
International Journal of Computer Applications (0975 – 8887)

International Conference on Recent Trends in Science, Technology, Management and Social Development 2018

14

Playing Doom with Deep Reinforcement Learning

Manan Kalra
SoCS, UPES Dehradun

India

J. C. Patni
SoCS, UPES Dehradun

India

ABSTRACT
In this work, we present a deep learning model based on

reinforcement learning that is tied to an AI agent. The agent

successfully learns policies to control itself in a virtual game

environment directly from high-dimensional sensory inputs.

The model is a convolutional neural network, trained with a

variant of the Q-learning algorithm, whose input is raw pixels

and whose output is a Q-value directly associated with the

best possible future action. We apply our method to a first-

person shooting game - Doom. We find that it outperforms all

previous approaches and also surpasses a human expert.

Keywords
Machine Learning, Reinforcement Learning, Q-Learning,

DQN, CNN

1. INTRODUCTION
Reinforcement Learning can hone the power of machine

Intelligence and is the closest technique via which humans

have come to building a real AI. Game-playing agents make

use of the same technique to mimic the learning process of a

human brain. They can be regarded as learning machines

which can learn from experiences to grow , i.e. by building

itself dynamically and adapting to its knowledge base. Deep

Neural Networks help those agents to achieve exceptional

performance benchmarks which are even impossible for

humans. By implementing state-of-the-art reinforcement

learning techniques and combining its power with deep neural

networks, we plan to develop an understanding of how

gaming agents can outsmart mimic the learning process of a

human brain, and finally outsmart human intelligence [1]. We

initially develop this for Doom, which is a 1993 video-game.

However, the same implementation can be trained on various

other gaming environments by tweaking the input action

space.

1.1 Bellman Equation
Bellman Equation is a mathematical formulation to help an AI

agent to choose the best action in the current state in order to

maximize future rewards. It takes into account a discount

factor (gamma) which helps find optimal values for each state

of the environment. The equation is: V(s) = maxa (R(s, a) +

Ɣ V(s’)). Here, s - State, a - Action, R - Reward, Ɣ -

Discount Factor.

1.2 Markov Decision Processes
Markov Decision Processes take care of scenarios where the

outcomes are partly random and partly under the control of an

agent [2]. Concisely, they provide a mathematical framework

for modeling decision making in such situations. Thus, the

Bellman equation can be modified as follows after taking the

stochastic probabilities of events under consideration: V(s) =

maxa (R(s, a) + Ɣ ∑ P(s, a, s’) V(s’)).

1.3 Policy VS. Plan
An AI agent after a certain amount of training starts to devise

certain policies in the environment that lead to achieving the

goal or the maximum possible reward. This is where AI

agents are capable of outsmarting a human and can even take

combination of steps or make a strategy to win the game in a

way that humans can’t even think of [3]. On the other hand, a

Plan is a thought-out fixed path that the agent can follow to

reach the goal. However, this approach doesn’t involve the

other factors that can have a significant impact on the final

reward, and can sometimes also result in the agent not

reaching the goal at all and get stuck in a local minimum [4].

1.4 Living Penalty
A Living Penalty refers to a certain negative reward that an

agent gets on each progressing to every state that is not

included in its policy. For example: to explore more, the agent

is allowed to take random steps even after a policy that leads

to the final goal is decided. This is necessary to acknowledge

the possibility of finding a better policy or path than the

previous one. In case, that random behavior leads the agent

further away from the goal, it gets a negative reward. Higher

the living penalty, less amount of time will be spent by the

agent on exploring other parts of the environment again. So,

the policies depend on the magnitude of living penalty

provided.

1.5 Deep Convolutional Q-Learning
Q-Learning is a reinforcement learning procedure which

attempts to learn the value of being in a given state. It tells us

the utility of each state in the environment and also decides on

the action that an AI agent shall take to maximize final reward

by moving to a state with higher utility.

A temporal difference is the difference between the new and

the old Q-value that is calculated after the agent changes a

state and receives a certain reward. The method of temporal

differences is used to update Q-values while the AI agent is

exploring the environment and receiving continuous rewards

based on its performance [5]. A learning rate parameter

decides how fast the AI learns, i.e. upto what extent the Q-

values are updated. However, in complex environment such as

Doom, this method is very slow and we need to combine the

typical Q-learning method with a neural network, and this is

where Deep Q-Learning comes in. This is needed because

there are endless combination of possible states in such

environments and it becomes difficult to deal with them with

such an intuitive approach.

As when we humans play a game, we are capable of using our

sense of sight to get an insight of the current state of the

environment. Providing numerical values as a vector for each

change in the current state to an ANN proves to be an added

advantage to a computer system against us. In order to make

our AI capable of thinking as close as possible like a human

brain, we have made use of Convolutional Neural Networks

instead. With this approach, the images of each frame are fed

as an input to feature detectors. The detected features are then

max pooled and finally passed on as a flattened vector after

applying an activation function [6]. Therefore, our AI also

looks at the environment from a human perspective by

looking at the environment. To sum it up, Deep Convolutional

International Journal of Computer Applications (0975 – 8887)

International Conference on Recent Trends in Science, Technology, Management and Social Development 2018

15

Q-Learning involves leveraging the power of convolutional

neural networks to update Q-values.

1.6 Experience Replay and Eligibility Trace
After running the training algorithm, a random selection from

all the experiences is gathered and an average update for

neural network weights is created which shall maximize Q-

values or rewards for all actions taken during those

experiences [7]. Since very early experiences are not so

important, only a fixed number of past experiences are tracked

and rest are forgotten. This process is termed as experience

replay. Eligibility Trace is when the agent makes an

arrangement of steps, rather than just 1 step at a time before

calculating the reward it has achieved. The agent keeps a trace

of eligibility during the process. For example: if there is a step

that provides a negative reward it monitors that progression

and tries to avoid it.

2. MOTIVATION
Tuning algorithms on self-learning procedures can

significantly help to solve a wide variety of business

problems. Virtual worlds such as gaming environments are a

fertile training ground for AIs to learn before being released

into the real world. The strategies used to conquer games may

also allow us to conquer unrelated domains, such as, cancer

diagnosis, climate change mitigation, financial investment

decisions etc. Also, by building machines capable of thinking

and acting like a human, we may move closer to the ultimate

benchmark of machine intelligence: a machine that passes the

Turing Test.

3. PROPOSED METHOD
OpenAI’s Gym provides environment bundles for various

gaming scenarios. We used the DoomCorridor-v0

environment. In this environment, there are 6 enemies (3

groups of 2), and there is a vest at the end of the corridor. Our

goal is to reach the vest as soon as possible, without being

killed by the enemies.

The action space consists of the following: ATTACK,

MOVE_FORWARD, MOVE_LEFT, MOVE_RIGHT,

TURN_LEFT, and TURN_RIGHT. Our agent receives a

continuous positive reward when it gets closer to the vest, a

continuous negative reward when it gets further away from

the vest, a penalty of 100 points if it is killed by the enemies,

and a reward of 1000 points on reaching the vest (or atleast

get past all the enemies). The game-playing session ends

when our agent reaches the vest, it dies, and when there is a

timeout (2,100 frames).

The dependencies of our implementation include PyTorch -

for implementing a Deep Convolutional Q-Network, Gym

(also, ppaquette-gym-doom) - for testing our agent, and

ffmpeg - for recording the game-playing sessions.

3.1 Building the Brain
The Brain makes the neural framework of our agent’s AI. The

framework consists of three convolutional layers and two

linear fully-connected layers. The repeated convolution

operations are used to detect more detailed features. Input of

the successive operation is the output of the previous

operation.

The first convolutional layer has only 1 in_channel because

the AI deals with black & white images. The first layer

outputs 32 features by using a feature detector of size equal to

5 pixels. The second convolutional layer takes those 32

detected features and outputs 32 new features for each input.

Similarly, the third convolutional layer takes the output from

the previous convolution operation and outputs 64 features for

each input. We keep on decreasing the size of the feature

detector in subsequent layers in order to detect minute details.

Another function of the Brain is to propagate the whole

network in the forward direction. After each convolution

operation, max pooling is applied followed by a rectifier

activation function. Finally, the output from the third

convolution operation is flattened into a vector. This flattened

vector is fed to the hidden layer to complete the first full

connection. Number of input features for the first full

connection is equal to the total number of neurons in the

flattened layer. The neurons in this hidden layer are activated

using the same rectifier function and fed to the output layer to

complete the second full connection. This output layer

contains the Q-values corresponding to the number of possible

actions that the agent is capable of taking, which is 6 in this

case.

Fig 1: Neural Architecture of the Agent’s AI

International Journal of Computer Applications (0975 – 8887)

International Conference on Recent Trends in Science, Technology, Management and Social Development 2018

16

3.2 Building the Body
The Body is responsible for taking an appropriate action

according to the received Q-values from the Brain. Its

initialization includes a temperature parameter which is

directly responsible for the confidence level of the agent to

take an action.

The Softmax function is used to determine a probability

distribution over the possible Q-values which is used to

sample the best action to take in the current state.

3.3 Assembling the AI
The Brain and the Body are assembled to function as a

complete AI unit that implements a convolutional neural

network and also finalises the action to be played. The

initialization involves an object of the Brain type and an

object of the Body type. The Body also takes care of

converting the input images to suitable format that is
acceptable by the CNN. The input images are converted into

Tensor data type of PyTorch and the actions are returned as a

numpy array.

3.4 Preprocessing Images
Gym provides the functionality to read inputs from the chosen

environment and alter them according to our suitability. In

this scenario, we pre-process each frame by reducing the

number of channels to 1 to convert it to grayscale and then

reduce its size to (80 x 80).

3.5 Implementing Experience Replay and

Eligibility Trace
Rather than backpropagating losses according to the rewards

received from the next possible future state, the agent learns

from the experience it gains from the subsequent 10 steps

which are randomly sampled from its memory capacity of the

last 10000 states it has been in. We iterate the agent for those

next 10 steps according to the following algorithm:

I. Initialize the doom environment, AI, a list of rewards and number of steps.

II. Define __iter__ as follows:

A. State ← Reset the environment.

B. history ← an empty double-ended queue

C. reward ← 0

D. repeat while True ←

1. action ← output from AI

2. next_state, r, done, _ ← take the next step according to action

3. reward ← reward + r

4. repeat while length(history) > number of steps + 1 ←

a) Pop one element from the left of history.

5. if length(history) == number of steps + 1:

a) return history as a generator

6. state ← next_state

7. if done:

a) if length(history) > number of steps + 1:

(1) Pop one element from the left of history.

b) repeat while length(history) > 1 ←

(1) return history as a generator

(2) Pop one element from the left of history.

c) Append reward to the initialized empty list.

d) reward ← 0

e) Reset the environment.

f) Clear the history

This stepwise progress can return rewards collected from

those 10 subsequent steps when needed. As stated earlier,

these steps are randomly sampled from the past 10000 steps,

if they exist.

For implementing eligibility trace, we need a decay factor. It

is used to make decision-making better by respecting the true

nature of a Markov Decision Process. In this case, we have

chosen it to be 0.99. We apply eligibility trace on a batch. For

each series of steps in a batch, the final goal is to get the

inputs and the associated targets ready to minimize the

squared difference between the two for training.

3.6 Training the AI
Finally, we train the neural network to output the right

predictions of the actions that the agent is supposed to take at

each state. Mean Squared Error is used to calculate the loss

and for optimization, we have used the Adam optimizer with a

learning rate of 0.001.

International Journal of Computer Applications (0975 – 8887)

International Conference on Recent Trends in Science, Technology, Management and Social Development 2018

17

We trained the AI for 100 epochs. For each epoch, 200

successive runs of 10 steps are made. From these runs, some

randomly sampled batches of a fixed size are obtained. The

fixed size is taken to be 128. This means that every 128 steps,

our memory will give us a batch of size 128 which will

contain the last 128 steps that we have just run. The learning

happens on these batches. Inside these batches, we have

eligibility trace running in order to learn every 10 steps.

The inputs and targets corresponding to a single batch are

obtained at each batch in a single epoch. Taking those inputs,

the AI returns certain predictions which are further used to

calculate the overall loss for that batch. The calculated loss is

backpropagated to update the weights of the network.

We also keep track of the average reward for each epoch.

After many training cycles, we see that the agent surely

reaches the vest and clears the level on an aggregate score of

1500. So, we stop training cycles after this score is achieved.

Fig 2: Simple Overview of Backpropagation

4. EXPERIMENTAL RESULTS
We achieved quite rewarding results and our agent was able to

reach the desired score after only 25 epochs. This number

varies significantly everytime we train the AI again because

exploration is a stochastic process.

Fig 3: Training the AI:Average Reward After Each Epoch - I

International Journal of Computer Applications (0975 – 8887)

International Conference on Recent Trends in Science, Technology, Management and Social Development 2018

18

Fig 4: Training the AI: Average Reward After Each Epoch - II

During these 25 epochs, multiple video sessions of our agent

playing Doom under the DoomCorridor-v0 environment were

recorded. The following stills from those videos depict the

progress of our agent.

International Journal of Computer Applications (0975 – 8887)

International Conference on Recent Trends in Science, Technology, Management and Social Development 2018

19

Fig 5: Video Stills Showing Agent’s Progress

Fig 6: Agent Reaches the Vest

5. CONCLUSION
In this paper, we presented a Deep Convolutional Q-Network

that learns to play a first-person shooting game - Doom, solely

by exploring the environment and collecting rewards on

subsequent changes that occur in its state. It attempts to learn

from relevant experiences that it collects on following

different sequences of steps during the exploration phase. We

also implement Experience Replay and Eligibility Trace in

order to make it function as close as possible like an actual

human brain learns. We make use of an environment bundle

from OpenAI which makes it easy for us to compare different

approaches of our reinforcement learning algorithm. We find

that our implementation of this gaming agent learns from

random reward providing experiences directory from high-

dimensional sensory input, that is, images. After a few

training cycles, we achieved significant results on clearing the

game by surpassing all previous approaches and reaching an

all-time high score.

5.1 Future Work
As this model is based on a reinforcement learning approach,

which doesn’t require any training data like conventional

machine learning techniques, we plan to test our agent on

various other game-playing environments, such as Breakout.

We also plan on modifying our neural architecture to adopt

asynchronous behavior which will involve multiple agents

interacting with it’s own copy of the environment to learn

more efficiently, and from each-other as well.

International Journal of Computer Applications (0975 – 8887)

International Conference on Recent Trends in Science, Technology, Management and Social Development 2018

20

6. REFERENCES
[1] Sutton, R. S. & Bartro, A. G. (1998). Introduction to

Reinforcement Learning. Cambridge, MA: MIT Press.

[2] Bellman, R.E (1957). Dynamic Programming.,

Princeton, New Jersey: Princeton University Press.

[3] Bellemare M.G., Naddaf, Y., Veness, J. & Bowling M.

(2013). The arcade learning environment: An evaluation

platform for general agents. Journal of Artificial

Intelligence Research, 47:253–279.

[4] Bellemare, M. G., Veness, J. & Bowling, M. (2012).

Investigating contingency awareness using atari 2600

games. In AAAI.

[5] Silver, D. (2016). Deep Reinforcement Learning.

DeepMind Technologies.

[6] Krizhevsky, A., Sutskever, I. & Hinton, G. (2012).

Imagenet classification with deep convolutional neural

networks. In Advances in Neural Information Processing

Systems 25, pages 1106–1114.

[7] White, D. J. (1993, November). A Survey of

Applications of Markov Decision Processes. The Journal

of the Operational Research Society, Vol. 44, No. 11, pp.

1073-1096.

IJCATM : www.ijcaonline.org

