
International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

34

Watermarking Applications using Native Libraries

#1Akriti Kumari, #2Ashlin Mathew, #3Rutuja Jori

#
Department of Computer Engineering,

Bharti Vidyapeeth’s College of Engineering for Women,

Katraj, Pune - 411 043, India

ABSTRACT
In the present scenario, Intellectual Property Rights (IPR) for

applications and software codes has become a primordial

factor because of increasing level of software piracy. Software

piracy is a direct threat to the revenue of software distributors

and the country in general. A variety of preventive techniques

have been developed for protection of the copyright of

software codes or applications. But every technique developed

till now is not strong enough to protect the software codes. In

this paper, we propose a new watermarking technique for

applications using Native Libraries and Java Virtual Machine.

Firstly the libraries are written in C language called native

libraries and then included in the Java code. The combining of

Java and C languages is done using Java Native Interface

(JNI). The Java Native Interface (JNI) is a programming

framework that enables Java code running in a Java Virtual

Machine (JVM) to call, and to be called by, native

applications (programs specific to a hardware and operating

system platform) and libraries written in other languages such

as C, C++ and assembly. When an application is written using

native libraries, it becomes almost impossible to reverse

engineer or decompile the application completely. After

reverse-engineering an application written using Native

Libraries to obtain the source code, the output will contain

only the function prototype declarations.

General Terms
Application Security (Security by Design)

Keywords
Intellectual Property Rights (IPR), Java Virtual Machine, Java

Native Interface, Native Libraries

1. INTRODUCTION
Software piracy refers to unauthorized use, copying or
distribution of software. It is done by copying, downloading,
sharing, selling, or installing multiple copies onto personal or
work computers. Many people don‟t realize that when one
buys software one is purchasing a license to use it and not the
actual software. The license of the software tells us how many
times the software can be installed. If one uses the software
more than the license permits then it is piracy[2].

Software piracy is one of the direct threats to software
industry which brings serious damages to the interests of
software developers or providers and causes huge economic
losses. One of the common types of software piracy is
counterfeit software. Counterfeit software is a type of
software piracy which is said to occur when fake software is
produced and distributed in such a manner that it appears to be
authentic. The Global Software Piracy Study 2011[4] states
that the piracy rate globally, hovered at 42% while the market
of pirated software has grown to $63 billion worldwide. As
per the survey conducted by BSA, the piracy rate across the

globe for past 5 years is as given in Table 1 and its
comparison chart is as shown in Figure 1:

Table 1: Piracy Rate %

Region

Piracy Rate (%)

2007 2008 2009 2010 2011

Asia – Pacific 59% 61% 59% 60% 60%

C. & E. Europe 68% 66% 64% 64% 62%

Latin America 65% 65% 63% 64% 61%

M. East & Africa 60% 59% 59% 58% 58%

N. America 21% 21% 21% 21% 19%

W. Europe 33% 33% 34% 33% 32%

WORLD 38% 41% 43% 42% 42%

Figure 1: Piracy Rate (%)

The loss due to piracy world has been immense. Every year,
software traders and companies have been losing millions of
US dollars because of software piracy. The survey by Global
Software Piracy Study 2011 states the loss in million US
dollars[4] as given in Table 2 below and its comparison chart
is given in Figure 2:

International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

35

Table 2: Commercial Value of Unlicensed Software

Region

Commercial Value of unlicensed software

($M)

2007 2008 2009 2010 2011

Asia – Pacific 14,090 15,261 16,544 18,746 20,998

C. & E. Europe 6,351 7,003 4,673 5,506 6,133

Latin America 4,123 4,311 6,210 7,030 7,459

M. East &

Africa

2,446 2,999 2,887 4,078 4,159

N. America 9,144 10,401 9,379 10,623 10,958

W. Europe 11,655 13,023 11,750 12,771 13,749

WORLD 47,809 52,998 51,443 58,754 63,456

Figure 2: Commercial Value of unlicensed Software ($M)

2. WATERMARKING
A watermark is a marker embedded in an audio, video or an
application‟s code with the aim to identify the owner. There
are two different ways in which watermarking of applications
or software watermarking is done: static watermarking and
dynamic watermarking. Static watermarking embeds the
watermark in the code or data section whereas dynamic
watermarking stores the watermarks in a program's execution
state, rather than in the program code itself.

2.1. Static Watermarking
Static watermarks are embedded in the code and/or data of a

computer program,[1] a trivial example would be embedding

a copyright notice in a string. Java class-files could contain

software watermarks within their method bodies or their

constant pool. The problem with storing a watermark as a

string in a computer program is that unused variables could be

easily removed with a simple dead-code analysis, and method

or variable names are either lost during compilation or

obfuscation. Other static watermarking techniques may

involve transformations such as re-arranging or replacing

instructions or basic blocks.

Static watermarking has various disadvantages. They are as

mentioned below:

 Static watermarks are easy to construct and extract, but

they are prone to attacks.

 Watermarks can easily be distorted by code obfuscators

which may break up all the strings and scatter them

around the program. General code obfuscation or

optimization tools can easily change the static

watermark, making them difficult to identify.

 Other attacks such as code motion and loop

transformations can be used to distort the watermarks.

Given the simplistic nature of static watermarks, these

are relatively easy to distort and break.

2.2. Dynamic Watermarking
Dynamic software watermarks are inserted in the execution

state of a program, rather than in the program code or data

itself. It is shown that dynamic watermarking is more secret

and robust, and has already become a main research direction

present in software watermarking.[2] Prior techniques in

dynamic watermarking hide the watermark in data structures

that are built specially for this purpose during the execution of

the program. The fact that the data structure is built

specifically to house the watermark and it is independent of

the application semantic makes the watermark susceptible to

subtractive attacks. The behavior and semantic of the host

program will not be affected by removing the data structures

that hide the watermark[2].

Dynamic watermarks are of three types:

 Easter egg watermarks

 Data structure watermarks

 Execution trace watermarks

Easter egg watermarks display an image or a message after an

unusual sequence of inputs is entered. Hence these are very

trivial and easily be spotted[5].

Data structure watermarks are stored in the various data

structures, the various instructions of the application; they can

be extracted by checking the values of particular program‟s

variables with a particular input sequence, simply by using a

debugger tool[5].

Execution trace watermarks embed the watermark within the

trace of application as it is executed with a special input

sequence. It is used very rarely[5].

3. WATERMARKING USING JAVA
Recent developments in languages introduced coding of

applications in Java language. Coding in Java is considered

the most secure form of coding an application developed till

now. Dynamic watermarking is done in the various libraries

used in the application using Java. These files are then

converted to .class files which are machine independent and

hence can be executed on any machine. But this technique of

Java based coding also has a flaw. If a software pirate

acquires a Java Decompiler (JAD), every application

developed in Java can decompiled easily.

3.1. JAD (JAva Decompiler)
A decompiler is a computer program that performs the reverse

operation to that of a compiler; i.e. it translates a file

containing information at a relatively low level of abstraction

(usually designed to be computer readable rather than human

readable) into a form having a higher level of abstraction

(usually designed to be human readable). The decompiler does

not reconstruct the original source code, and its output is far

less intelligible to a human than original source code.

International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

36

Jad (Java Decompiler) is such a decompiler for Java

programming language. Jad provides a command-line user

interface to extract source code from class files. A graphical

user interface for Jad is JadClipse which is available as a

plugin to the Eclipse IDE. Various versions of Jad are

available on the internet, for e.g. Mocha is a Java decompiler,

which allows programmers to translate a program's

bytecode into source code.

The objective of Jad is to convert the .class files into Java

source code. Most often a decompiler helps the programmers

clarify poor documentation or provides a means for creating

not yet written documentation. But on the other hand,

decompilers are the prized components of any good software

piracy kit.

Once the .class files are decompiled, the .java files are

obtained. These files can then be edited to remove the

watermarking and compiled again to give totally different

.class files which will perform just like the initial .class files

but will consist of no watermarking. As a result, the

programmer would not be able to prove the ownership.

3.2. JNI (Java Native Interface)
To overcome the various shortcomings of Java based

watermarking, the coding of various libraries to be used in an

application can be done in JNI (Java Native Interface).

JNI is powerful framework for seamless integration between

java and other programming languages (called native

languages in JNI terminologies) used for improving

performance and facilitating code reusability. JNI is extremely

flexible, allowing Java methods to invoke native methods and

vice versa, as well as allowing native functions to manipulate

java objects. JNI renders native application with much of the

functionality of Java allowing them to call java methods,

access and modify java variables, manipulate java exceptions,

ensure threat safety through Java thread synchronization

mechanism and ultimately to directly invoke the Java Virtual

Machine.[9]

JNI bridges the gap between Java and C. It does this by

accessing shared libraries that can be written in C (or possibly

C++).A native method is a Java method (either an instance

method or a class method) whose implementation is written in

another programming language such as C.

3.2.1. JNI Data types:
It is essential that the data types that are passed between Java

and native code have the same properties. The easiest and

safest way to use the table below when mapping between Java

and native code.

Table 3: Mapping Between Java and Native Data Type

Java
Type

Native
Type

Description

boolean Jboolean 8 bits, unsigned

byte Jbyte 8 bits, signed

char Jchar 16 bits, unsigned

double Jdouble 64 bits

float Jfloat 32 bits

int Jint 32 bits, signed

long Jlong 64 bits, signed

short Jshort 16 bits, signed

void Void N/A

3.2.2. JNI Type Signatures
A signature is a list that specifies a class constructor, an

instance method, or a static method, and thus distinguishes it

from other constructors, instance methods, or static methods.

A simple signature is a single element list containing the

name of the method or constructor. In most cases a simple

signature is only needed as the Java method resolver is able to

disambiguate overloaded Java methods based on the types of

Java object arguments. The full signature is used to

distinguish between two or more methods or constructors that

have the same number of arguments. In native code, Java type

signatures are encoded using the mappings shown below [6]

[7].

Table 4: Java Type Signature Encoding

Java Type Signature

boolean Z

byte B

char C

double D

float F

int I

long J

void V

object Lfully-qualified-class;

type[] [type

method signature (arg-types) ret-type

4. INTEGRATION OF NATIVE CODE

USING JNI
Let us understand the integration of native code into Java

programs using the simple example of „Hello World!‟

application [7].

1. Create the Java files. Create the two Java files as shown

below.

HelloWorld.java

– declares a native method

class HelloWorld

{

/* declare native method */

public native void displayMessage();

static

{

/*Load the Library*/

System.loadLibrary("HelloWorldImp")

;

 }

 }

– create a HelloWorld object and call the native

method

class Main

{

public static void main(String[] args)

International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

37

 {

HelloWorld hello = new HelloWorld();

hello.displayMessage();

 }

 }

2. Compile the Java files.

javac HelloWorld.java

3. Create the header file. Uses the .class file created

previously to create HelloWorld.h. (Note the -jni

argument to javah.)

javah -jni HelloWorld

This produces the file HelloWorld.h. It contains the C

declarations for the methods that were declared

native in HelloWorld.java. If we open the

HelloWorld.h file we will see the following code[8]:

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class HelloWorld */

#ifndef _Included_HelloWorld

#define _Included_HelloWorld

#ifdef __cplusplus

extern "C" {

#endif

/*

 * Class: HelloWorld

 * Method: displayMessage

 * Signature: ()

V

 */

JNIEXPORT void JNICALL

Java_HelloWorld_displayMessage

 (JNIEnv *, jobject);

#ifdef __cplusplus

}

#endif

#endif

 javah - javah is a useful tool that creates a C-style

header file from a given class. The resulting header file

describes the class file in C terms. Although it is possible

to manually create the header file, this is almost always a

bad idea. javah knows exactly how Java types and objects

map into C types.

 jni.h - jni.h is a C/C++ header file that is included with

the JDK. This file defines all of the necessary data types.

It contains mostly #defines and typedefs that hide the

complexity of mapping Java types to native types. It also

#includes many other platform-specific header files. Since

javah automatically includes this header file, you as the

programmer usually do not have to explicitly include this

file.

4. Create the C file.

The function that you write must have the same

function signature as the one you generated

with javah into the HelloWorld.h file.

 HelloWorld.c

#include <stdio.h>

#include "HelloWorld.h" // this header file was

generated by javah

JNIEXPORT void JNICALL

Java_HelloWorld_displayMessage(JNIEnv *env,

jobject obj)

{

 printf("Hello World!\n");

}

5. Build the shared library from native code.

This is where some of the differences show up. Make

sure that the search paths are correct and that the file

extensions are what the compiler expects. Also, the

convention in UNIX is to prepend lib onto the names

of library files and to append .so onto the names of

shared library files.

- This works on sirius.cs.pdx.edu, note .C

extension

g++ -G -I/pkgs/jdk1.1.1/include -

I/pkgs/jdk1.1.1/include/solaris HelloWorld.C -o

libHelloWorldImp.so

- This should work under NT. Replace the

include paths to match your environment and be sure

to include Sun's JDK not Microsoft's!

cl -Im:\jdk1.1.5\include -

Im:\jdk1.1.5\include\win32 -LD HelloWorld.c -

FeHelloWorldImp.dll

6. Execute the program.

On UNIX, you may have to move the shared library

into a directory that's in your search path, or add the

current directory to your path. Under Windows NT,

the current directory is searched by default.

java Main

Hello World! This is displayed on the screen

5. DECOMPILATION OF JNI CODED

APPLICATION
Java bytecode is very easy to decompile - just Google for

"download java decompiler" and one will get his/her source

code back in minutes. In contrast, native code is about as hard

to reverse engineer as if you have coded the original program

in C\C++. Also, there is no performance loss. If real owner is

concerned about protecting its intellectual property, native

methods is the safest way to proceed.

After compiling a code in JNI, on decompiling the Java code

the output will contain the Java code which only has function

calls but that code cannot reveal the library code written in C

i.e. the body of the function in the library. If dll file is

decompiled separately it will have signatures that belong to

JNI. So unless a person is capable enough of rewriting those

libraries (in that case there is no need for using our libraries),

International Conference in Recent Trends in Information Technology and Computer Science (ICRTITCS - 2012)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

38

it is not possible to reuse the code by removing the

watermark.

Thus the code of the software programmer is safe. Whoever

wants to use the application under some other name, will have

to write the whole library; in that case there is no use of

decompiling our code.

6. THREAT ANALYSIS

6.1. Additive Attacks

An additive attack means inserting another watermark into an

already authenticated application, which may or may not over-

write the existing watermark. With current watermarking

algorithms, an additive attack sometimes removes the original

watermark if a watermark of the same type is embedded but

not necessarily if a different type of watermark is embedded.

If the original watermark is not over-written by the new

watermark the attacker could claim ownership of the software

if both watermarks are recognizable, resulting in a dispute

over ownership. The only possible solution is to register the

watermarks with third party and timestamp them[2]. With this

method, the real owner can claim that his/her watermark is

original.

6.2. Subtractive Attacks
In this type of attack, attacker tries to remove watermark from

the software program. However by doing that he might

damage parts of program or some of its functionalities.

Subtractive attacks cannot be invoked against the proposed

watermarking technique because the watermark is not stored

as any data structure, occupying no physical space; rather, it is

encoded in the runtime code of the hash function[2]. The

attacker might try to invoke attack by deleting the whole hash

function. In order to accomplish this it is necessary to:

 Replace all calls to hash function by the constant. Value

returned by that function.

 Modify/remove the hash function

There are so many function calls in program and the attacker

cannot be sure that he has located the right function. In our

implementation of hash function, different value is returned

according different input, and the algorithm we choose is

irreversible.

6.3. Distortion Attacks

In these types of attacks, the attacker might be able to damage

or distort the watermark in some manner that the real owner

cannot prove his ownership of the code. Usually, it is assumed

that the attacker does not know the location of the watermark

which means they would have to apply all distortive attacks

uniformly across a program; this is likely to have an adverse

affect on performance [1]. In the proposed methods if the

attacker will change of one‟s defined random function then we

can identify changes by another random function.

6.4. Collusive Attacks
Collusive attacks involve the comparative analysis of 2 or

more copies of a fingerprinted program. In a simple case the

only difference between the two watermarks would be the

fingerprint thus revealing the location of the fingerprint in all

the programs. Every program must be obfuscated differently

before distribution in order to avoid this kind of attack. After

obfuscation there will be many differences between the

programs and the watermark will be harder to find. However,

this may cause a problem for debugging customers' programs;

for example, bug reports sent in by customers may be specific

to their copy of the software. Collberg and

Thomborson suggest that it will be necessary to store a copy

of the keys used to fingerprint and obfuscation every copy of a

sold program in order to recreate and exact copy of the

customers program for debugging purposes [3].

7. CONCLUSION
The proposed watermarking technique of coding applications

which uses Native methods in Java allows the developer to

protect his software for pirates who misuse the source code.

Through this technique any software application can be made

secure and also improve its functionality. Software codes

stored the library with is created using JNI is not available

when an application is downloaded. Accompanying the

proposed technique with a robust dynamic watermarking

technique will result in an application which cannot be

decoded at all and hence is completely protected against

piracy.

8. ACKNOWLEDGEMENTS
This work would not have seen the light of the day without

the whole-hearted support of our guide Prof. Sonali Kadam.

We also extend our sincere and wholehearted thanks to the

Head of Department Prof. Dr. S. R. Patil and all the members

of the Department of Computer Engineering, Bharati

Vidyapeeth‟s College of Engineering for Women, without

their support and inspiration this would not have been

possible.

9. REFERENCES
[1] B.K.Sharma, R.P.Agarwal and Raghuraj Singh,

“Copyright Protection of Online Application using Dual

Watermarking”, International Journal of Computer

Applications, Volume - 18, Number 4, Article 5, March

2011

[2] Xuesong Zhang, Fengling He, Wanli Zuo, “Hash

Function Based Software Watermarking” IEEE

International conference on ASEA 2008, 13-15 Dec.

2008, PP 95 - 98

[3] Yawei Zhang, Lei Jin, Xiaojun Ye, “Software Piracy

Prevention: Splitting on Client”, IEEE International

Conference on Security Technology, December 13-15,

2008, PP 62-65

[4] Business Software Alliance. http://www.bsa.org

[5] Christian S. Collberg, Clark Thomborson,

“Watermarking, Tamper-Proofing, and Obfuscation

Tools for Software Protection”, IEEE Transactions On

Software Engineering, Vol. 28, No. 8, August 2002, PP

735-746

[6] J. Hamilton, “A survey of static software watermarking”,

IEEE World Congress on Internet Security 2011, PP 100

- 107

[7] Mathew Mead , “Programming in C/C++ with Java

Native Interface”, http://home.pacifier.com/~mmead/

[8] Christopher Batty, “Using The Java Native Interface”

Department of Computer Science, University of

Manitoba, Winnipeg, Manitoba, Canada,

www.cs.umanitoba.ca/~eclipse/8-JNI.pdf

[9] Evgeniy Gabrilovich, Lev Finkelstein, “JNI – C++

integration made easy”, C/C++ Users Journal, Volume

19 Issue 1, Jan. 2001, PP 10-21

