
International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Simulations in Computing Nexus, ICSCN-2014

14

Scheduling Fault Tolerant Cloud Applications using
Component Ranking

Aswathi Vandana P

PG Scholar
Department of CSE (PG)

Sri Ramakrishna Engineering College, Tamilnadu,
India

Bhaggiaraj S
Assistant Professor (Sr. Gr.)

Department of IT
Sri Ramakrishna Engineering College

Tamilnadu,

India

ABSTRACT
Cloud is an emerging technology where the providers provide

various services to Information Technology by adopting the

concept of service oriented architecture, distributed,

autonomic, and utility computing. In the present competitive

world, building a highly dependable cloud application and

opting for the optimal fault tolerant technique for cloud

components has become crucial. In this paper, a component

ranking framework is needed for identifying critical

components along with the ranking prediction framework for

selecting optimal cloud services. Additionally, Kernel

Principal Component Ranking approach is proposed to have

better accuracy in selecting the significant values for

identifying critical components. Subsequent to the component

ranking, an optimal fault-tolerance strategy is also proposed

to automatically determine the strategy apt for identified

critical cloud components. Thus metaheuristic algorithms are

used for optimal fault tolerant strategy selection. The

simulation results show that by tolerating faults of a minor

fraction of the most critical components, the reliability of

cloud applications can be greatly improved.

Keywords
Cloud computing, Ranking prediction, Fault tolerance

1. INTRODUCTION

Cloud computing [NIST] is a model for enabling convenient,

on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider

interaction. All the resources in the cloud are provisioned as

services. Cloud computing is becoming extremely popular for

its flexibility, scalability and reduced cost. Hence, many

leading organizations are deploying their applications in the

cloud environment. Cloud applications include lots of

components [1] in which most are very complex. Thus

building highly reliable and high quality cloud applications

has become challenging.

The software systems in the cloud (named as cloud

applications) typically involve multiple cloud components

communicating with each other. The cloud applications are

usually large scale and very complex. But unfortunately, the

reliability of the cloud applications is still far from perfect in

reality.

Nowadays, the demand for highly reliable cloud applications

is becoming unprecedentedly strong. Building highly reliable

clouds becomes a critical, challenging, and urgently required

research problem. Due to the cost of developing and

maintaining redundant components in traditional software

reliability engineering, software fault tolerance is usually only

employed for critical systems. Different from traditional

software systems, there are a lot of redundant resources in the

cloud environment, making software fault tolerance a possible

approach for building highly reliable cloud applications.

Cloud applications usually involve a large number of

components and it is too expensive to provide alternative

components for all the cloud components. To reduce the cost

so as to develop highly reliable cloud applications within a

limited budget, a small set of critical components needs to be

identified from the cloud applications. In order to build highly

reliable cloud applications, a component ranking framework,

named KPCRCloud [2], is proposed.

The two key steps involved here are:

 In KPCRCloud, first a component ranking

framework is proposed, to rank the component

automatically.

 Metaheuristic algorithms are used to suggest the

optimal fault-tolerance strategies for the significant

components automatically.

2. RELATED WORK

The increasing popularity of Cloud computing as an attractive

alternative to classic information processing systems has

increased the importance of reliable and fault tolerant

processing.

Andrzej Goscinski, Michael Brock, 2010 [3] proposed the

application of the Resources Via Web Services framework

(RVWS) to offer higher level abstraction of clouds in the

form of a new technology that makes possible the provision of

service publication, discovery and selection based on dynamic

attributes.

Ghalem Belalem, Said Limam, 2011 [4] proposes a fault

tolerant architecture to Cloud Computing that uses an

adaptive Checkpoint mechanism to assure that a task running

can correctly finish in spite of faults in the nodes in which it is

running. The proposed fault tolerant architecture is

simultaneously transparent and scalable.

Jose Luis Lucas-Simarro et al. , 2012 [5], presents a modular

broker architecture that can work with different scheduling

strategies for optimal deployment of virtual services across

multiple clouds, based on different optimization criteria, user

constraints, and environmental conditions.

Linlin Wu, Saurabh Kumar Garg, Rajkumar Buyya, 2011 [6]

proposes innovative admission control and scheduling

algorithms for SaaS providers to effectively utilize public

cloud resources to maximize profit by minimizing cost and

improving customer satisfaction level.

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Simulations in Computing Nexus, ICSCN-2014

15

Michael Armbrust et al, 2010 [7] provides simple figures to

quantify comparisons between of cloud and conventional

computing, and identifying the top technical and non-

technical obstacles and opportunities of cloud computing.

Pawel Czarnul, 2012[8] proposes a technique for filtering

measured data, in particular to avoid vendor lock-in issues.

Also provides a design and results from an engine for

simulation of various ranking algorithms in response to

streams of prices from various providers.

Sheheryar Malik, Fabrice Huet, 2011 [9] proposed a model in

which the system tolerates the faults and makes the decision

on the basis of reliability of nodes based on the execution of

design diverse variants on multiple virtual machines along

with the recovery mechanisms.

Swapna S. Gokhale, Kishor S. Trivedi, 2002 [10] enables the

identification of performance and reliability bottlenecks and

thus helps to analyze the sensitivity of the performance and

reliability predictions to the changes in the parameters. This

hierarchical model could be used to assess the impact of

workload changes on the performance and reliability of the

application.

3. SIGNIFICANT VALUE

DETERMINATION

The cloud applications are typically large scale and include a

lot of distributed cloud components. To build a highly reliable

cloud applications is a challenging and critical research

problem. To attack this challenge, a component ranking

framework, named FaTCloud is used for building fault-

tolerant cloud applications.

To reduce the cost so as to develop highly reliable cloud

applications within a limited budget, a small set of critical

components needs to be identified from the cloud

applications. The critical components are are identified by

determining the significant value. Kernel Principal

Component Ranking named KPCRCloud approach is

expected to have better accuracy in selecting the significant

values for identifying critical components. By tolerating faults

of a small part of the most important cloud components, the

cloud application reliability can be greatly improved. Based

on this idea, FaTCloud is proposed to identify the most

significant components and suggests the optimal fault-

tolerance strategies for these significant components

automatically. FaTCloud can be employed by designers of

cloud applications to design more reliable and robust cloud

applications efficiently and effectively.

Initially two ranking algorithms are proposed to identify

significant components from the huge amount of cloud

components. Then, an optimal fault-tolerance strategy

selection algorithm to determine the most suitable fault-

tolerance strategy for each significant component is presented.

The following Fig.1 shows the system architecture of the

fault-tolerance framework [14] (named FaTCloud), and it

includes two divisions:

1. Ranking

2. Optimal fault-tolerance selection.

The procedures of FaTCloud are as follows:

1. A component graph is built for the cloud application based

on the component invocation relationships.

2. Significance values of the cloud components are calculated

by employing component ranking algorithms. Based on the

significance values, the components can be ranked.

3. Most significant components in the cloud application are

identified based on the ranking results.

4. The performance of various fault-tolerance strategy

candidates is calculated and the most suitable fault-tolerance

strategy is selected for each significant component.

5. The component ranking results and the selected fault-

tolerance strategies for the significant components are

returned to the system designer for building a reliable cloud

application.

Fig 1. System Architecture

1. RANKING

2. FAULT TOLERANCE

FaTCloud

Application

Cloud

Application

Graph

Significant

Values

Component

Graph

Building

KPCRCloud

Ranking

Significant

Component

Ranking

Optimal FT

Selection

Significant

Components

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Simulations in Computing Nexus, ICSCN-2014

16

Fig 2. Flow Chart

4. COMPONENT RANKING IN CLOUD

APPLICATION

In Cloud environment, an application proceeds with the

cloudlet creation. A simulation toolkit is used that enables

modelling and simulation of Cloud computing systems and

application provisioning environments.

The objective of significant component ranking algorithms is

to measure the importance of cloud components based on the

available information. Significant component ranking

includes three steps:

4.1 Component Graph Building
 A cloud application can be modeled in the form of an

undirected weighted graph G, where a node ci in the graph

represents a component and a directed edge eij from node ci to

node cj represents a component invocation relationship, i.e., ci

invokes cj. Each node ci in the graph G has a nonnegative

significance value V(ci), which is in the range of (0,1). Each

edge eij in the graph has a nonnegative weight value W(eij),

which is in the range of [0,1]. The weight value of an edge eij

can be calculated by

 (1)

Where, frqij is the invocation frequency of component cj by

component ci, n is the number of components and frqij = 0, if

component ci does not invoke cj.

 In this way, the edge eij has a larger weight value if

component cj is invoked more frequently by component ci

compared with other components invoked by ci.

4.2 Significant Component Ranking
Based upon the component graph, the two component ranking

algorithms are proposed namely, using KPCRCloud and

FaTCloud Algorithms. FaTCloud algorithms are further used

as FaTCloud1 and FaTCloud2. The first approach employs

the system structure information (i.e., the component

invocation relationships and frequencies) for making

component ranking. The second approach not only considers

the system structure, but also considers the component

characteristics (i.e., critical components or noncritical

components) for making component ranking. Further,

KPCRCloud is used for learning preference relations and to

perform significant value calculation with accuracy.

4.2.1 Structure-Based Component Ranking
In a cloud application, some components are frequently

invoked by a lot of other components. These components are

considered to be more important, since their failures will have

greater impact on the system compared with other

components. Intuitively, the significant components in a cloud

application are the ones which have many invocation links

coming in from the other important components. An

algorithm is proposed to calculate the significance values of

the cloud components employing the component invocation

relationships and frequencies.

Get the number of virtual

machines and tasks

Cloudlet Creation Virtual Machine Creation

Start

KPCRCLOUD

Ranking

Hybrid based

Component Ranking

Significant and non

significant components

Ranking based on

system structure

and component

characteristics

Structure based

Component Ranking

End Optimal Fault tolerant Strategy

Selection
FaT Cloud

Application

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Simulations in Computing Nexus, ICSCN-2014

17

The procedure of this structure-based component ranking

algorithm is shown in the following steps:

1. Randomly assign initial numerical scores between 0 and 1

to the components in the graph.

2. Compute the significance value for a component ci by:

 V (ci) =

 (2)

Where, n is the number of components N(ci) is a set of

components that invoke component ci.

The parameter d (0 ≤ d≤ 1) is employed to adjust the

significance values derived from other components, so that

the significance value of ci is composed of the basic value of

itself (i.e., 0 ≤ d≤ n) and the derived values from the

components that invoked ci.

3. Repeat the computation until all significance values

become stable.

4.2.2 Hybrid Based Component Ranking
 In order to rank the components as accurate as

possible, a hybrid component ranking approach is proposed,

which considers both the system structure as well as the

component characteristics as follow:

1. Randomly assign initial numerical scores between 0 and 1

to the components in the graph. Divide the components in

the graph into two component sets, critical components C

and noncritical components NC, employing the prior

knowledge provided by the system designers.

2. If a component ci is a critical component (ci C), compute

the significance value for component ci by

 V (ci) =

 (3)

and if a component ci is a noncritical component (ci

NC), compute the significance value for component ci by

 V(ci)=

 (4)

Where, the parameter , ranges from (

), is

employed to determine how much the hybrid approach relies

on the critical components and the noncritical components.

4.2.3 Kernel Principal Component Ranking

Algorithm
A ranking function is a function f: Q→ R mapping the

instance-label pair q to a real value representing the relevance

of the label y with respect to the instance x. The aim of our

ranking task is to find a label ranking function f: Q→ R such

that the ranking induced by the function for any instance x X

is a good prediction for the true preference relation.

Let us define Q = {f: Q→ } and let H Q be the

hypothesis space of possible ranking functions. To measure

how well a hypothesis f is able to predict the preference

relations Px for all instances x X, we consider the following

cost function that captures the amount of incorrectly predicted

pairs of the relevant training data points:

 (5)

where sign() denotes the signum function

The use of cost functions like Equation leads to intractable

optimization problems, therefore, we consider the following

least squares approximation, which regresses the differences

 with of the relevant training

datapoints and

 –

 (6)

In the above described setting we assume that every instance-

label pair has an associated score.

5. OPTIMAL FAULT-TOLERANCE

STRATEGY SELECTION

5.1 Fault -Tolerant Strategies
Software Fault Tolerance hence System reliability can be

improved by employing functionally equivalent components

to tolerate component failures. There are many strategies in

which three are exclusively included here. They are:

 Recovery Blocks (RB)
RB [3] is a means of structuring redundant program

modules, where standby components will be invoked

sequentially. Failure probability f of a recovery block can

be calculated by:

 f =

 (7)

 N- Version Programming (NVP)
NVP [11] is multi-version programming where versions are

independently generated. Failure probability f of a recovery

block can be calculated by:

 f =

 (8)

 Parallel Strategy
Invokes all the n functional equivalent components in

parallel and the first returned response will be employed as

the final result. Failure probability f of a recovery block can
be calculated by:

 f =

 ACO
 Ant colony optimization algorithm (ACO) [5] is a

probabilistic technique and is a member of the ant colony

algorithms family, in swarm intelligence methods, and it

constitutes some metaheuristic optimizations. It can be

reduced to finding good paths through graphs. In general,

the ant moves from state to state with probability

 (9)

 Where
 is the amount of pheromone deposited for

transition, 0 ≤ α is a parameter to control the influence of

 , ,is the desirability of state transition xy (a priori

knowledge, typically
 , where d is the distance). ,

 and represent the attractiveness and trail level for the

other possible state transitions.

 BC Strategy
The Artificial Bee Colony (ABC) [13] is an optimization

algorithm based on the intelligent foraging behaviour of

honey bee swarm. The main steps of the algorithm are

given below:

1. Initial food sources are produced for all employed bees.

2. REPEAT

 Each employed bee goes to a food source and then

evaluates its nectar amount and dances in the hive

 Each onlooker watches the dance of employed bees and

chooses one of their sources depending on the dances,

and then goes to that source.

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Simulations in Computing Nexus, ICSCN-2014

18

 Abandoned food sources are determined and are

replaced with the new food sources discovered by

scouts.

 The best food source found so far is registered.

3. UNTIL (requirements are met)

5.2 Strategy Selection

Designer must specify the constraints for each component to

apply the fault tolerance strategy. Here two constraints are

considered. They are Response time and cost. The optimal

fault-tolerance strategy selection problem for a cloud

component with user constraints formulated mathematically

as:

 Minimize: f =

 (10)

Subject to:

 ,

 xi {0,1}

Where,

fi is the failure probability of the strategy candidates

si is the cost of the strategy candidates and

ti is the response time of the strategy candidates

m is the number of fault tolerance strategy candidates

u1 is the user constraints for cost

u2 is the user constraints for response time

xi is set to 1 if the ith candidate is selected for the component

and 0 otherwise.

Need to calculate the cost, response time, and the aggregated

failure probability values of different fault-tolerance strategy

candidates. Then, the following Algorithm is designed to

select the optimal candidate.

Algorithm: Optimal FT Strategy Selection
Input: si, ti , and fi values of candidates; user

constraints u1 and u2

Output: Optimal candidate index ; m: number of

candidates

for (i = 1; i <= m; i++) do

 if (si ≤ u1 && ti ≤ u2) then vi = fi;

 end

end

if no candidate meet user constraints then

 Throw exception;

end

Select vx which has minimal value from all the vi;

 = x;

6. RESULTS AND ANALYSIS
A simulation tool named CloudSim has been used for

simulating this project. The CloudSim toolkit supports both

system and behavior modeling of Cloud system components

such as data centers, virtual machines (VMs) and resource

provisioning policies.

In the FaTCloud1 and FaTCloud2 approaches, the parameter

d balances the significance value derived from the other

components and the basic value of the component itself. In

this experiment, the component ranks are fairly stable when

the parameter d is changed from 0.75 to 0.95.

6.1 Performance Metrics And Test Methods
Probability Failure parametric measure is taken for

consideration in order to evaluate the performance of the

approach. Random walk is employed to simulate the

invocation behavior in cloud applications. To start a random

walk, a node in the invocation graph is randomly selected as

the start node. A very small stop rate is used for the random

walk to guarantee the invocation coverage of all nodes in the

graph. In this experiment, 10,000 invocation sequences are

generated for each setting of 100 nodes.

Table 1. Performance Comparison based on Failure

Probability between No FT and FaTCloud1

Number of tasks

System Failure

NoFT FaTCloud1

0 0.045 0.020

1 0.045 0.030

2 0.048 0.035

3 0.055 0.048

4 0.055 0.055

5 0.070 0.055

FaTCloud1 and FaTCloud2 fault-tolerance

mechanisms are applied on these invocation sequences and

the average results are evaluated based on the probability

failure. The FaTCloud1 and FaTCloud2 approaches are

compared with NoFT scenario and the results are evaluated.

Fig 3: Performance Comparison based on Failure

Probability between NoFT and FaTCloud1

Fig. 3 and Table 1 show the simulation results of number of

tasks and system failure probabilities for NoFT and

FaTCloud1. The number of tasks is varied from 0 to 14 and

the respective system failure probabilities are obtained. The

comparison is evaluated between FaTCloud1 and NoFT

scenarios.

It is inferred from the graph that with the increase in the

number of tasks, the system failure probabilities also increases

linearly. Fig. 4 and Table 2 show the simulation results of

number of tasks and system failure probabilities for NoFT and

FaTCloud1.

The maximum system failure probability of the FaTCloud1

approach is 0.077% where as the NoFT scenario attains the

maximum failure probabilities of 0.127 %. Thus, FaTCloud1

approach performs well under all tasks.

It is clearly observed from the graph and table that the when

the number of tasks is lesser, both FaTCloud2 and NoFT

approaches attain nearly the similar system failure

probabilities.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7

S
y

st
e
m

 F
a

il
u

r
e
 P

r
o

b
a

b
il

it
y

Number of Tasks

NoFT FaTCloud1

International Journal of Computer Applications® (IJCA) (0975 – 8887)

International Conference on Simulations in Computing Nexus, ICSCN-2014

19

Table 2. Performance Comparison based on Failure

Probability between FTCloud2 and No FT

For instance, when the number of tasks is 6, the system failure

probability attained by both the approaches is nearly 0.052%.

Fig 4: Performance Comparison based on Failure

Probability between FaTCloud2 and No FT

But, when the number of tasks is increased, the proposed

FaTCloud2 approach outperforms the NoFT scenario. The

maximum system failure probability attained by FaTCloud2 is

0.1% where as that obtained by NoFT scenario is 0.127%.

Likewise for the comparison between NoFT and FaTCloud2.

7. CONCLUSION
Concluding, FaTCloud, the component ranking framework for

fault-tolerant cloud applications is simulated. In the proposed

component ranking algorithms, the significance value of a

component is determined by incorporating KPCRCloud

Ranking algorithm. After identifying the significant

components, an optimal fault-tolerance strategy selection

algorithm is proposed to provide optimal fault-tolerance

strategies such as ABC and AOC to the significant

components automatically, based on the user constraints. The

experimental results show that FaTCloud1 and FaTCloud2

approaches outperform other approaches and the Kernel

Principal Component Ranking approach is proposed to have

better accuracy in selecting the significant values for

identifying critical components.

REFERENCES
[1] Avizienis, 1995, “The Methodology of N-Version

Programming,” Software Fault Tolerance, M.R. Lyu, ed.,

pp. 23-46, Wiley.

[2] Colorni, M. Dorigo et V. Maniezzo, 1991, Distributed

Optimization by Ant Colonies, Proceedings Of Ecal91 -

European Conference On Artificial Life, Paris, France,

Elsevier Publishing, 134-142.

[3] Andrzej Goscinski, Michael Brock, 2010, “Toward

dynamic and attribute based publication, discovery and

selection for cloud computing”, Future Generation

Computer Systems, pp. 947-970.

[4] D. Karaboga, 2005 An Idea Based On Honey Bee Swarm

for Numerical Optimization, Technical Report-

TR06,Erciyes University, Engineering Faculty, Computer

Engineering Department.

[5] Jose Luis Lucas-Simarro, Rafael Moreno-Vozmediano,

Ruben S. Montero, Ignacio M. Llorente, 2012,

“Scheduling strategies for optimal service deployment

acrossmultiple clouds”, Future Generation Computer

Systems, pp.1431–1441.

[6] Linlin Wu, Saurabh Kumar Garg, Rajkumar Buyya,

2011, “SLA-based admission control for a Software-as-a-

Service provider in Cloud computing environments ”,

Journal of Computer and System Sciences, pp. 1280–

1299.

[7] Michael Armbrust et al., 2010, “A View of Cloud

Computing,” Comm. ACM, vol. 53, no. 4, pp. 50-58.

[8] Pawel Czarnul, 2012,“An Evaluation Engine for

Dynamic Ranking of Cloud Providers”, Informatica 37,

pp. 123–130.

[9] Sheheryar Malik, Fabrice Huet, 2011, “Adaptive Fault

Tolerance in Real Time Cloud Computing”, in 2011

IEEE World Congress on Services, pp. 280-287.

[10] Swapna.S. Gokhale and K.S. Trivedi, 2002, “Reliability

Prediction and Sensitivity Analysis Based on Software

Architecture,” Proc. Int’l Symp. Software Reliability Eng.

(ISSRE ’02), pp. 64-78.

[11] M. Dorigo, 1992, Optimization, Learning and Natural

Algorithms (in Italian), Ph.D. thesis, DEI, Politecnico di

Milano, Italy, pp.140

[12] Randell B. and Xu J., 1995 “The Evolution of the

Recovery Block Concept,” Software Fault Tolerance,

M.R. Lyu, ed., pp. 1-21, Wiley.

[13] Tom Heskes et.al, 2009, Kernel Principal Component

Ranking:Robust Ranking on Noisy Data, Institute for

Computing and Information Sciences, Radboud

University Nijmegen.

[14] Zibin Zheng et al. 2012, “Component Ranking for Fault-

Tolerant Cloud Applications”, IEEE Transactions On

Services Computing, Vol. 5, No. 4, pp. 540-550.

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7

S
y

st
e
m

 F
a

il
u

r
e
 P

r
o

b
a

b
il

it
y

Number of Tasks

NoFT FTCloud2

Number of Tasks System Failure

NoFT FTCloud2

0 0.020 0.015

1 0.021 0.025

2 0.024 0.030

3 0.038 0.041

4 0.039 0.052

5 0.050 0.052

