
International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

5

Software Change Complexity: A New Dimension for
Analyzing Requested Change

Aprna Tripathi, Dharmender Singh Kushwaha, Arun Kumar Misra
Department of Computer Science and Engineering

MNNIT Allahabad
Allahabad, India

ABSTRACT
It has been well accepted by the software professionals as well

as researchers that software systems have to evolve themselves

to survive successfully. Software evolution is a crucial activity

for software organizations. Software complexity has existed as

an important issue ever since the software programs came into

existence. Thus, it becomes necessary to visualize and analyze

the complexity of requested change before implementation. The

goal of this paper is to identify the software complexity after

change. The complexity will be used in taking decision about

approval or rejection of the requested change, estimating effort

for implementing change, estimating effort required in

regression testing predicting number of possible faults. We have

applied our proposed approach on four case studies. These case

studies show some evidence that our approach is reasonably

efficient and precise as well as being practical for software

change management.

Index Terms

Software change management, cohesion, coupling, and software

change complexity.

1. INTRODUCTION
Even today, software change management is a very challenging

area for the researchers. While about three decades, researchers

are putting their continued effort in this direction and share their

contemplation. Change seems to be very simple when someone

demands it, but the complexity of the task appears when it

moves towards implementation phase. Software maintenance

and evolution is an expensive phase in the software development

life cycle. The quality and demand of software can judge by its

maintainability. The Software maintenance is by far the costliest

and most difficult phase in the software life cycle. The

motivation behind this work is to improve the maintainability of

software systems, so that maintenance effort is reduced.

Reduction in effort can achieve by analyzing the software

complexity.

As a change is requested, it is not only the issue where to make

the change. However, how the change will be process, is also an

important consideration in order to keep the quality parameter of

the software in terms of reliability, understandability, reusability

and maintainability?

Software complexity plays a very significant role in

understanding the degree of difficulty associated with the

development of proposed change, in estimating the effort

required in implementation as well as in the regression testing.

The most challenging activity during maintenance is to assess

the impact of the requested change on the existing system. The

ignorance of impact analysis of proposed change could decrease

the maintainability of the system. Software complexity may

have a direct impact upon maintenance costs as well as the costs

incurred through the presence of software errors.

This paper proposes a method for analyzing change with four

case studies. Section II discusses related work. Section III details

proposed approach. Section IV and V presents the case studies

and results. Section VI, the last section of the paper, outlines

conclusions and future work.

2. STATE - OF- THE- ART
The Change is a continuous process. Change may be requested

by different sources and may have different types. Buckley et al.

[1] propose taxonomy of software change. As a change is

requested, it is analyzed and then after the approval of the

decision committee it is further processed. An impact is the

effect of one object on another. Software Change Impact

analysis (SCIA) is used to determine the scope of change

requests as a basis for resource planning, effort estimation and

scheduling. Angelis et al. [2] discusses the importance of the

change impact analysis issues during software change

implementation process. Arnold and Bohner [3] define a three-

part conceptual framework to compare different impact analysis

approaches and assess the strengths and weaknesses of

individual approach. Gethers et al. [4] propose a framework for

impact analysis based on the degree of automation and

developer augmentation information, which is obtained from

system maintenance scenario. The Pfleeger and Atlee [5] focus

on the risks associated with the change and state, "Impact

Analysis (IA) is the evaluation of many risks associated with the

change, including estimates of the effects on resources, effort,

and schedule". However, affect on non-functional properties of

the system such as maintainability, readability, reusability etc

are also important to analyze before implementing the change.

Complexity of the system has the ability to measure the non-

functional parameter. Banker et al. [6] examine the relationships

between software complexity and software maintainability in

commercial software environments. Author proposes a

framework to enable researchers (and managers) to assess such

products and techniques more quickly by introducing software

complexity as a factor linking software development tools and

techniques and software maintenance costs. For visualizing the

impact of a requested change on the non-functional parameter, it

is required to analyze impact on the complexity of the software.

There are various metrics proposed by various authors for

measuring the software complexity. Hassan et al. [7] proposes

complexity metrics that are based on the code change process

instead of on the code. We conjecture that a complex code

change process negatively affects its product, i.e., the software

system. Mc Cabe [8] uses a fundamental assumption that the

software complexity is related to the number of control paths

generated by the code. Reddy and A. Ananda Rao [9] proposes

three metrics: dependency oriented complexity metric for

structure (DOCMS(R)), dependency oriented complexity metric

International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

6

for an artifact causing ripples (DOCMA(CR)), and dependency

oriented complexity metric for an artifact affected by ripples

(DOCMA(AR)). DOCMS(R) metric value indicated the higher

complexity for the structure due to presence of design defects.

The most favorable parameters for measuring the software

complexity found in literature are the coupling and cohesion.

Chidamber et al. [10, 11] say that classes are coupled if methods

or instance variables in one class are used by the other. Coupling

Between Object-classes (CBO) for a class is number of other

classes coupled with it. For measuring the cohesiveness author

also proposes the metric Lack of Cohesion in Methods (LCOM)

Number of non-similar method pairs in a class of pairs. Li et al.

[12] proposes Data abstraction coupling (DAC) for a class is the

number of attributes having other classes as their types. There

are a large number of methods for computing the software

complexity but the change involves some additional parameters

thus the available methods are not sufficient for computing the

software change complexity. To compute the software change

complexity is still challenging. The main objective of this paper

is to propose and implement a novel approach for analyzing the

change and design a formula for computing the software change

complexity.

3. PROPOSED APPROACH
Complexity is an important issue for software development as it

affects the cost, effort and quality of the product. Change

complexity could be helpful in analyzing the impact of change.

In addition, effort required in implementing change, effort

required in testing of the change and effort required for complete

system testing after the change has been implemented can be

estimated. Cohesion and coupling are very useful property for

estimating the quality and complexity of any software. S.

Pfleeger [5] defines coupling as the degree of dependence

among components and cohesion as the degree to which all

elements of components, directed towards a single task and all

elements directed towards that task are contained in a single

component. High coupling could makes modification process

difficult while high cohesion is preferable for software. In

the proposed work, coupling and cohesion are considered as the

basis for estimating the complexity of requested change. Higher

complexity of the change indicates the lesser the possibility of

change implementation in the existing software. Complex

change may require a huge amount of effort and may harm the

system.

Before implementation of the change, determining the change

complexity could give a strong criterion for making decision

about acceptance or rejection of the requested change. The

complexity of the change includes coupling and cohesion as the

basic parameters. There are different levels of coupling as well

as cohesion. The decrement in the cohesion level and / or

increment in coupling level make the system more complex, and

maintainability of system may also negatively affected. For

computing the complexity of change, it is required to measure

the coupling and cohesion. The coupling and cohesion have

various levels. For computing complexity, first, we find the

coupling and cohesion level along with corresponding weight for

existing system class diagram and then same for the new class

diagram that includes the proposed changes. Finally, the

deviation in the total weight for coupling and cohesion is

computed. Table 1 and Table 2 summarize the level of coupling

and cohesion with its corresponding weight. As the level of

coupling increases, corresponding weight increases and as the

level of cohesion decreases, weight of cohesion level increases.

Increment in level of cohesion and decrement in level of

coupling is desirable to maintain or enhance the software

quality.

TABLE I. Coupling Levels with their Weight

Level of Coupling Weight
(Wcoupling)

High

 Low

Content 6

Common 5

Control 4

Stamp 3

Data 2

Uncoupled 1

TABLE II. Cohesion Levels with their Weight

Level of Cohesion Weight

(Wcohesion)

Low

High

Coincidental 8

Logical 7

Temporal 6

Procedural 5

Communicational 4

Sequential 3

Informational 2

Functional 1

Let we assume that N1 and N2 are the number of external links in

between classes in the existing and changed system respectively.

C1 and C2 is the number of classes in the existing and changed

system respectively. A class may have NK1 and NK2 are number

of internal links in existing classes and changed classes

respectively, where, N1, N2, C1, C2, NK1 and NK2 are positive

integer. Each link carries a weight according to the table 1 and

table 2.Thus,

Coupling weight of existing system

CupWexisting = (1)

Coupling weight of changed system

CupWchanged =

 (2)

Cohesion weight of existing system

CohWexisting = (3)

Cohesion weight of changed system

 CohWchanged = (4)

DiffCupW is difference in coupling weight of existing

system and changed system

DiffCupW = CupWchanged - CupWexisting (5)

DiffCohW is difference in cohesion weight of existing system

and changed system

DiffCohW = CohWchanged - CohWexisting (6)

The effects of coupling and cohesion on complexity can

summarize in the following tables III:

International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

7

TABLE III. Coupling Levels with their Weight

Case

Id

Case Description Effect on System

Complexity

CA1 If DiffCupW and DiffCohW both

zero

No change in

complexity

CA2 If DiffCupW and DiffCohW both

positive

Complexity decreases

CA3 If DiffCupW and DiffCohW both

negative

Complexity increases

CA4 If DiffCupW is positive,

DiffCohW is negative and |

DiffCupW | > | DiffCohW |

Complexity decreases

CA5 If DiffCupW is negative,

DiffCohW is positive and

|DiffCupW | < | DiffCohW |

Complexity decreases

CA6 If DiffCupW is zero and DiffCohW

is positive

Complexity decreases

CA7 If DiffCupW is zero and DiffCohW

is negative

Complexity increases

CA8 If DiffCohW is Zero and DiffCupW

is positive

Complexity decreases

CA9 If DiffCohW is Zero and DiffCupW

is negative

Complexity decreases

4. CASE STUDIES
For validating the proposed approach, we considered the four

different case studies. Here we assume that unit difference in

cohesion weight decreases one unit complexity and one unit

increment in coupling weight increases two units of system

complexity. Since addition of one class, include at least addition

of one function in the added class. We assume that, the existing

system complexity is 50 units for all the cases.

A. A Leap Year Identification System (LYIS) identifies a year as

valid or invalid leap year for a given year.

1) Existing System: There is a LYIS version 1.0. A user

inputs a valid integer of four digits to the system. System will

display the message "The given year is a leap year" if given year

is leap year otherwise, system will display "The given year is not

a leap year".

2) Proposed Change: User input a valid string of four

letters for providing the year to the system for identifying the

given year is a leap year or not. For example, 1978 will be input

as "1978" while "19AB" will be the invalid input.

With the reference of case study taken, figure 1 and 2 are

showing the cohesiveness of the existing and changed system

respectively.

Fig. 1. Cohesion in Existing LYIS

Fig. 2. Cohesion in Changed LYIS

In this case, there is no change in coupling since there is

only one class. Thus, from Eq. 1, DiffCohW = 0. For computing

the value of DiffCohW, we consider Eq. 3, 4 and 6. Here C1 =

C2 = 1, NK1 = 1 and NK2 = 2. Referring to the Table I and Table

II, for Existing system WEcohesion(11) = 3 and for the changed

system WCcohesion(11) = 3, WCcohesion(12) = 3

So, by using equation (3) and (4), CohWexisting = 3 and

CohWchanged = 6. On putting these values in equation 6,

DiffCohW = 6 - 3 = 3

Finally, we have DiffCupW = 0 and DiffCohW is positive.

This is indented case 6 from Table III i.e. the CA6. The above

results show that there is no change in the coupling, the

cohesiveness of the system is increased, and the complexity

decreases for the proposed change.

B. A Prime Number Identification System (PNIS) identifies a

number as a prime or non-prime for a given number.

1) Existing System: There is a There is a PNIS version 1.0. A

user inputs a valid integer to the system. System will display the

message "The given number is a prime number" if given number

is prime number otherwise, system will display "The given

number is non-prime".

2) Proposed Change: User input a range for finding the

prime numbers between the given ranges.

Fig. 3. Cohesion in Existing PNIS

International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

8

Fig. 4. Cohesion in Changed PNIS

With the reference of case study taken, figure 3 and 4 are

showing the cohesiveness of the existing and changed system

respectively. In this case, there is no change in coupling since

there is only one class. Thus, from Eq. 1, DiffCohW = 0. For

computing the value of DiffCohW, we consider Eq. 3, 4 and 6.

Here C1 = C2 = 1, NK1 = 1 and NK2 = 2. Referring to Table

I and Table II, for Existing system WEcohesion(11) = 3 and for the

changed system WCcohesion(11) = 3 , WCcohesion(12) = 5

So, by using equation (3) and (4), CohWexisting = 3 and

CohWchanged = 8. On putting these values in equation 6, DiffCupW

= 8 - 3 = 5. Finally, we have DiffCupW = 0 and DiffCohW is

positive, This can be observed in case 6 from Table III i.e. the

CA6. The above results show that there is no change in the

coupling, the cohesiveness of the system is increased and the

complexity decreases for the proposed change.

C. An Age Calculator System (ACS) identifies the employee

current age.

1) Existing System: There is an ACS version 1.0. The date of

birth of the employee of the organization is given as to the ACS

1.0 It calculates the current age of the employee in terms of day

month and year

2) Proposed Change: System also sends an e-card to the

employee email on his birthday or marriage anniversary or on

his retirement day.

Fig. 5. Cohesion in Existing ACS

Fig. 6. Coupling and cohesion in Changed ACS

With the reference of case study taken, figure 5 and 6 are

showing the cohesiveness of the existing and changed system

respectively. In this case study, there is a change in both coupling

as well as in cohesion. For computing the value of DiffCWup,

Eq. 1, 2 and 5 are considered. In the existing system there is only

on class while after change there are two classes. Here C1 = 1 ,

C2 = 2, N1 = 0 and N2 = 1. Referring to Table 2 and Table 3, for

Existing system Wcoupling(1) = 0 and for the changed system

Wcoupling(1) = 2 So, by using equation (1) and (2), we have

CupWexisting = 0 and CupWchanged = 2. On putting these values in

equation 6, DiffCupW = 2-0 = 2. For computing the value of

DiffCohW, Eq. 3, 4 and 6 are considered.

 Here C1 = C2 = 1, NK1 = 1 and NK2 = 2. Referring to Table

I and Table II, for Existing system WEcohesion(11) = 2 and for the

changed system WCcohesion(11) = 2, WCcohesion(21) = 7 WCcohesion(22) =

7 WCcohesion(23) = 7 WCcohesion(24) = 2

So, by using equation (3) and (4), CohWexisting = 2 and

CohWchanged = 26. On putting these values in equation 6, we have,

DiffCupW = 26 - 2 = 24 Finally, we have DiffCupW = positive and

DiffCohW is positive, This can be observed in case 2 from Table

III i.e. the CA2. The above results show that there is no change in

the coupling, the cohesiveness of the system is increased and the

complexity decreases for the proposed change.

D. Student Information System (SIS) maintains the updated

record of the student of acollege.

1) Existing System: There is an SIS version 1.0. At the end

of the year, it prepares the list of top five students for displaying

on the college notice board.

2) Proposed Change: Now the college management

wants to display the name of the top five students along with few

details like father's name and marks secured in the final exam.

Fig. 7. Coupling and Cohesion in Existing SIS

International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

9

Fig. 8. Coupling and Cohesion in Changed SIS

With the reference of case study taken, figure7 and 8 are showing

the cohesiveness of the existing and changed system respectively.

In this case, there is a change in coupling. For computing the

value of DiffCWup, Eq. 1, 2 and 5 are considered. In the existing

system there is only on class while after change there are two

classes. Here C1 = 2, C2 = 2, N1 = 1 and N2 = 1. Referring to

Table I and Table II, For Existing system Wcoupling(1) = 2 and for

the changed system Wcoupling(1) = 3

So, by using equation (1) and (2), CupWexisting = 2 and CupWchanged

= 3 On putting these values in equation 6, DiffCupW = 3 - 2 = 1

There is no change in cohesion. Thus, DiffCohW is zero This can

be observed in case 9 from Table III i.e. the CA9. The above

results show that the coupling of the system reaches at higher

level after the change, the cohesiveness of the system is not

affected and the complexity increased for the proposed change.

5. RESULTS
The results indicate that the complexity of the system is

negatively affected by adding new classes while the complexity

of the system decreases by adding new functions in the existing

system. More effort is required in making change, if it includes

the addition of new classes as compared to making modifications

in the existing classes. It is concluded that the maintainability of

the system and the complexity of the system is proportionally

related with each other. The complexity of the system is affected

by the change in coupling and cohesion. This information could

be used in making decision about the acceptance or rejection of

the change, the effort estimation in implementing change, effort

required in regression testing.

TABLE IV. Comparison among Change in Cohesion, Coupling
and Complexity

Case

study

Change in Cohesion

Weight

Change in

Coupling

Weight

Change in

System

Complexity

LYIS 3 0 47

PNIS 5 0 45

ACS 24 2 30

SIS 0 1 52

Fig. 9. Effect of change in coupling and cohesion on system

complexity

Table IV and Fig. 9. shows the changes in coupling and cohesion

weights after implementing the changes and the affected system

complexity. It validates the proposed approach.

6. CONCLUSION AND FUTURE WORK
In conclusion, this paper proposes a fundamentally new approach

that seeks a systematic solution to accept or reject the requested

change. In this work, the software change complexity is

computed before processing the change. The complexity

computation gives a new dimension to the analysts for analyzing

the requested change. In addition, with the inclusion of

computation of change complexity the criteria of acceptance or

rejection of requested change became strengthen. This research

is expected to offer realistic solution for analyzing the software

change impact of a proposed change on the existing system. The

future work is assumed to consider the results in form that are

more detailed. We are planning to quantify the complexity so that

one can compute the deviation in system complexity because of

requested change. We also work in the direction of estimating the

effort required in implementing change through software

complexity.

7. REFERENCES
[1] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid,

and Gunter Kniesel. 2005. Towards a taxonomy of software

change: Research Articles. J. Softw. Maint. Evol. 17, 5

(September 2005), 309-332.

[2] Lefteris Angelis, and Claes Wohlin. 2008. An Empirical

Study on Views of Importance of Change Impact Analysis

Issues. IEEE Trans. Softw. Eng. 34, 4 (July 2008), 516-530.

[3] R. S. Arnold and S. A. Bohner, “Impact Analysis - Towards

A Framework for Comparison,” Proceedings of the

Conference on Software Maintenance, Los Alamitos, CA,

September 1993, pp. 292-301

[4] Malcom Gethers, Huzefa Kagdi, Bogdan Dit, and Denys

Poshyvanyk., "An adaptive approach to impact analysis

from change requests to source code", In Proceedings of the

26th IEEE/ACM International Conference on Automated

Software Engineering (ASE '11), IEEE Computer Society,

Washington, DC, USA, pp. 540-543, 2011

[5] Pfleeger, S.L. and J.M. Atlee (2006)." Software

Engineering Theory and Practice Upper Saddle River",

New Jersey, USA, Prentice Hall

[6] R. D. Banker, S. M. Datar, and D. Zweig. 1989. Software

complexity and maintainability. In Proceedings of the tenth

international conference on Information Systems (ICIS '89),

Janice I. DeGross, John C. Henderson, and Benn R.

Konsynski (Eds.). ACM, New York, NY, USA, 247-255.

[7] Ahmed E. Hassan. 2009. Predicting faults using the

complexity of code changes. In Proceedings of the 31st

International Conference on Software Engineering (ICSE

'09). IEEE Computer Society, Washington, DC, USA, 78-

88

[8] Thomas J Mc Cabe, A Complexity Measure, IEEE

Transactions on Software Engineering, Vol., SE-2, No. 4,

December 1976

[9] K. Reddy Reddy and A. Ananda Rao. 2009. Dependency

oriented complexity metrics to detect rippling related

design defects. SIGSOFT Softw. Eng. Notes 34, 4 (July

2009), 1-7.

[10] Chidamber, S. R. and Kemerer, C. K. Towards a Metrics

Suite for Object Oriented Design. Proceedings of 6th ACM

International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

10

Conference on Object Oriented Programming, Systems,

Languages and Applications (OOPSLA’91), (Phoenix,

Arizona, 1991), 197-211.

[11] Chidamber, S. R. and Kemerer, C. K. A Metrics Suite for

Object Oriented Design. IEEE Transactions on Software

Engineering, Vol. 20 (June 1994), pp.476-493.

[12] Li, W. and Henry, S. Object-Oriented metrics that predict

maintainability. Journal of Systems and Software. 23(2)

1993 111- 122.

