
International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

32

Web Portal Development using Extreme Programming
Practices

Pooja Kolte
MCA, PGDCS, SNDT

University Juhu Tara Road,
Santacuz(w),Mumbai-49

Trupti Bhujbale

MCA, PGDCS, SNDT
University Juhu Tara Road,

Santacuz(w),Mumbai-49

Anita Chaware

MCA, PGDCS, SNDT
University Juhu Tara Road,

Santacuz(w),Mumbai-49

ABSTRACT

The following are three main reasons why developing

software is difficult. These are: Developing complex software

of good quality is extremely tough, developing software is not

getting any easier especially in Internet time, and there is an

increasing shortage of skilled individuals who can do the

work.[1] In face of these pressures, the amount of software

development effort required must be optimized. In this paper,

we propose an iterative software life cycle using extreme

programming practices to resolve software development

issues in the smooth manner. The proposed approach speed up

process with less effort and produce a more maintainable code

for future maintenance and evolution. In this paper we tried to

extend the Extreme programming architecture with some

definitions for each phase for easy use. Using the enhanced

architecture of XP we also did a case study for developing the

web portal for student counselling called E-counselling. The

same project was also given to another team using traditional

waterfall model to compare the results like time duration, cost

etc.

Keywords

Agile, continuous integration, pair programming, refactoring,

releases, Spike, Unit test, validation test, waterfall model, XP.

1. INTRODUCTION
Extreme Programming (XP) is a software development

methodology. It is intended to improve software quality and

responsiveness for new requirements of customer. It is a type

of agile software development, because of that it advocates

frequent “releases” in short development cycles, which is used

to improve productivity and introduce checkpoints with the

help of that checkpoints new customer requirements can be

adopted. The method takes its name from the idea that the

beneficial elements of traditional software engineering

practices are taken to "extreme" levels.[9] Extreme

Programming is a discipline of software development which is

based on values of Simplicity, Communication, Feedback,

Respect and Courage. It works with the whole team together

in the presence of simple practices. Enough feedback is useful

to the team to see where they are. Extreme programming is

successful because it stresses customer satisfaction or

customer wants.

Extreme Programming emphasizes on teamwork. Managers,

customers, and developers are all equal partners in a

collaborative team. Extreme Programmers constantly

communicate with their customers and fellow programmers.

The team keeps their design simple and clean. They get

feedback by testing their software starting on day one. They

deliver the system to the customers as early as possible and

implement changes as suggested by customer.

2. HISTORY
Extreme Programming was created by Kent Beck during his

work on the Chrysler Comprehensive Compensation System

(C3) payroll project. Beck became the C3 project leader in

March 1996 and began to refine the development method used

in the project. The first Extreme Programming project was

started March 6, 1996. [5]

The "practice of test-first development, planning and writing

tests before each micro-increment" was used as early as

NASA's Project Mercury, in the early 1960s (Larman 2003).

A NASA independent test group can write the test procedures,

based on formal requirements and logical limits, before the

software has been written and integrated with the hardware. In

Extreme programming this concept is taken to extreme level

by writing automated tests. Automated tests validate the

operation of small sections of software coding, rather than

only testing the larger features of code. [5]

3. WORKING WITH AGILE

3.1 Why Agile
Classical or Traditional methods of software development

such as Waterfall model, Spiral model, etc have many

disadvantages like as follows:

 Huge effort during the planning phase.

 Poor requirements conversion in a rapid changing

environment.

 Treatment of staff as a factor of production

Agile Software Development Methodology is invented to

overcome these problems. It is lightweight, people-based

rather than plan-based.

3.2 What is Agile
Agile software development is a group of software

development methods which is based on iterative and

incremental development process. It promotes adaptive

planning, evolutionary development and delivery of product; a

time boxed iterative approach and encourages rapid and

flexible response to any change.[6]

Several agile methods that have been developed areas follow:
[10]

 Scrum

 Dynamic Systems Development Method (DSDM)

 Crystal Methods

 Feature Driven Development

International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

33

 Lean Development

 Extreme Programming (XP)

3.3 Why Extreme Programming (XP)
There are some reasons [7] for why Extreme Programming

(XP) is needed:

 It produce high quality software

 It keep programmers happy

 It keeps Customer happy

 It will be prepared for change

 It speed-up the development

3.4 What is Extreme Programming (XP)
Extreme Programming (XP) is a software engineering

methodology, the most popular among several agile software

development methodologies. XP prescribes a set of day-to-

day practices for managers and developers. Extreme

programming is based on five values that are:

 Simplicity- XP keeps things as simple as possible

while meeting the requirements of the project.

Relation between communication and simplicity is,

simplicity in design and coding should improve the

quality of communication.

 Communication- Constant and thorough

communication between members of the

development team as well as customer is needed to

success.

 Feedback-For the customer satisfaction, customer

involvement and feedback for product is required.

 Respect- The respect value includes respect for

others as well as self-respect. Members respect their

own work by always going for high quality and

seeking for the best design for the solution at hand

through refactoring.

 Courage- Developers must have the courage and

confidence to bring change and produce quality

results for customer satisfaction.

There are four basic activities that XP proposes for software

development process:

 Coding- In XP coding is considered the only

important product of the system development

process. XP programmers start to generate codes at

the very beginning.

 Testing-XP prefers to always check if a function

works properly or not by testing it. XP uses

automated unit testing.

 Listening-Listening is very important in XP. For

XP developers the ability and expertise in technical

aspects should be accompanied by the ability to be

good listeners. This ability is useful for them to

understand what customers want and to develop the

solutions which match customer’s needs.

 Designing-Without proper design in the long run

system becomes too complex and project could

come to a halt. It is then important to create a design

structure that organizes the logic in the system so

too many dependencies in the system can be

avoided.

4. ADVANTAGES AND

DISADVANTAGES OF XP

4.1 Advantages
 Pair programming:

 XP team works with the pair of developer that

means there are always two developer called pair in

XP to develop the code. One can do the coding and

other can instruct him and verify that code whether

it is correct or not. This code development is done

only on one machine by that a particular pair.

Rotation is performing between pair to take

knowledge of work of coding.

 Robustness:

XP breaks the task into modules. All that modules

can combined together to get end product. Because

of the coding for modules there are very less bugs

occurred in code. Validation testing determines

successful completion of code, implementation

testing checks whether the customer requirements

implemented properly or not and regular testing

reduces the chance of bugs in the coding at

development stage.

 Resilience:

Traditional approach work well when there are

static requirements but in actual requirements keep

changing, but XP allows the change in requirements

of customer.

 Coding is important:

XP gives importance to the coding rather than

unnecessary paperwork and meetings. It works on

small piece of code for simplicity in code and

allows changes as per the customer requirements.

 Employee satisfaction:

Extreme programming is a value-driven approach

sets fixed work time for employee with less

overtime work. Small piece of code and customer

feedback helps to work before tight deadline of

project, improving the employee satisfaction.

 Cost saving:

In traditional approach, changes made at the end of

project life cycle. In XP changes are allowed during

development stage which reduces the cost, because

cost will increases as the project moves ahead in

different phase of life cycle.

 Test driven development:

 XP gives importance to coding as well as testing. It

is called test driven developments which XP checks

whether the code or function works properly or not.

The testing is done with the help of unit test which

means the test of small piece of code with

automated test tools.

 Lesser risks:

XP divides task into small piece of code which

reduces the dependencies of architect, project

manager and coder which also reduces the chances

of risk.

4.2 Disadvantages
 Extreme programming is hard to do:

Extreme programming is hard to do because it has

lots of disciplines and practices which are

sometimes not accepted by the team. There is need

of customer involvement during development and

most of the times customer don’t give their valuable

time.

 XP is not structured:

XP is not structured, because of that it is difficult to

find defects to the tester by just looking towards

screen but in traditional approach the documentation

helps to find significant number of defects in code.

 Refactoring can be a waste of time:

International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

34

XP can modify the code to perform change in the

code. But too much of refactoring is not necessary

sometimes and its wastes a time.

 Duplication of code:

XP has a pair programming that means they works

in pair for the development of code which creates

duplicate data in code as well as in database and

because of that it takes too much of time for code

testing.

 Sometimes XP team does not believe on fixed price,

fixed scope:

There is a fixed scope and fixed price in XP,

sometimes XP team does not believe on that

concept because traditional approach and other

programming works with detailed planning

5. ARCHITECTURE OF XP

Fig 1: Extreme programming project 2000 Don Wells.

Fig 2: Extended Architecture of Extreme programming with defined processes.

We have tried to model diagram in figure 1 in to four phases

as shown in figure 2. Those are exploration phase, planning

phase, iteration to release phase, production phase which are

further implemented using seven steps as project requirement,

user stories, release plan, test case, code iteration, Customer

Acceptance, Release.

As per the Theory of extreme programming the following are

actor’s involved in extreme programming.[4]

 Customer: customer/client is one person who is

involved in all phases. During exploration phase

customer is involved for writing user stories, again

for creating release plan during planning phase.

While coding customer is supposed to be present if

required by developer, and for small release he is

required to pass acceptance test.

 Developers are responsible for planning and

iteration to release test.

International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

35

 Project leader is responsible to conduct daily

standup meeting and keeping people moving

around.

 Project manager is responsible for creating release

plan and solving managerial issues. He is also

responsible for creating commitment with customer.

5.1 Exploration phase
During exploration phase project requirements are gathered.

Customer is supposed to write user stories. As “customer is

always available” is one of rule in extreme programming,

Customer is available for iteration planning and release

planning meetings. The planning process within extreme

programming is called the Planning Game. Planning for per

iteration is done once in a week which is done for creating to

plans that is iteration plan. Iteration planning meeting is

conducted. The plan contains guideline for developers and

assigns the tasks of the developers[4]. There is no customer

involvement. Iteration Planning is carried in three steps:

 Exploration : With help of class collaboration cards

requirements taken from the clients in the form of

user stories, are converted into tasks

 Commitment: These tasks are then assigned to a

pair of programmer and time required is estimated

with help of project velocity.

 Steering: The tasks which are carried out are then

compared with the original user story at the end of

each iteration.

The purpose of the Exploration phase is to guide the product

into delivery.

5.2 Planning phase
All complex issues are broken down to simple design and

uncertain and essentials issues are spiked to certain one. User

stories are used to write down unit test cases. In this phase

release Plans are created. These are helpful for determining

what requirements are included for which near-term releases,

and when they should be delivered. The customers and

developers are both responsible for conducting this meeting.

The customer will provide important requirements for the

system. These will be written down on user story cards.

Developers will commit themselves to the functionality that

will be included and the date of the next release. In the

steering phase the plan can be changed. If customer

acceptance is failed then new test cases are written and if still

problem persist, new user stories can be created.

5.3 Iteration to release phase
At developer’s site, customer is available while

implementations, as functionality requirements from user

stories are left off. Project velocity is number of user stories

finished per iteration, which is useful for planning next

iteration. [4] The programmer gets the task card for one of the

tasks. The programme will implement the task with one more

partner; such kind of programming is done in practices of Pair

programming. The programmers will design the functionality

of the task. Programmers start writing automated tests which

is called as Unit Testing before coding the functionality. The

test is executed after they have coded the task. Refactoring

involves removing code which is the symptoms of weaker

design.

5.4 Productionizing
User stories finished per iteration need to accept by customer

during production phase where user will get working, tested,

implementable software component. XP supports continuous

process of software development. Productionizing phase

involves following steps.

 Continuous integration[4]

It involves integrating often and using collective

ownership[3].Each team player likes to work with

the latest version. Changes should not be made to

obsolete code causing integration headaches. Set up

a dedicated integration computer. Whole team will

be responsible for making changes in design or in

code.

 Small releases

The delivery of the software is done via frequent

releases of live functionality creating concrete

value. Small releases also increase customer

confidence about development of the project. Also

it is possible for customer to provide new

suggestion after working with software in real life.

6. ECONOMICS OF SOFTWARE

DEVELOPMENT
[2]

Fig 3: Cost of change for traditional SDLC model
[2]

As shown in above diagram cost of fixing bugs is goes on

increasing as software devolvement process continues to next

phase, but, in Extreme Programming the cost of change curve

is seems to be flat. The customer is always available hence the

feedback loop is reduced to extreme level. Coding on unit test

also helps for serving the purpose. Here the feedback loop is

effectively reduced to minutes instead of days, weeks, or even

months which is typical in traditional processes.

Fig 4: Cost of change for Extreme programming model.

[2]
According to Sergey Konovalov and Stefan Misslinger in

their Extreme programming paper[2]above graphs are used to

show the economic growth for development of software. As a

result the chances are good, that the cost of change will not

get out of hand. Hence using extreme programming for

project development will always save the cost so that later

International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

36

changes in requirements will not affect the cost for time per

iteration.

7. THE EXPERIMENT
The experiment is to implement extreme programming for

developing a web portal is given hereafter including students

previous exposure to XP, student background, duration of the

experiment, E-Counselling project scope, group formation,

tools and XP mentor activities.

7.1 Student’s background
The experiment was conducted on class-level with 6 students

as a developer, 2 as a project leader from senior class, which

are involved in this experiment. Student background related to

the experiment had subjects such as ASP.Net, DBMS, WT

and Software engineering. The developer team had no

previous exposure to team, hence first two weak training

given to them.

7.2 Duration of the experiment
The experiment was conducted within a time frame of a single

semester. Within software engineering course, students need

to present assignments for the project. To complete the

experiments students worked for 12 weeks.

7.3 E-Counseling project scope
This project was simple but work is done on real problem,

because this project is only for the semester exam. The project

work as done on simple problems such as the counselling for

academic students, admission process, and college names list.

To understand concept of software engineering this project

has been taken. This project scope was limited to providing

the following basic services to students: Students related

services like Student registration, student login and

registration to take admission, select college list and Admin

related services like Admin login, add colleges, update college

data, delete college data, and allot colleges to the registered

student after filling form.

7.4 Group formation
A team of 6 students participating in the experiment, therefore

those 6 students was distributed in 3 groups with the pair of 2

students in each group. Among the 3 groups tasks are allotted

to each group per iteration. “2 by 6” Pair programming

practice is implemented. Project Head is responsible for

allocation of task and rotation of the pairs.

7.5 Tools
To develop a project of E-Counselling the tools were used

that: ASP.Net and SQL server.

7.6 Results
This section includes the results with following points: partial

adoption of XP, on-site customer, planning game (writing user

stories and iteration planning meeting).

7.7 Role of extreme programming
In this experiment, only the XP practices pertinent to small

scale projects were focused on “sub-practice”.

The sub-practices included those contributing to rapid

feedback and learning process namely, planning game, pair

programming, collective code ownership, unit testing, simple

design, refactoring and use of coding standards.

 On-Site Customer

Due to real-world constraints, there was no real

customer. Students had three hours per week

contact with the simulated customer and 1-2 hours

with the XP mentor. To enhance communication

between developer and customer, one web site was

established to post user stories and suggested

project releases and deadlines.

 Planning Game

The E-Counselling requirements were discussed

with the XP group. Because of the time boxing

students agreed for 2 releases. Release 1 included 6

stories such as designing the home page of portal,

Student Registration form, student login, form

filling, Admin login and College allotment, this

work was done by first group. Release 2 included 4

stories such as select college, add college data,

update college data and delete college data, this

work was done by second group. It should be

mentioned that the planning game practices was

implemented with full success with XP group.

There was also a project head which monitors all

the groups.

Fig 5: Structure of team formed for XP

Above figure shows that there were total 6 students those

were the developers for E-Counselling project. Those 6

students were from junior class. Other 2 students from senior

class studying software engineering were the project leaders.

The project leader supports the developers and check whether

the project is on right track or not. Validation testing,

implementation testing and regular testing in extreme

programming were done on regular time intervals. There was

one project head also which monitors all the students that

mean developers as well as project leaders.

8. CONCLUSION
During this case study for extreme programming we can

conclude that XP is faster development model than traditional

development model. Extreme programming also reduces the

cost for maintenance when compared with the traditional

waterfall model for the same project which was done by the

other team at the same time duration. It also supports test

driven approach which help us to deploy the web portal just

after the completion whereas for waterfall model testing was

done after coding which has taken more time as customer

where having some issues after coding . In XP customer is

always bound to development process hence it is best practice

in which developer can achieve maximum customer

satisfaction. The use of pair programming improves quality

and speed of development. XP forces to all team members to

be expertise in all technology. Hence if customer agrees to be

bound for whole development process XP is best practice to

implement for project. The only drawback which we had seen

during the whole project is proper training for working in

agile environment with new technology should be given to the

team members.

International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

37

9. ACKNOWLEDGMENTS
Our thanks to the experts who have contributed towards

development of the model for extreme programming and agile

development models. Our special thanks to project head, and

development team students for contributing their work.

10. REFERENCES
[1] Booch, G. (2001, March). Developing the Future.

Communications of the ACM. Retrieved July 4, 2001,

from the World Wide Web: http://portal.acm.org.

[2] Sergey Konovalov and Stefan Misslinger Extreme

Programming May 23, 2006

[3] Don Wells Extreme programming.[online]

http://www.extremeprogramming.org/map/project.html

[4] K.Beck,Extereme Programming Explained : Embrace

change, Addison Wesley Longman, Reading, Mass, 2000

[5] Ll.Williums et al. , “ strengthening the case for pair

programming ,” IEEE software ,Vol. 17, no. 4, July –

Aug 2000

[6] Tobias Bergemann Agile software development

[online]http://en.wikipedia.org/w/index.php?title=Agile_

software_development&oldid=515608970

[7] Michael Kircher Siemens AG, Corporate Technology,

eXtreme Programming in Open-Source and Distributed

Environments

[8] Enterprise Software Blog http://enterpriseblog.net/a

[9] "Extreme Programming", Computerworld

<online>,Computerworld-appdev-92

[10] Extreme Programming Wilfrid Hutagalung

<online>,http://www.umsl.edu/~sauterv/analysis/f06Pap

ers/Hutagalung/

[11] Ronald E. Jeffries[online] http://xprogramming.com

