
International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Simulations in Computing Nexus, ICSCN-2014

17

Hierarchical Replication Strategy for Adaptive Scoring Job
Scheduling in Grid Computing

S.Gomathi Subbu,
PG Student,

 SVS College of Engineering,

 Coimbatore, Tamilnadu, India

Abstract
Grid technology, which together a number of personal computer

clusters with high speed networks, can reach the same computing

power as a supercomputer does, also with a minimum cost.

However, heterogeneous system is called as grid. Scheduling

independent tasks on grid is more difficult. In order to utilize the

power of grid completely, we demand an efficient job scheduling

algorithm to execute jobs to resources in a grid. The Data Grid

provides massive aggregated computing resources and distributed

storage space to deal with data-intensive applications. Due to the

limitation of available resources in the grid as well as

construction of huge volumes of data, efficient usage of the Grid

resources becomes a significant challenge. In previous work

develop the Adaptive Scoring Job Scheduling algorithm (ASJS)

for the grid environment. In that algorithm is not suitable for

replication technique. Data replication is a key optimization

technique for reducing access latency and managing large data by

storing data in a wise manner. Effective scheduling in the Grid

can reduce the amount of data transferred between nodes by

submitting a job to a node where most of the requested data files

are available. The proposed system uses dynamic data replication

strategy, called Effective Hierarchical Replication (EHR) that

improves file access time. This strategy is an enhanced version of

the Dynamic Hierarchical Replication strategy. It uses an

economic model for file deletion when there is not enough space

for the replica node. So our proposed system finds the replicate

detection of files with different cluster structure representation of

the input files. We combine the replica strategy with ASJS

algorithm for efficiently decrease the completion time of

submitted jobs, which may consist of computing-intensive jobs

and data-intensive jobs.

Keywords
ASJS, EHR, Grid, Replication, Scheduling, Job.

1. INTRODUCTION
A large number of scientific applications such as high energy

physics, climate change, and earth observation generate huge

amounts of data per year. Today, management and efficient use

of large distributed resources are important issues in scientific

research and commercial applications. The Grid is a solution for

this problem. The Grid can be divided into two parts,

Computational Grid and Data Grid. Computational Grids are

used for computationally intensive applications that require small

amounts of data. But, Data Grids deal with the applications that

require studying and analyzing massive data sets. Data Grid in a

layered architecture. In that grid architecture have four

components. The components are fabric, connectivity, services

and application layers. The grid fabric layer involves distributed

computational resources, storage resources, and instruments that

are connected by high bandwidth. The connectivity layer contains

protocols used to query resources in the grid fabric layer and to

control transferring data between them. The Data Grid service

layer consists of several services such as replication, data

discovery and resource brokering. The application layer contains

the user applications that work within a virtual organization

environment.

The size of data that are requested in the Data Grid is from

terabytes to petabytes. Effective scheduling of jobs is necessary

in such a system to use available resources such as

computational, storage and network efficiently. If a job is

assigned to a site where all the required data are available, then it

would have no data transmission delay or reduced turnaround

time. Of course, a scheduler should also consider parameters such

as CPU workload, features of computational capability, network

load, resource utilization and response time. Replication is a

practical and efficient method to manage large data by storing

data in a wise manner. Generally, replication algorithms are

either static or dynamic. In static approaches the created replica

will exist in the same place till the user deletes it manually or its

duration is expired. On the other hand, dynamic strategies create

and delete replicas according to the changes in grid

environments, i.e. users’ file access patterns. Storing replicas

close to the users or grid computation nodes improve response

time, fault tolerance and decreases bandwidth consumption.

Therefore, an appropriate replica management framework is

critical in complex systems such as Data Grids that access large

amounts of data.

Grid can manage the same level of computing power as a

supercomputer does, but at a much reduced cost. Grid is related

to a virtual supercomputer. However, we need to deal with about

many conditions such as network status and resource status

because the members of grid are connected by networks.

Scheduling independent tasks on grid is more complicated. In

order to utilize the power of grid computing completely, we need

an efficient job scheduling algorithm to assign jobs to resources.

This paper focuses on the efficient job scheduling considering the

completion time of jobs and achieve better performance by

minimizing the data access time and avoiding unnecessary

replication in a grid environment.

Issues related to data replication

Data replication strategies have been widely used in Data Grids

to replicate frequently accessed data to suitable sites. There are

certain problems which a data replication strategy must address

during replication:

• The dynamic behavior of a Grid. The nature of the Grid is

very changeable and users can enter and quit a Grid at any time.

The data replication strategy must be adaptive to the information

of the grid environment in order to provide better results.

• Grid architecture. The replication algorithm is dependent on

Grid architecture. It can be a multi-tier architecture, a tree like

structure, a graph like topology, a peer to peer topology or a

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Simulations in Computing Nexus, ICSCN-2014

18

hybrid model. The replication strategy is proposed according to

the architecture of the Grid.

• Three important questions. Any replication algorithm has to

answer some important questions such as, (1) which files should

be replicated; (2) when and how many replicas should be created;

and (3) where the replicas should be placed in the system [1].

• Available storage space. The size of data that are requested

in a Data Grid is from terabytes to petabytes. Restricted by the

storage capacity, it is essential to present an effective replica

replacement.

• Cost of replication. Unfortunately, there is a price to be paid

when data are replicated. The files of Grid environments that can

be changed by Grid users might bring an important problem of

maintaining data consistency among the various replicas

distributed in different machines. Exactly when and how those

changes need to be carried out specifies the price of replication.

The replication strategy must check that the benefit of the

replication is more than the cost of replication.

2. RELATED WORK
Dynamic FPLTF Scheduling Algorithm (DFPLTF) [2] is based

on FPLTF scheduling algorithm and is modified to make the

FPLTF scheduling algorithm more adaptive for grid environment.

Most Fit Task First Scheduling Algorithm (MFTF) [3] mainly

attempts to assign the most suitable resource to the task by a

value called fitness. Ant Colony Optimization (ACO) [4] was

used for solving the scheduling problem in grids in recent years.

Xu et al. proposed a simple grid simulation architecture and

modified the basic ant algorithm for job scheduling in grid [5].

The scheduling algorithm they proposed needs some information

such as the number of CPUs, Million Instructions Per Second

(MIPS) of every CPU for job scheduling. A resource must submit

the information mentioned above to the resource monitor.

Park et al. [6] presented a Bandwidth Hierarchy based

Replication (BHR) which decreases the data access time by

maximizing network-level locality and avoiding network

congestion. They split the sites into various regions, where

network bandwidth between the regions is lower than the

bandwidth within the regions. So if the required file is placed in

the same region, its fetching time will be less. The BHR strategy

has two deficiencies, first it eliminates if a replica exists within

the region and, second, replicated files are located in all the

requested sites not the appropriate sites. The BHR strategy has

good performance only when the capacity of the storage element

is small.

Modified BHR [7] is an extension of the BHR [6] strategy which

replicates a file that has been accessed most and it may also be

used in the near future. The modified BHR strategy has a main

weakness; it will search all sites to find the best one for storing

the replica. EHR places the replica in the best site of the

requested region.

In [8] a dynamic replication strategy is proposed that is a

modified version of the Fast Spread replication strategy [9] that

holds valuable replicas while the other less important replicas are

replaced with more important replicas. A dynamic threshold is

used to determine if the requested replica should be stored at each

node along its path to the requester. They claimed their algorithm

has better performance comparing with Fast Spread with LRU

and Fast Spread with LFU (Least Frequently Used).

In [10] the authors presented a data replication strategy that has a

provable theoretical performance guarantee and can be

implemented in a distributed and practical manner. They also

proposed a distributed caching strategy, which can be easily

adopted in a distributed system such as Data Grids. The key point

of their distributed strategy is that when there are several replicas,

each Grid site keeps track of its closest replica site. This can

dramatically enhance Data Grid performance because transferring

large-sized files is time and bandwidth consuming [11]. The

results of the simulation demonstrated that the distributed

replication algorithm significantly outperforms a popular existing

replication strategy under various network parameters.

Andronikou et al. [12] proposed a set of interoperable new data

replication strategies that take into account the infrastructural

constraints as well as the ‘importance’ of the data. The presented

system is scalable and the strategies can be easily implemented

on a Grid environment to provide fast execution. The proposed

QoS-aware dynamic replication strategy determines the number

of replicas required based on data request, content importance

and requested QoS. It also places the new replicas within the Grid

environment according to the network bandwidth and the

overhead that the replication technique presents. It can handle the

dynamicity of the Grid system by increasing or decreasing the set

of data replicas based on the number and the geography of the

data demands.

Saadat et al. [13] presented a new dynamic data replication

strategy which is called Pre-fetching based Dynamic Data

Replication Algorithm in Data Grids (PDDRA). PDDRA predicts

future requirements of Grid sites and pre-replicates them before

the needs are requested. This prediction is done based on the past

file access history of the Grid sites. So when a Grid site requests

a set of files, it will get them locally. The simulation results show

that this strategy improves in terms of job execution time,

effective network usage, number of replications, hit ratio and

percentage of storage filled. But the problem of selecting best

replicas when various sites hold replicas of datasets for the users’

running jobs, i.e. best replica selection, has not been studied in

this paper.

Taheri et al. [14] proposed a new Bee Colony based optimization

strategy, called Job Data Scheduling using Bee Colony (JDS-

BC). JDS-BC has two collaborating operations to efficiently

schedule jobs onto computational elements and replicate data sets

on storage elements in a system so that the two independent, and

in many cases conflicting, objectives (i.e., makespan and transfer

time of all data files) of such heterogeneous systems are

concurrently decreased. Three tailor-made test Grids varying

from small to large are applied to evaluate the performance of

JDS-BC and compare it with other strategies. Results showed

JDS-BC’s superiority under differesnt operating scenarios.JDS-

BC also presented a balanced decision making behavior, where it

occasionally relaxes one of its objectives (e.g., transfer time) to

obtain more from optimizing the other one (e.g., makespan).

3. PROPOSED WORK
The proposed algorithm has been described in three parts:

Replica selection: After a job is scheduled to site j, the requested

data will be transferred to site j to become replicas. When

different sites have replicas of a file, there is a significant benefit

realized by selecting the best replica. The response time is an

essential parameter that influences the replica selection and thus

the job turnaround time. Each storage medium has many requests

at the same time and the storage can respond only to one request

at a time. Thus, there are requests waiting in the queue. The EHR

algorithm selects the best replica location in a minimum response

time that can be estimated by considering the data transfer time

and the number of requests that are waiting in the storage queue.

So, for replica selection: if the file is duplicated in the same LAN,

then it will create a list of candidate replicas and selects the site

that has the least number of requests. If the file does not exist in

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Simulations in Computing Nexus, ICSCN-2014

19

the same LAN, then EHR searches within the local region. If the

file is duplicated in the same region, then it will create a list of

candidate replicas and selects a replica with the least number of

requests. Otherwise it generates a list of replicas that are available

in other regions, and from this list it selects the replica that has

the least number of requests.

Replica placement: The EHR algorithm places the replica in the

Best Storage Element (BSE). To select the BSE, EHR finds SE

with minimum Value-SE (VSE) in the requested region. In the

calculation of VSE the frequency of requests of the replica and

the last time the replica was requested are considered. These

parameters are important because they give an indication of the

probability of requesting the replica again:

where CT is the current time, LTi is the last request time of

replica i, and FRi the frequency of requests of the replica i. The

unit of time in CT and LT is the minute.

Replica management: If enough storage space exists in the BSE,

the selected file is replicated. Otherwise if the file is available in

the local LAN, then the file is accessed remotely. Now, if enough

space for replication does not exist and the requested file is not

available in the same LAN, one or more files should be deleted

using the following rules:

• Generate a LRU sorted list of replicas that are both available in

the site as well as the local LAN. Now start deleting files from

the above list till space is available for the replica.

• If space is still insufficient, then repeat the previous step for

each LAN in the current region randomly. In other words,

generate a LRU sorted list of replicas that are both available in

the site as well as the local region.

• If space is still insufficient, a group of replicas (that contain one

or more replicas) need to be deleted. In this step using LRU may

delete some valuable files that may not be available in the local

region and may be needed in the future. Therefore, such deletions

will result in a high cost of transfer.

In ASJS [15], users can submit different types of jobs at the same

time containing computing-intensive jobs or data-intensive jobs.

The computing-intensive job means that jobs need lots of

computing power to complete and the data-intensive job means

that the resource needs to take lots of bandwidth to transmit files.

A user gives the specification of jobs such as types of jobs,

number of computing-intensive jobs and number of data-

intensive jobs on the interface provided by the Portal in the

beginning. When the user completes the job description, the

Portal will send the request to the Job Scheduler and Job

Scheduler will determine the types of jobs and decide the weight

value of cluster score function in initialization. After initializing

the cluster score of each cluster, the Job Scheduler will select the

resource with the best computing power in the cluster with the

highest cluster score and assign the job to the resource. After Job

Scheduler sends the job to the resource selected, it continues to

schedule the next job until completing all jobs. After a resource

receives a job, it starts to execute. The status of the resource will

change, and therefore local update will be applied to adjust the

cluster score of the cluster containing the resource. Once a job is

completed by a resource, the result will be sent back and stored in

the Information Server. At the same time, the global update will

be applied to adjust the status of the entire grid system. Fig 1.

Shows the overall architecture diagram.

After identifying the types of jobs, Job Scheduler will initialize

the cluster score of each cluster. The cluster score is defined

below:

Where CSi is the cluster score for cluster i, and are the weight

value of ATPi and ACPi respectively, the sum of a and b is 1,

ATPi and ACPi are the average transmission power and average

computing power of cluster i respectively. ATPi means the

average available bandwidth the cluster i can supply to the job

and is defined as:

Where Bandwidth_availablei,j is the available bandwidth between

cluster i and cluster j, m is the number of clusters in the entire

grid system. Similarly, ACPi means the average available CPU

power cluster i can supply to the job and is defined as:

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Simulations in Computing Nexus, ICSCN-2014

20

Fig 1. Architecture

Where CPU_speedk is the CPU speeds of resource k in cluster i,

loadk is the current load of the resource k in cluster i, n is the

number of resources in cluster i. Also let

CPk indicates the available computing power of resource k.

Because the transmission power and the computing power of a

resource will actually affect the performance of job execution, we

use these two factors for job scheduling. Since the bandwidth

between resources in the same cluster is usually very large, we

only consider the bandwidth between different clusters. Another

point is that the scale of the value of ATPi and ACPi are different.

Local update and global update are used to adjust the score. After

a job is submitted to a resource, the status of the resource will

change and local update will be applied to adjust the cluster score

of the cluster containing the resource. What local update does is

to get the available CPU percentage from Information Server and

recalculate the ACP, ATP and CS of the cluster. After a job is

completed by a resource, global update will get information of all

resources in the entire grid system and recalculate the ACP, ATP

and CS of all clusters.

4. EXPERIMENTAL RESULTS
With OptorSim, it is possible to simulate any Grid topology and

replication strategy. So OptorSim code has been modified to

implement the hierarchical structure, since it uses a flat network

structure. It is assumed the network has three regions and on

average two LANs in every region. The storage capacity of the

master site is 200 GB, and the storage capacity of all other sites is

40 GB. We compare results using the parameters like mean job

time based on varying size of files, Mean job time by varying the

storage size and Mean job time based on varying number of jobs.

Fig 2. Mean job time based on varying number of jobs

Fig. 2 displays the mean job time based on the changing number

of jobs for eight algorithms. The mean job execution time of

EHR is lower by 38% compared to the ASJS algorithm for 300

jobs. According to the temporal and geographical locality, EHR

places the replica in the best site. Also, it can minimize access

latency by selecting the best replica. It is clear that as the job

number increases, EHR is able to process the jobs in the lowest

mean time in comparison with other methods. It is similar to a

real Grid environment where a lot of jobs should be executed.

0
50

100
150
200
250
300
350
400
450

50 100 150 200 250 300

M
ea

n
 J

o
b

 T
im

e
(S

ec
)

Number of Jobs ASJS

ASJS+Replica

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Simulations in Computing Nexus, ICSCN-2014

21

Fig 3. Mean job time based on varying size of files

Fig. 3 shows the effect of file size on the execution time for 300

jobs. As file size increases, storage media require more time for

servicing. Here EHR outperforms the other methods as file size

increases. The main reason is that the replica is placed in the best

site by considering the frequency of requests of the replica and

the last time the replica was requested. So the performance of the

proposed algorithm is improved by minimizing the data access

time and avoiding unnecessary replication. It is necessary to note

that in data-intensive applications, the locations of data required

by the job affects the performance significantly.

When the Grid storage size is fixed, the number of replicas in the

Grid will be limited. Fig. 4 illustrates the effect of the size of a

storage element on the mean job time for eight algorithms. EHR

takes the least mean job execution time among strategies. As the

size of storage space decrease in Grid sites, EHR greatly

outperforms other strategies. If the available storage for

replication is not enough, the proposed algorithm will only

replicate those files that are not available in the nearby sites. It

does not delete valuable files that may not be available in the

local region and may be needed in the future. But if the available

storage for replication is enough, all algorithms have the same

performance.

Fig 4. Mean job time by varying the storage size

5. CONCLUSION AND FUTURE WORK
A dynamic data replication strategy, called Effective Hierarchical

Replication (EHR) is proposed. EHR selects the best site for

placing the replica by considering the frequency of requests and

the last time the replica was requested. It also selects the best

replica location for execution of jobs by considering the number

of requests that are waiting in the storage queue, and data transfer

time. If enough space for replication does not exist EHR deletes

files in two steps when free space is not enough for the new

replica. First, it deletes those files with minimum time for transfer

(i.e. only files that exist in the local LAN and local region).

Second, if space is still insufficient then it uses an Economic

Model.

We propose a replica strategy with adaptive scoring method to

schedule jobs in grid environment. ASJS selects the fittest

resource to execute a job according to the status of resources.

Local and global update rules are applied to get the newest status

of each resource. Local update rule updates the status of the

resource and cluster which are selected to execute the job after

assigning the job and the Job Scheduler uses the newest

information to assign the next job. Global update rule updates the

status of each resource and cluster after a job is completed by a

resource. It supplies the Job Scheduler the newest information of

all resources and clusters such that the Job Scheduler can select

the fittest resource for the next job.

To evaluate the efficiency of the proposed strategies, we used the

Grid simulator OptorSim that is configured. The experimental

results show that ASJS+Replica is capable of decreasing

completion time of jobs and the performance of ASJS+Replica is

better than other methods.

In the future, we plan to test our simulation results on real Data

Grids. We will also try to investigate dynamic replica

maintenance issues such as replica consistency. In the longer

term, we would like to consider the set of QoS factors taken into

account for dynamic replication, including both service provider

and client related requirements.

REFERENCES
[1] K. Sashi, A. Thanamani, Dynamic replication in a Data Grid

using a modified BHR region based algorithm, Future

Generation Computer Systems 27 (2) (2011) 202–210.

[2] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R. Freund,

Dynamic matching and scheduling of a class of independent

tasks onto heterogeneous computing system, Journal of

Parallel and Distributed Computing 59 (1999) 107–131.

[3] Sheng-De Wang, I-Tar Hsu, Zheng-Yi Huang, Dynamic

scheduling methods for computational grid environment,

International Conference on Parallel and Distributed

Systems 1 (2005) 22–28.

[4] E. Salari, K. Eshghi, An ACO algorithm for graph coloring

problem, in: Congress on Computational Intelligence

Methods and Applications, December 2005, pp. 15–17.

[5] Hui Yuan, Xue Qin, Ximg Li, Ming-Hui Wu, An improved

ant algorithm for job scheduling in gird computing, in:

Proceedings of 2005 International Conference on Machine

Learning and Cybernetics, vol. 5, 18–21 August, 2005, pp.

2957-2967.

[6] S.-M. Park, J.-H. Kim, Y.-B. Go, W.-S. Yoon, Dynamic grid

replication strategy based on internet hierarchy, in:

International Workshop on Grid and Cooperative

Computing, in: Lecture Note in Computer Science, vol.

1001, 2003,pp. 1324–1331.

0

1000

2000

3000

4000

5000

6000

7000

8000

500 1000 1500 2000 2500

M
ea

n
 J

o
b

 T
im

e
(S

ec
)

Size of File (MB)
ASJS

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

20 40 60 80 100 120

M
ea

n
 J

o
b

 T
im

e
(S

E
c
)

Size SE (GB)
ASJS

ASJS+Replica

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Simulations in Computing Nexus, ICSCN-2014

22

[7] K. Sashi, A.S. Thanamani, Dynamic replication in a Data

Grid using a Modified BHR region based algorithm, Future

Generation Computer Systems 27 (2011) 202–210.

[8] M. Bsoul, A. Khasawneh, E.E. Abdallah, Y. Kilani,

Enhanced fast spread replication strategy for Data Grid,

Journal of Network and Computer Applications 34 (2011)

575–580.

[9] K. Ranganathana, I. Foster, Identifying dynamic replication

strategies for a high performance Data Grid, in: Proceedings

of the International Grid Computing Workshop, 2001, pp.

75–86.

[10] D.T. Nukarapu, B. Tang, L. Wang, S. Lu, Data replication in

data intensive scientific applications with performance

guarantee, IEEE Transactions on Parallel and Distributed

Systems 22 (2011).

[11] A. Chervenak, R. Schuler, M. Ripeanu, M.A. Amer, S.

Bharathi, I. Foster, C. Kesselman, The globus replica

location service: design and experience, IEEE Transactions

on Parallel and Distributed Systems 20 (2009) 1260–1272.

[12] V. Andronikou, K. Mamouras, K. Tserpes, D. Kyriazis, T.

Varvarigou, Dynamic QoS-aware data replication in grid

environments based on data importance, Future Generation

Computer Systems 28 (3) (2012) 544–553.

[13] N. Saadat, A.M. Rahmani, PDDRA: a new pre-fetching

based dynamic data replication algorithm in Data Grids,

Future Generation Computer Systems 28(7) (2011) 1045–

1057.

[14] J. Taheri, Y.C. Lee, A.Y. Zomaya, H.J. Siegel, A bee colony

based optimization approach for simultaneous job

scheduling and data replication in grid environments,

Computers & Operations Research (2011)

http://dx.doi.org/10.1016/j.cor.2011.11.012.

[15] Ruay-Shiung Chang, Chih-Yuan Lin, Chun-Fu Lin, “An

Adaptive Scoring Job Scheduling algorithm for grid

computing”, Future Generation Computer Systems 207

(2012) 79–89.

