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ABSTRACT 
In this work, we present a deep learning model based on 

reinforcement learning that is tied to an AI agent. The agent 

successfully learns policies to control itself in a virtual game 

environment directly from high-dimensional sensory inputs. 

The model is a convolutional neural network, trained with a 

variant of the Q-learning algorithm, whose input is raw pixels 

and whose output is a Q-value directly associated with the 

best possible future action. We apply our method to a first-

person shooting game - Doom. We find that it outperforms all 

previous approaches and also surpasses a human expert. 
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1. INTRODUCTION 
Reinforcement Learning can hone the power of machine 

Intelligence and is the closest technique via which humans 

have come to building a real AI. Game-playing agents make 

use of the same technique to mimic the learning process of a 

human brain. They can be regarded as learning machines 

which can learn from experiences to grow , i.e. by building 

itself dynamically and adapting to its knowledge base. Deep 

Neural Networks help those agents to achieve exceptional 

performance benchmarks which are even impossible for 

humans. By implementing state-of-the-art reinforcement 

learning techniques and combining its power with deep neural 

networks, we plan to develop an understanding of how 

gaming agents can outsmart mimic the learning process of a 

human brain, and finally outsmart human intelligence [1]. We 

initially develop this for Doom, which is a 1993 video-game. 

However, the same implementation can be trained on various 

other gaming environments by tweaking the input action 

space. 

1.1 Bellman Equation 
Bellman Equation is a mathematical formulation to help an AI 

agent to choose the best action in the current state in order to 

maximize future rewards. It takes into account a discount 

factor (gamma) which helps find optimal values for each state 

of the environment. The equation is: V(s) = maxa ( R(s, a) + 

Ɣ V(s’) ). Here, s - State, a - Action, R - Reward, Ɣ - 

Discount Factor. 

1.2 Markov Decision Processes 
Markov Decision Processes take care of scenarios where the 

outcomes are partly random and partly under the control of an 

agent [2]. Concisely, they provide a mathematical framework 

for modeling decision making in such situations. Thus, the 

Bellman equation can be modified as follows after taking the 

stochastic probabilities of events under consideration: V(s) = 

maxa ( R(s, a) + Ɣ ∑ P(s, a, s’) V(s’) ). 

1.3 Policy VS. Plan 
An AI agent after a certain amount of training starts to devise 

certain policies in the environment that lead to achieving the 

goal or the maximum possible reward. This is where AI 

agents are capable of outsmarting a human and can even take 

combination of steps or make a strategy to win the game in a 

way that humans can’t even think of [3]. On the other hand, a 

Plan is a thought-out fixed path that the agent can follow to 

reach the goal. However, this approach doesn’t involve the 

other factors that can have a significant impact on the final 

reward, and can sometimes also result in the agent not 

reaching the goal at all and get stuck in a local minimum [4]. 

1.4 Living Penalty 
A Living Penalty refers to a certain negative reward that an 

agent gets on each progressing to every state that is not 

included in its policy. For example: to explore more, the agent 

is allowed to take random steps even after a policy that leads 

to the final goal is decided. This is necessary to acknowledge 

the possibility of finding a better policy or path than the 

previous one. In case, that random behavior leads the agent 

further away from the goal, it gets a negative reward. Higher 

the living penalty, less amount of time will be spent by the 

agent on exploring other parts of the environment again. So, 

the policies depend on the magnitude of living penalty 

provided. 

1.5 Deep Convolutional Q-Learning 
Q-Learning is a reinforcement learning procedure which 

attempts to learn the value of being in a given state. It tells us 

the utility of each state in the environment and also decides on 

the action that an AI agent shall take to maximize final reward 

by moving to a state with higher utility.  

A temporal difference is the difference between the new and 

the old Q-value that is calculated after the agent changes a 

state and receives a certain reward. The method of temporal 

differences is used to update Q-values while the AI agent is 

exploring the environment and receiving continuous rewards 

based on its performance [5]. A learning rate parameter 

decides how fast the AI learns, i.e. upto what extent the Q-

values are updated. However, in complex environment such as 

Doom, this method is very slow and we need to combine the 

typical Q-learning method with a neural network, and this is 

where Deep Q-Learning comes in. This is needed because 

there are endless combination of possible states in such 

environments and it becomes difficult to deal with them with 

such an intuitive approach.  

As when we humans play a game, we are capable of using our 

sense of sight to get an insight of the current state of the 

environment. Providing numerical values as a vector for each 

change in the current state to an ANN proves to be an added 

advantage to a computer system against us. In order to make 

our AI capable of thinking as close as possible like a human 

brain, we have made use of Convolutional Neural Networks 

instead. With this approach, the images of each frame are fed 

as an input to feature detectors. The detected features are then 

max pooled and finally passed on as a flattened vector after 

applying an activation function [6]. Therefore, our AI also 

looks at the environment from a human perspective by 

looking at the environment. To sum it up, Deep Convolutional 
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Q-Learning involves leveraging the power of convolutional 

neural networks to update Q-values. 

1.6 Experience Replay and Eligibility Trace 
After running the training algorithm, a random selection from 

all the experiences is gathered and an average update for 

neural network weights is created which shall maximize Q-

values or rewards for all actions taken during those 

experiences [7]. Since very early experiences are not so 

important, only a fixed number of past experiences are tracked 

and rest are forgotten. This process is termed as experience 

replay. Eligibility Trace is when the agent makes an 

arrangement of steps, rather than just 1 step at a time before 

calculating the reward it has achieved. The agent keeps a trace 

of eligibility during the process. For example: if there is a step 

that provides a negative reward it monitors that progression 

and tries to avoid it. 

2. MOTIVATION 
Tuning algorithms on self-learning procedures can 

significantly help to solve a wide variety of business 

problems. Virtual worlds such as gaming environments are a 

fertile training ground for AIs to learn before being released 

into the real world. The strategies used to conquer games may 

also allow us to conquer unrelated domains, such as, cancer 

diagnosis, climate change mitigation, financial investment 

decisions etc. Also, by building machines capable of thinking 

and acting like a human, we may move closer to the ultimate 

benchmark of machine intelligence: a machine that passes the 

Turing Test.  

3. PROPOSED METHOD 
OpenAI’s Gym provides environment bundles for various 

gaming scenarios. We used the DoomCorridor-v0 

environment. In this environment, there are 6 enemies (3 

groups of 2), and there is a vest at the end of the corridor. Our 

goal is to reach the vest as soon as possible, without being 

killed by the enemies. 

The action space consists of the following: ATTACK, 

MOVE_FORWARD, MOVE_LEFT, MOVE_RIGHT, 

TURN_LEFT, and TURN_RIGHT. Our agent receives a 

continuous positive reward when it gets closer to the vest, a 

continuous negative reward when it gets further away from 

the vest, a penalty of 100 points if it is killed by the enemies, 

and a reward of 1000 points on reaching the vest (or atleast 

get past all the enemies). The game-playing session ends 

when our agent reaches the vest, it dies, and when there is a 

timeout (2,100 frames). 

The dependencies of our implementation include PyTorch - 

for implementing a Deep Convolutional Q-Network, Gym 

(also, ppaquette-gym-doom) - for testing our agent, and 

ffmpeg - for recording the game-playing sessions. 

3.1 Building the Brain 
The Brain makes the neural framework of our agent’s AI. The 

framework consists of three convolutional layers and two 

linear fully-connected layers. The repeated convolution 

operations are used to detect more detailed features. Input of 

the successive operation is the output of the previous 

operation.  

The first convolutional layer has only 1 in_channel because 

the AI deals with black & white images. The first layer 

outputs 32 features by using a feature detector of size equal to 

5 pixels. The second convolutional layer takes those 32 

detected features and outputs 32 new features for each input. 

Similarly, the third convolutional layer takes the output from 

the previous convolution operation and outputs 64 features for 

each input. We keep on decreasing the size of the feature 

detector in subsequent layers in order to detect minute details. 

Another function of the Brain is to propagate the whole 

network in the forward direction. After each convolution 

operation, max pooling is applied followed by a rectifier 

activation function. Finally, the output from the third 

convolution operation is flattened into a vector. This flattened 

vector is fed to the hidden layer to complete the first full 

connection. Number of input features for the first full 

connection is equal to the total number of neurons in the 

flattened layer. The neurons in this hidden layer are activated 

using the same rectifier function and fed to the output layer to 

complete the second full connection. This output layer 

contains the Q-values corresponding to the number of possible 

actions that the agent is capable of taking, which is 6 in this 

case. 

 

Fig 1: Neural Architecture of the Agent’s AI 
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3.2 Building the Body 
The Body is responsible for taking an appropriate action 

according to the received Q-values from the Brain. Its 

initialization includes a temperature parameter which is 

directly responsible for the confidence level of the agent to 

take an action.  

The Softmax function is used to determine a probability 

distribution over the possible Q-values which is used to 

sample the best action to take in the current state. 

3.3 Assembling the AI 
The Brain and the Body are assembled to function as a 

complete AI unit that implements a convolutional neural 

network and also finalises the action to be played. The 

initialization involves an object of the Brain type and an 

object of the Body type. The Body also takes care of 

converting the input images to suitable format that is 
acceptable by the CNN. The input images are converted into 

Tensor data type of PyTorch and the actions are returned as a 

numpy array. 

3.4 Preprocessing Images 
Gym provides the functionality to read inputs from the chosen 

environment and alter them according to our suitability. In 

this scenario, we pre-process each frame by reducing the 

number of channels to 1 to convert it to grayscale and then 

reduce its size to (80 x 80). 

3.5 Implementing Experience Replay and 

Eligibility Trace 
Rather than backpropagating losses according to the rewards 

received from the next possible future state, the agent learns 

from the experience it gains from the subsequent 10 steps 

which are randomly sampled from its memory capacity of the 

last 10000 states it has been in. We iterate the agent for those 

next 10 steps according to the following algorithm: 

 
I. Initialize the doom environment, AI, a list of rewards and number of steps. 

II. Define __iter__ as follows: 

A. State ← Reset the environment. 

B. history ← an empty double-ended queue 

C. reward ← 0 

D. repeat while True ←  

1. action ← output from AI 

2. next_state, r, done, _ ← take the next step according to action 

3. reward ← reward + r 

4. repeat while length(history) > number of steps + 1 ←  

a) Pop one element from the left of history. 

5. if length(history) == number of steps + 1: 

a) return history as a generator 

6. state ← next_state 

7. if done: 

a) if length(history) > number of steps + 1: 

(1) Pop one element from the left of history. 

b) repeat while length(history) > 1 ← 

(1) return history as a generator 

(2) Pop one element from the left of history. 

c) Append reward to the initialized empty list. 

d) reward ← 0 

e) Reset the environment.  

f) Clear the history 

This stepwise progress can return rewards collected from 

those 10 subsequent steps when needed. As stated earlier, 

these steps are randomly sampled from the past 10000 steps, 

if they exist. 

For implementing eligibility trace, we need a decay factor. It 

is used to make decision-making better by respecting the true 

nature of a Markov Decision Process. In this case, we have 

chosen it to be 0.99. We apply eligibility trace on a batch. For 

each series of steps in a batch, the final goal is to get the 

inputs and the associated targets ready to minimize the 

squared difference between the two for training.  

3.6 Training the AI 
Finally, we train the neural network to output the right 

predictions of the actions that the agent is supposed to take at 

each state. Mean Squared Error is used to calculate the loss 

and for optimization, we have used the Adam optimizer with a 

learning rate of 0.001. 
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We trained the AI for 100 epochs. For each epoch, 200 

successive runs of 10 steps are made. From these runs, some 

randomly sampled batches of a fixed size are obtained. The 

fixed size is taken to be 128. This means that every 128 steps, 

our memory will give us a batch of size 128 which will 

contain the last 128 steps that we have just run. The learning 

happens on these batches. Inside these batches, we have 

eligibility trace running in order to learn every 10 steps. 

The inputs and targets corresponding to a single batch are 

obtained at each batch in a single epoch. Taking those inputs, 

the AI returns certain predictions which are further used to 

calculate the overall loss for that batch. The calculated loss is 

backpropagated to update the weights of the network. 

We also keep track of the average reward for each epoch. 

After many training cycles, we see that the agent surely 

reaches the vest and clears the level on an aggregate score of 

1500. So, we stop training cycles after this score is achieved. 

Fig 2: Simple Overview of Backpropagation

4. EXPERIMENTAL RESULTS 
We achieved quite rewarding results and our agent was able to 

reach the desired score after only 25 epochs. This number 

varies significantly everytime we train the AI again because 

exploration is a stochastic process. 

Fig 3: Training the AI:Average Reward After Each Epoch - I 



International Journal of Computer Applications (0975 – 8887) 

International Conference on Recent Trends in Science, Technology, Management and Social Development 2018 

18 

Fig 4: Training the AI: Average Reward After Each Epoch - II 

During these 25 epochs, multiple video sessions of our agent 

playing Doom under the DoomCorridor-v0 environment were 

recorded. The following stills from those videos depict the 

progress of our agent. 
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Fig 5: Video Stills Showing Agent’s Progress 

Fig 6: Agent Reaches the Vest 

5. CONCLUSION 
In this paper, we presented a Deep Convolutional Q-Network 

that learns to play a first-person shooting game - Doom, solely 

by exploring the environment and collecting rewards on 

subsequent changes that occur in its state. It attempts to learn 

from relevant experiences that it collects on following 

different sequences of steps during the exploration phase. We 

also implement Experience Replay and Eligibility Trace in 

order to make it function as close as possible like an actual 

human brain learns. We make use of an environment bundle 

from OpenAI which makes it easy for us to compare different 

approaches of our reinforcement learning algorithm. We find 

that our implementation of this gaming agent learns from 

random reward providing experiences directory from high-

dimensional sensory input, that is, images. After a few 

training cycles, we achieved significant results on clearing the 

game by surpassing all previous approaches and reaching an 

all-time high score. 

5.1 Future Work 
As this model is based on a reinforcement learning approach, 

which doesn’t require any training data like conventional 

machine learning techniques, we plan to test our agent on 

various other game-playing environments, such as Breakout. 

We also plan on modifying our neural architecture to adopt 

asynchronous behavior which will involve multiple agents 

interacting with it’s own copy of the environment to learn 

more efficiently, and from each-other as well. 
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