management in Ultra large-Scale File Systems,” IEEE

Trans. Parallel and Distributed Systems, vol.22,no. 4,

pp. 580-593, Apr. 2011.

[6] E.L. Miller and R.H. Katz, “Rama: An Easy-to-Use,

High- Performance Parallel File System,” Parallel

Computing, vol. 23, pp. 419-446, 1997.

[7] J.H. Morris, M. Satyanarayanan, M.H. Conner, J.H.

Howard, D.S. Rosenthal, and F.D. Smith, “Andrew: A

Distributed Personal Computing Environment,” Comm.

ACM, vol. 29, no. 3, pp. 184- 201, 1986.

[8] M.N. Nelson, B.B. Welch, and J.K. Ousterhout,

“Caching in the Sprite Network File System,” ACM

Trans. Computer Systems, vol. 6, no. 1, pp. 134-154,

1988.

[9] C. Papadimitriou, P. Raghavan, H. Tamaki, and S.

Vempala, “Latent Semantic Indexing: A Probabilistic

Analysis,” J. Computer and System Sciences, vol. 61,

no. 2, pp. 217-235, 2000.

[10] H.T. Shen, Y.F. Shu, and B. Yu, “Efficient Semantic-

Based Content Search in P2P Network,” IEEE Trans.

Knowledge and Data Eng., vol. 16, no. 7, pp. 813-826,

July 2004.

ABOUT AUTHORS

NIROSHA.A received the MCA Degree in SASTRA

University, Tanjavour in the year of 2010. Currently,

pursuing the M.E CSE Degree in Dhanalakshmi

Srinivasan Engineering College, Perambalur which is

affiliated by Anna University, Chennai. Currently her

Major Research focuses on Networking and Data Mining.

Mr. R.GOPI has received his M.Tech Degree from

VELTECH DR.RR & DR.SR TECHNICAL

UNIVERSITY CHENNAI. He is Currently Working as

Assistant Professor in Dhanalakshmi Srinivasan

Engineering College, Perambalur. His research interest is

in the area of Data Mining, DBMS and OOPS.

http://dr.sr/

