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ABSTRACT 
Cloud is an emerging technology where the providers provide 

various services to Information Technology by adopting the 

concept of service oriented architecture, distributed, 

autonomic, and utility computing. In the present competitive 

world, building a highly dependable cloud application and 

opting for the optimal fault tolerant technique for cloud 

components has become crucial. In this paper, a component 

ranking framework is needed for identifying critical 

components along with the ranking prediction framework for 

selecting optimal cloud services. Additionally, Kernel 

Principal Component Ranking approach is proposed to have 

better accuracy in selecting the significant values for 

identifying critical components. Subsequent to the component 

ranking, an optimal fault-tolerance strategy is also proposed 

to automatically determine the strategy apt for identified 

critical cloud components. Thus metaheuristic algorithms are 

used for optimal fault tolerant strategy selection. The 

simulation results show that by tolerating faults of a minor 

fraction of the most critical components, the reliability of 

cloud applications can be greatly improved. 
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1. INTRODUCTION 
 
Cloud computing [NIST] is a model for enabling convenient, 

on-demand network access to a shared pool of configurable 

computing resources (e.g., networks, servers, storage, 

applications, and services) that can be rapidly provisioned and 

released with minimal management effort or service provider 

interaction. All the resources in the cloud are provisioned as 

services. Cloud computing is becoming extremely popular for 

its flexibility, scalability and reduced cost. Hence, many 

leading organizations are deploying their applications in the 

cloud environment. Cloud applications include lots of 

components [1] in which most are very complex. Thus 

building highly reliable and high quality cloud applications 

has become challenging.  

The software systems in the cloud (named as cloud 

applications) typically involve multiple cloud components 

communicating with each other. The cloud applications are 

usually large scale and very complex. But unfortunately, the 

reliability of the cloud applications is still far from perfect in 

reality.  

Nowadays, the demand for highly reliable cloud applications 

is becoming unprecedentedly strong. Building highly reliable 

clouds becomes a critical, challenging, and urgently required 

research problem. Due to the cost of developing and 

maintaining redundant components in traditional software 

reliability engineering, software fault tolerance is usually only 

employed for critical systems. Different from traditional 

software systems, there are a lot of redundant resources in the 

cloud environment, making software fault tolerance a possible 

approach for building highly reliable cloud applications. 

Cloud applications usually involve a large number of 

components and it is too expensive to provide alternative 

components for all the cloud components. To reduce the cost 

so as to develop highly reliable cloud applications within a 

limited budget, a small set of critical components needs to be 

identified from the cloud applications. In order to build highly 

reliable cloud applications, a component ranking framework, 

named KPCRCloud [2], is proposed. 

The two key steps involved here are: 

 In KPCRCloud, first a component ranking 

framework is proposed, to rank the component 

automatically. 

 Metaheuristic algorithms are used to suggest the 

optimal fault-tolerance strategies for the significant 

components automatically.  

 

2. RELATED WORK 
 

The increasing popularity of Cloud computing as an attractive 

alternative to classic information processing systems has 

increased the importance of reliable and fault tolerant 

processing.  

 

Andrzej Goscinski, Michael Brock, 2010 [3] proposed the 

application of the Resources Via Web Services framework 

(RVWS) to offer higher level abstraction of clouds in the 

form of a new technology that makes possible the provision of 

service publication, discovery and selection based on dynamic 

attributes.  

 

Ghalem Belalem, Said Limam, 2011 [4] proposes a fault 

tolerant architecture to Cloud Computing that uses an 

adaptive Checkpoint mechanism to assure that a task running 

can correctly finish in spite of faults in the nodes in which it is 

running. The proposed fault tolerant architecture is 

simultaneously transparent and scalable. 

 

Jose Luis Lucas-Simarro et al. , 2012 [5], presents a modular 

broker architecture that can work with different scheduling 

strategies for optimal deployment of virtual services across 

multiple clouds, based on different optimization criteria, user 

constraints, and environmental conditions. 

 

Linlin Wu, Saurabh Kumar Garg, Rajkumar Buyya, 2011 [6] 

proposes innovative admission control and scheduling 

algorithms for SaaS providers to effectively utilize public 

cloud resources to maximize profit by minimizing cost and 

improving customer satisfaction level. 
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Michael Armbrust et al, 2010 [7] provides simple figures to 

quantify comparisons between of cloud and conventional 

computing, and identifying the top technical and non-

technical obstacles and opportunities of cloud computing. 

 

Pawel Czarnul, 2012[8] proposes a technique for filtering 

measured data, in particular to avoid vendor lock-in issues. 

Also provides a design and results from an engine for 

simulation of various ranking algorithms in response to 

streams of prices from various providers. 

 

Sheheryar Malik, Fabrice Huet, 2011 [9] proposed a model in 

which the system tolerates the faults and makes the decision 

on the basis of reliability of nodes based on the execution of 

design diverse variants on multiple virtual machines  along 

with the recovery mechanisms. 

 

Swapna S. Gokhale, Kishor S. Trivedi, 2002 [10] enables the 

identification of performance and reliability bottlenecks and 

thus helps to analyze the sensitivity of the performance and 

reliability predictions to the changes in the parameters. This 

hierarchical model could be used to assess the impact of 

workload changes on the performance and reliability of the 

application. 

 

3. SIGNIFICANT VALUE 

DETERMINATION 
 

The cloud applications are typically large scale and include a 

lot of distributed cloud components. To build a highly reliable 

cloud applications is a challenging and critical research 

problem. To attack this challenge, a component ranking 

framework, named FaTCloud is used for building fault-

tolerant cloud applications.  

  

To reduce the cost so as to develop highly reliable cloud 

applications within a limited budget, a small set of critical 

components needs to be identified from the cloud 

applications. The critical components are are identified by 

determining the significant value. Kernel Principal 

Component Ranking named KPCRCloud approach is 

expected to have better accuracy in selecting the significant 

values for identifying critical components. By tolerating faults 

of a small part of the most important cloud components, the 

cloud application reliability can be greatly improved. Based 

on this idea, FaTCloud is proposed to identify the most 

significant components and suggests the optimal fault-

tolerance strategies for these significant components 

automatically. FaTCloud can be employed by designers of 

cloud applications to design more reliable and robust cloud 

applications efficiently and effectively.  

  

Initially two ranking algorithms are proposed to identify 

significant components from the huge amount of cloud 

components. Then, an optimal fault-tolerance strategy 

selection algorithm to determine the most suitable fault-

tolerance strategy for each significant component is presented. 

The following Fig.1 shows the system architecture of the 

fault-tolerance framework [14] (named FaTCloud), and it 

includes two divisions: 

1. Ranking  

2. Optimal fault-tolerance selection.   

The procedures of FaTCloud are as follows: 

1. A component graph is built for the cloud application based 

on the component invocation relationships. 

2. Significance values of the cloud components are calculated 

by employing component ranking algorithms. Based on the 

significance values, the components can be ranked. 

3. Most significant components in the cloud application are 

identified based on the ranking results. 

4. The performance of various fault-tolerance strategy 

candidates is calculated and the most suitable fault-tolerance 

strategy is selected for each significant component. 

5. The component ranking results and the selected fault-

tolerance strategies for the significant components are 

returned to the system designer for building a reliable cloud 

application. 

                  
Fig 1. System Architecture 
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Fig 2. Flow Chart 
 

4. COMPONENT RANKING IN CLOUD 

APPLICATION 
  
In Cloud environment, an application proceeds with the 

cloudlet creation. A simulation toolkit is used that enables 

modelling and simulation of Cloud computing systems and 

application provisioning environments.  

The objective of significant component ranking algorithms is 

to measure the importance of cloud components based on the 

available information.  Significant component ranking 

includes three steps: 

 

4.1 Component Graph Building 
 A cloud application can be modeled in the form of an 

undirected weighted graph G, where a node ci in the graph 

represents a component and a directed edge eij from node ci to 

node cj represents a component invocation relationship, i.e., ci 

invokes cj. Each node ci in the graph G has a nonnegative 

significance value V(ci), which is in the range of (0,1). Each 

edge eij in the graph has a nonnegative weight value W(eij), 

which is in the range of [0,1]. The weight value of an edge eij 

can be calculated by 

                                
     

         
 
   

                              (1)                                                      

Where, frqij is the invocation frequency of component cj by 

component ci, n is the number of components and frqij = 0, if 

component ci does not invoke cj. 

 In this way, the edge eij has a larger weight value if 

component cj is invoked more frequently by component ci 

compared with other components invoked by ci. 

 

4.2 Significant Component Ranking 
Based upon the component graph, the two component ranking 

algorithms are proposed namely, using    KPCRCloud and 

FaTCloud Algorithms. FaTCloud algorithms are further used 

as FaTCloud1 and FaTCloud2. The first approach employs 

the system structure information (i.e., the component 

invocation relationships and frequencies) for making 

component ranking. The second approach not only considers 

the system structure, but also considers the component 

characteristics (i.e., critical components or noncritical 

components) for making component ranking. Further, 

KPCRCloud is used for learning preference relations and to 

perform significant value calculation with accuracy. 

 

4.2.1 Structure-Based Component Ranking 
In a cloud application, some components are frequently 

invoked by a lot of other components. These components are 

considered to be more important, since their failures will have 

greater impact on the system compared with other 

components. Intuitively, the significant components in a cloud 

application are the ones which have many invocation links 

coming in from the other important components. An 

algorithm is proposed to calculate the significance values of 

the cloud components employing the component invocation 

relationships and frequencies. 
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The procedure of this structure-based component ranking 

algorithm is shown in the following steps: 

1. Randomly assign initial numerical scores between 0 and 1 

to the components in the graph. 

2. Compute the significance value for a component ci by: 

  

          V (ci) = 
   

 
                                    (2)                  

 

Where, n is the number of components N(ci) is a set of 

components that invoke component ci. 

The parameter d (0 ≤ d≤ 1) is employed to adjust the 

significance values derived from other components, so that 

the significance value of ci is composed of the basic value of 

itself (i.e., 0 ≤ d≤ n) and the derived values from the 

components that invoked ci.  

3. Repeat the computation until all significance values 

become stable. 

 

4.2.2 Hybrid Based Component Ranking 
 In order to rank the components as accurate as 

possible, a hybrid component ranking approach is proposed, 

which considers both the system structure as well as the 

component characteristics as follow: 

1. Randomly assign initial numerical scores between 0 and 1 

to the components in the graph. Divide the components in 

the graph into two component sets, critical components C 

and noncritical components NC, employing the prior 

knowledge provided by the system designers. 

2. If a component ci is a critical component (ci   C), compute 

the significance value for component ci by 

         V (ci) =      
 

   
                         (3) 

and if a component ci is a noncritical component (ci   

NC), compute the significance value for component ci by 

       V(ci)=     
   

    
                            (4) 

Where, the parameter  , ranges from (
   

 
    ), is 

employed to determine how much the hybrid approach relies 

on the critical components and the noncritical components. 

 

4.2.3 Kernel Principal Component Ranking 

Algorithm 
A ranking function is a function f: Q→ R mapping the 

instance-label pair q to a real value representing the relevance 

of the label y with respect to the instance x. The aim of our 

ranking task is to find a label ranking function f: Q→ R such 

that the ranking induced by the function for any instance x  X 

is a good prediction for the true preference relation. 

Let us define Q = {f: Q→  } and let H  Q be the 

hypothesis space of possible ranking functions. To measure 

how well a hypothesis f   is able to predict the preference 

relations Px for all instances x  X, we consider the following 

cost function that captures the amount of incorrectly predicted 

pairs of the relevant training data points: 

       
 

 
                              

 
     

          (5) 

where sign( ) denotes the signum function  

         
        
         

  

The use of cost functions like Equation leads to intractable 

optimization problems, therefore, we consider the following 

least squares approximation, which regresses the differences 

        with             of the relevant training 

datapoints    and    

       
 

 
          –                  

 
        (6)       

In the above described setting we assume that every instance-

label pair has an associated score. 

 

5. OPTIMAL FAULT-TOLERANCE 

STRATEGY SELECTION 
 

5.1 Fault -Tolerant Strategies 
Software Fault Tolerance hence System reliability can be 

improved by employing functionally equivalent components 

to tolerate component failures. There are many strategies in 

which three are exclusively included here. They are: 

 Recovery Blocks (RB) 
RB [3] is a means of structuring redundant program 

modules, where standby components will be invoked 

sequentially. Failure probability f of a recovery block can 

be calculated by: 

                                     f =      
 
                               (7)                       

 N- Version Programming (NVP) 
NVP [11] is multi-version programming where versions are 

independently generated. Failure probability f of a recovery 

block can be calculated by: 

                           f =       

  
   

 

                             (8) 

 Parallel Strategy 
Invokes all the n functional equivalent components in 

parallel and the first returned response will be employed as 

the final result. Failure probability f of a recovery block can 
be calculated by: 

                                 f =      
 
    

 ACO  
 Ant colony optimization algorithm (ACO) [5] is a 

probabilistic technique and is a member of the ant colony 

algorithms family, in swarm intelligence methods, and it 

constitutes some metaheuristic optimizations. It can be 

reduced to finding good paths through graphs. In general, 

the ant moves from state to state with probability  

                       
  

    
      

 
 

     
      

 
           

                              (9) 

       Where     
    is the amount of pheromone deposited for 

transition, 0 ≤ α is a parameter to control the influence of 

   ,    ,is the desirability of state transition xy (a priori 

knowledge, typically    
 , where d is the distance).    , 

    and represent the attractiveness and trail level for the 

other possible state transitions. 

 BC Strategy 
The Artificial Bee Colony (ABC) [13] is an optimization 

algorithm based on the intelligent foraging behaviour of 

honey bee swarm. The main steps of the algorithm are 

given below: 

1. Initial food sources are produced for all employed bees. 

 

2. REPEAT 

 Each employed bee goes to a food source and then 

evaluates its nectar amount and dances in the hive 

 Each onlooker watches the dance of employed bees and 

chooses one of their sources depending on the dances, 

and then goes to that source.  
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 Abandoned food sources are determined and are 

replaced with the new food sources discovered by 

scouts. 

 The best food source found so far is registered. 

3. UNTIL (requirements are met) 

 

5.2 Strategy Selection 

Designer must specify the constraints for each component to 

apply the fault tolerance strategy. Here two constraints are 

considered. They are Response time and cost. The optimal 

fault-tolerance strategy selection problem for a cloud 

component with user constraints formulated mathematically 

as: 

 Minimize:  f =      
 
                                             (10) 

Subject to:          
 
              

                            
 
                

                             
 
     ,  

                       xi     {0,1} 

  

Where, 

fi is the failure probability of the strategy candidates 

si is the cost of the strategy candidates and 

ti is the response time of the strategy candidates 

m is the number of fault tolerance strategy candidates 

u1 is the user constraints for cost 

u2 is the user constraints for response time 

xi is set to 1 if the ith candidate is selected for the component 

and 0 otherwise.  

Need to calculate the cost, response time, and the aggregated 

failure probability values of different fault-tolerance strategy 

candidates. Then, the following Algorithm is designed to 

select the optimal candidate. 

Algorithm: Optimal FT Strategy Selection 
Input: si, ti , and fi values of candidates;  user 

constraints u1 and u2  

Output: Optimal candidate index  ; m: number of 

candidates 

for (i = 1; i <= m; i++) do 

 if (si ≤ u1 && ti ≤ u2) then vi = fi; 

 end 

end 

if no candidate meet user constraints then 

 Throw exception; 

end 

Select vx which has minimal value from all the vi; 

  = x; 

 

6. RESULTS AND ANALYSIS 
A simulation tool named CloudSim has been used for 

simulating this project. The CloudSim toolkit supports both 

system and behavior modeling of Cloud system components 

such as data centers, virtual machines (VMs) and resource 

provisioning policies.  

In the FaTCloud1 and FaTCloud2 approaches, the parameter 

d balances the significance value derived from the other 

components and the basic value of the component itself. In 

this experiment, the component ranks are fairly stable when 

the parameter d is changed from 0.75 to 0.95.  

6.1 Performance Metrics And Test Methods 
Probability Failure parametric measure is taken for 

consideration in order to evaluate the performance of the 

approach. Random walk is employed to simulate the 

invocation behavior in cloud applications. To start a random 

walk, a node in the invocation graph is randomly selected as 

the start node. A very small stop rate is used for the random 

walk to guarantee the invocation coverage of all nodes in the 

graph. In this experiment, 10,000 invocation sequences are 

generated for each setting of 100 nodes.  

Table 1. Performance Comparison based on Failure 

Probability between No FT and FaTCloud1 

Number of tasks 

System Failure 

NoFT FaTCloud1 

0 0.045 0.020 

1 0.045 0.030 

2 0.048 0.035 

3 0.055 0.048 

4 0.055 0.055 

5 0.070 0.055 

FaTCloud1 and FaTCloud2 fault-tolerance 

mechanisms are applied on these invocation sequences and 

the average results are evaluated based on the probability 

failure. The FaTCloud1 and FaTCloud2 approaches are 

compared with NoFT scenario and the results are evaluated. 

 
Fig 3: Performance Comparison based on Failure 

Probability between NoFT and FaTCloud1 

Fig. 3 and Table 1 show the simulation results of number of 

tasks and system failure probabilities for NoFT and 

FaTCloud1. The number of tasks is varied from 0 to 14 and 

the respective system failure probabilities are obtained. The 

comparison is evaluated between FaTCloud1 and NoFT 

scenarios. 

It is inferred from the graph that with the increase in the 

number of tasks, the system failure probabilities also increases 

linearly. Fig. 4 and Table 2 show the simulation results of 

number of tasks and system failure probabilities for NoFT and 

FaTCloud1. 

The maximum system failure probability of the FaTCloud1 

approach is 0.077% where as the NoFT scenario attains the 

maximum failure probabilities of 0.127 %. Thus, FaTCloud1 

approach performs well under all tasks.  

It is clearly observed from the graph and table that the when 

the number of tasks is lesser, both FaTCloud2 and NoFT 

approaches attain nearly the similar system failure 

probabilities.  
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Table 2. Performance Comparison based on Failure 

Probability between FTCloud2 and No FT 

For instance, when the number of tasks is 6, the system failure 

probability attained by both the approaches is nearly 0.052%.  

 
Fig 4: Performance Comparison based on Failure  

Probability between FaTCloud2 and No FT 

But, when the number of tasks is increased, the proposed 

FaTCloud2 approach outperforms the NoFT scenario. The 

maximum system failure probability attained by FaTCloud2 is 

0.1% where as that obtained by NoFT scenario is 0.127%. 

Likewise for the comparison between NoFT and FaTCloud2. 

 

7. CONCLUSION 
Concluding, FaTCloud, the component ranking framework for 

fault-tolerant cloud applications is simulated. In the proposed 

component ranking algorithms, the significance value of a 

component is determined by incorporating KPCRCloud 

Ranking algorithm. After identifying the significant 

components, an optimal fault-tolerance strategy selection 

algorithm is proposed to provide optimal fault-tolerance 

strategies such as ABC and AOC to the significant 

components automatically, based on the user constraints. The 

experimental results show that FaTCloud1 and FaTCloud2 

approaches outperform other approaches and the Kernel 

Principal Component Ranking approach is proposed to have 

better accuracy in selecting the significant values for 

identifying critical components.  
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