
17-18 December 2012, ICRTITCS – 2012, TCSC, Mumbai, India

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

8

Honeypot- A Tool to Trap Website Hackers

Juhi Danani

M.Sc(Computer Science)
Thakur College Of Science & Commerce

Jinal Jani
Assistant Professor

Computer Science Department
Thakur College of Science and Commerce

ABSTRACT
Honeypot is a closely monitored decoy that is employed in a

network to study the trail of hackers and to alert network

administrators of a possible intrusion. Honeynet is a methods

for detection/protection/defense. Honeynet is an additional

layer of security. Using Honeypot provides a cost-effective

solution to increase the security posture of an organization.

Even though it is not a panacea for security breaches, it is

useful as a tool for network forensics and intrusion detection.

Data Capture and Data Control are the properties of honeynet.

Nowadays, they are also being extensively used by the

research community to study issues in network security, such

as Internet worms, spam control, DoS attacks, etc. In this

paper, we advocate the use of honeypots as an effective

educational tool to study issues in network security. We

support this claim by demonstrating a set of projects that we

have carried out in a Websites, which we have deployed

specifically for running various web applications’ under

supervision . Primary intent of honeypot is to log and capture

effects and activities of the threat.

Keywords
Security, tools, installation problem, framework, designing

projects, Web application

1. INTRODUCTION
Global communication is getting more important every day.

At the same time, computer crimes increasing. Counter

measures are developed to detect or prevent attacks-most of

these measures are based on known facts, known attack

patterns. As in the military, it is important to know, who your

enemy is, what kind of strategy he uses, what tools he utilizes

and what he is aiming for. Gathering this kind of information

is not easy but important. By knowing attack strategies,

counter measures can be improved and vulnerabilities can be

fixed. To gather as much information as possible is one main

goal of honeypot. A honeypot is primarily an instrument for

the information gathering and learning. Its primary purpose is

not to be ambush for the blackhat community to catch them in

action and to press charges against them. The lies on silent

collection of as much information as possible about their

attack patterns, used programs, purpose of attack and blackhat

community itself. All this information is used to learn more

about the blackhat proceedings and motives as well as their

technical knowledge and abilities. This is just primary

purpose if honeypot. There are a lot of other possibilities for a

honeypot-divert hackers form productive systems for catch a

hacker while conducting an attack are just two possible

examples. Honeypots are not the perfect solution for solving

or preventing computer crimes. Honeypots are hard to

maintain and they need the good knowledge about the

operating systems and network security. In the right hands

honeypot is effective tool for the information gathering. In the

wrong, inexperienced hands, a honeypot can become another

infiltrated machine and an instrument for the black hat

community.

1.1 HoneyPot BASICS
A honeypot is a resource whose value is being in attacked and

compromised. This means, that a honeypot is expected to get

probed, attacked and potentially exploited.

Honeypot do not fix anything. They provide us additional,

valuable information. A honeypot is a resource, which

pretends to be real target. A honeypot is expected to be

attacked or compromised. The main goals are the distraction

of an attacker and the gain of the information about the attack

and the attacker.

There are two categories of honeypots.

 Production honeypots

 Research honeypots

A production honeypot is used to help migrate risk in an

organization while the second category, is meant to gather as

much information as possible. These honeypots do not add

any security value to an organization, but they can help to

understand the blackhat community and their attacks as well

as to build some better defenses against security threats. A

properly constructed honeypot is put on a network, which

closely monitors the traffic to and from the honeypot. This

data can be used for a variety of purposes.

 Forensics: analyzing new attacks and exploits

 Trend analysis: look for changes over time of

types of attacks, techniques, etc

 Identification: track the bad people back to their

home machines to figure out who they are.

 Sociology: learn about the bad guys as a group by

snooping on email, IRC traffic, etc which happens

to traverse the honeypot.

 In general every traffic from and to a honeypot is

unauthorized activity. All the data that is collected by a

honeypot is therefore interested data. Data collected by the

honeypot is of high value, and can lead to better

understanding and knowledge which in turn can help to

increase overall network security. One can also argue that a

honeypot can be used for prevention because it can deter

attackers from attacking other systems by occupying them

long enough and bind their resources.

17-18 December 2012, ICRTITCS – 2012, TCSC, Mumbai, India

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

9

2. PROMBEM STATEMENT
There are kind of attacks on the websites or portals, because

of which introduces new vulnerabilities into it.

Cross-site scripting (XSS) is a type of computer security

vulnerability typically found in web applications that enables

malicious attackers to inject client-side script into web pages

viewed by other users. An exploited cross-site scripting

vulnerability can be used by attackers to bypass access

controls such as the same origin policy. Their impact may

range from a petty nuisance to a significant security risk,

depending on the sensitivity of the data handled by the

vulnerable site, and the nature of any security mitigations

implemented by the site's owner.

SQL injection is a code injection technique that exploits a

security vulnerability occurring in the database layer of an

application. The vulnerability is present when user input is

either incorrectly filtered for string literal escape characters

embedded in SQL statements or user input is not strongly

typed and thereby unexpectedly executed. It is an instance of

a more general class of vulnerabilities that can occur

whenever one programming or scripting language is

embedded inside another. SQL injection attacks are also

known as SQL insertion attacks.

Remote File Inclusion (RFI) is a type of vulnerability most

often found on websites, it allows an attacker to include a

remote file usually through a script on the web server. The

vulnerability occurs due to the use of user supplied input

without proper validation. This can lead to something as

minimal as outputting the contents of the file, but depending

on the severity, to list a few it can lead to:

 Code execution on the web server

 Code execution on the client-side such as Javascript

which can lead to other attacks such as cross site

scripting (XSS).

 Denial of Service (DoS)

 Data Theft/Manipulation

CURL is a Client URL, a library created by Daniel Stenberg,

is a predominantly command line based tool, which can be

used to force parameters into a web request. The URL library

was ported to PHP as an optional module and can be useful

when attempting to gain reconnaissance information or

unauthorized access to a designated URL. PHP supports

libcurl which currently supports the http, https, ftp, gopher,

telnet, dict, file, and ldap protocols. libcurl also supports

HTTPS certificates, HTTP POST, HTTP PUT, FTP uploading

(this can also be done with PHP's ftp extension), HTTP form

based upload, proxies, cookies, and user + password

authentication. CURL can be used in conjunction with PHP

scripts for brute force attacks (including SQL injection table

brute forcing), reconnaissance attacks, spoofing, and data

theft.

3. OBJECTIVE
The system generated after implementing this paper acts as a

service provider for Honeypot Security to various websites. It

will be as a framework to implement honeypot which can be

used by any organization to test their website applications /

portals.

We plan to trace characteristics of hackers like.

 The browser they use.

 Their IP address from the IP header.

 The files accessed.

 The loopholes they discover.

 Various inputs that are used for various

input fields

 Script Injection.

4. IMPLEMENTATION
Honeypots are closely monitored decoys that are employed in

a network to study the trail of hackers and to alert network

administrators of a possible intrusion. Theoretically, a

Honeypot should see no traffic because it has no legitimate

activity. This means any interaction with a Honeypot is most

likely unauthorized or malicious activity.

The exact implementation of this project will be done using

the following steps.

 IP tracing & HTTP packet analysis

 Honeytokens

 Honeypages

 Browser Defect Tracking

 Attacks Tracing [SQL Injection, Cross Side

Scripting, etc].

4.1 IP tracing & HTTP packet analysis
We plan to inject certain scripts into the code of the web

pages which will act as our Honeypot sniffer. These scripts

could be JavaScript and SQL injections. These sniffers will

then acquire the information and store it in our database. All

unauthorized activities would then be tracked and stored in an

administrative website for future analysis.

4.2 HoneyTokens
Honeytokens are fake records that are inserted in the database.

These fake records are not expected to be used by normal

users. If any of these honeytokens are used, they alert us of

the database having been compromised. An example of

honeytokens is fake username/passwords in the user database.

These users do not exist in the real world, and hence are not

expected to be logging in to the application. If the application

sees these credentials being used, it immediately recognizes

that the user database has been compromised.

4.3 HoneyPages
These are obscure web pages sprinkled in the web site. They

have no legitimate purpose, nay they are not even linked from

any valid page. Normal users would never reach these pages.

However, we drop hints about these pages by embedding their

url as comments or hidden fields in valid pages. While normal

users would never see this, an attacker who analyzes the

source code, or a vulnerability scanner that spiders the site

would see these and follow the link. When the page is

accessed, it points us to the intruder.

o Browser Defect tracking
All browsers have various configurations and accessibility.

Hackers usually attack a website through loopholes in the

browser. We intend to track the loopholes used by the hacker

and change the settings of the website.

http://en.wikipedia.org/wiki/Computer_insecurity
http://en.wikipedia.org/wiki/Vulnerability_%28computer_science%29
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/Client-side_script
http://en.wikipedia.org/wiki/Web_page
http://en.wikipedia.org/wiki/Access_control
http://en.wikipedia.org/wiki/Access_control
http://en.wikipedia.org/wiki/Access_control
http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/Security_vulnerability
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/String_literal
http://en.wikipedia.org/wiki/Escape_sequences
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Strongly-typed_programming_language
http://en.wikipedia.org/wiki/Strongly-typed_programming_language
http://en.wikipedia.org/wiki/Strongly-typed_programming_language
http://en.wikipedia.org/wiki/Vulnerability
http://en.wikipedia.org/wiki/Web_server
http://en.wikipedia.org/wiki/Vulnerability
http://en.wikipedia.org/wiki/Web_server
http://en.wikipedia.org/wiki/Client-side
http://en.wikipedia.org/wiki/Javascript
http://en.wikipedia.org/wiki/Cross_site_scripting
http://en.wikipedia.org/wiki/Cross_site_scripting
http://en.wikipedia.org/wiki/Cross_site_scripting
http://en.wikipedia.org/wiki/Denial_of_Service
http://en.wikipedia.org/wiki/Data_Theft

17-18 December 2012, ICRTITCS – 2012, TCSC, Mumbai, India

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

10

o Attacks Tracing- SQL

injection
SQL injection is a code injection technique that exploits a

security vulnerability occurring in the database layer of an

application. The vulnerability is present when user input is

either incorrectly filtered for string literal escape characters

embedded in SQL statements or user input is not strongly

typed and thereby unexpectedly executed. It is an instance of

a more general class of vulnerabilities that can occur

whenever one programming or scripting language is

embedded inside another. SQL injection attacks are also

known as SQL insertion attacks.

Coding for defining a static list to trap the

hackers.

<?php

/* List with all attack-patterns to

search for

Contains names and strings for each

attack to display

Supports checking for word-segments or

whole words ($strictWholeWordDef),

supports case-sensitive and non-sensitive

checking ($caseSensitivityDef)*/

 class attacklist {

 protected $num_of_elements = 36;

// Number of attack-patterns in array

/* detection-array structure: index 0

= pattern

index 1 = strictWholeWord true

means: only accept pattern,

if it occurs as a single word,

seperated by space characteres

index 2 = caseSensitivity true means:

only accept pattern, if it has exact

case-sensitive spelling

*/

// main array containing the attack

patterns to look for

protected $detectArray = NULL;

protected $strictWholeWordDef =

false; // Default index 1: false

protected $caseSensitivityDef =

false; // Default index 2: false

// array containing the thumbnail-

strings with html to return

protected $imgArray = NULL;

// array containing the short string-

names of the attacks to return

protected $strArray = NULL;

private static $noDetectionStr = "no

attack found";

// constructor creates the arrays and

sets varialbes

function __construct()

{

 for ($i = 0; $i < $this-

>num_of_elements; $i++)

{

$this->detectArray[$i][1] =

$this->strictWholeWordDef;

$this->detectArray[$i][2] =

$this->caseSensitivityDef;

} //

array with detection signatures -

MANDATORY

$this->detectArray[0][0] =

htmlentities("<script>");

$this->detectArray[1][0] =

htmlentities("</script>");

$this->detectArray[2][0] = "../";

$this->detectArray[3][0] = "/..";

$this->detectArray[4][0] = "OR";

$this->detectArray[4][1] = true;

$this->detectArray[4][2] = true;

$this->detectArray[5][0] =

"select"; $this->detectArray[5][1] =

true;

$this->detectArray[6][0] =

"insert";

$this->detectArray[7][0] =

"union";

$this->detectArray[8][0] =

"delete";

$this->detectArray[9][0] =

"where";

$this->detectArray[9][1] = true;

$this->detectArray[10][0] =

"wget";

$this->detectArray[11][0] =

"curl";

$this->detectArray[12][0] =

"lynx";

$this->detectArray[13][0] =

"fetch";

$this->detectArray[14][0] = "lwp-

download";

$this->detectArray[15][0] =

"echo"; $this->detectArray[15][1] =

true;

$this->detectArray[16][0] =

"javascript";

$this->detectArray[17][0] =

"`id`";

$this->detectArray[17][2] = true;

$this->detectArray[18][0] =

"uname";

$this->detectArray[19][0] =

"who";

$this->detectArray[19][1] = true;

$this->detectArray[20][0] =

"ifconfig";

$this->detectArray[21][0] =

htmlentities("'");

$this->detectArray[21][2] = true;

http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/Security_vulnerability
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/String_literal
http://en.wikipedia.org/wiki/Escape_sequences
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Strongly-typed_programming_language
http://en.wikipedia.org/wiki/Strongly-typed_programming_language
http://en.wikipedia.org/wiki/Strongly-typed_programming_language

17-18 December 2012, ICRTITCS – 2012, TCSC, Mumbai, India

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

11

$this->detectArray[22][0] =

htmlentities("`");

$this->detectArray[22][2] = true;

$this->detectArray[23][0] =

htmlentities("´");

$this->detectArray[23][2] = true;

$this->detectArray[24][0] =

"http://";

$this->detectArray[25][0] =

"https://";

$this->detectArray[26][0] =

"include";

$this->detectArray[27][0] =

"select%"; // select in general

causes too many false positives

$this->detectArray[28][0] =

"select/";

$this->detectArray[29][0] =

"select#";

$this->detectArray[30][0] =

"select*";

$this->detectArray[31][0] =

"select\\";

$this->detectArray[32][0] =

"trigger";

$this->detectArray[33][0] =

"OUTFILE";

$this->detectArray[34][0] =

"passthru";

$this->detectArray[34][2] = true;

$this->detectArray[35][0] =

"exec";

$this->detectArray[35][2] = true;

// array with thumbnails to show

- OPTIONAL

 // array with attack-names to show

(instead of pictures)

$this->strArray[0] = "XSS";

$this->strArray[1] = "XSS";

$this->strArray[2] = "DIR-Change";

$this->strArray[3] = "DIR-Change";

$this->strArray[4] = "SQL";

$this->strArray[5] = "SQL";

$this->strArray[6] = "SQL";

$this->strArray[7] = "SQL";

$this->strArray[8] = "SQL";

$this->strArray[9] = "SQL";

$this->strArray[10] = "WGET";

$this->strArray[11] = "CURL";

$this->strArray[12] = "LYNX";

$this->strArray[13] = "FETCH";

$this->strArray[14] = "LWP";

$this->strArray[15] = "DEFACE";

$this->strArray[16] = "XSS";

$this->strArray[17] = "INJECTION";

$this->strArray[18] = "INJECTION";

$this->strArray[19] = "INJECTION";

$this->strArray[20] = "INJECTION";

$this->strArray[21] = "INJECT";

$this->strArray[22] = "INJECT";

$this->strArray[23] = "INJECT";

$this->strArray[24] = "INCLUSION";

$this->strArray[25] = "INCLUSION";

$this->strArray[26] = "INCLUSION";

$this->strArray[27] = "SQL";

$this->strArray[28] = "SQL";

$this->strArray[29] = "SQL";

$this->strArray[30] = "SQL";

$this->strArray[31] = "SQL";

$this->strArray[32] = "SQL";

$this->strArray[33] = "SQL";

$this->strArray[34] = "INCLUSION";

$this->strArray[35] = "INCLUSION";

}

 // returns the main detection-array

or NULL if nothing has been set

 public function getDetectionArray()

{

 return $this->detectArray;

}

// returns the number of attack

patterns detected

 public function getElementNr()

{

 return $this->num_of_elements;

 }

/* returns short-name-strings for

specified $id if no short-name-string

was found, error msg is returned */

public function getStrVal($id)

 {

 if (isset($this->strArray[$id

]))

 return $this->strArray[$id];

 else

 return "unknown id:".$id;

 }

/* returns default-string to display

when no attack was found */ public

static function getNoDetectionStr()

 {

 return

self::$noDetectionStr;

 }

 } // end: class

?>

17-18 December 2012, ICRTITCS – 2012, TCSC, Mumbai, India

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

12

5. FEATURES AND WORKING
The Paper will help to make a system which will do the

following activities.

 Automatically scans for known attacks.

 Detects SLQ-Injections, (Remote) File-Inclusions,

Cross-Site Scripting (XSS), Download attempts for

malicious files e.g. with WGET or CURL,

Command-Injections, etc.

 Provides an overview mode which allows you to

look and scan for new incidents quickly (semi-

automatic mode).

 Supports detailed information about all data

correlated with every access to the honeypot.

This includes but is not limited to HTTP-GET,

HTTP-POST and COOKIE data.

 Saves copies of malicious tools in a secured place

for later analysis.

 Provides a geographical, IP-based mapping about

the attack sources. The generated map shows the

origin of the attacks and offers additional details for

each location.

 Generates numerous statistics about all traffic

recognized at the system.

6. ADVANTAGES

 Honeypots only collect attack or unauthorized

activity, dramatically reducing the amount of data

they collect. Organizations that may log thousands

of alerts a day may only log a hundred alerts with

honeypots. This makes the data honeypots collect

much easier to manage and analyze.

 Honeypots dramatically reduce false alerts, as they

only capture unauthorized activity.

 Honeypots can easily identify and capture new

attacks never seen before.

 Honeypots require minimal resources,even on the

largest of networks. This makes them an extremely

cost effective solution.

 Honeypots can capture encrypted attacks.

7. LIMITATIONS

 Honeypots can introduce risk to your environment.

As we discuss later, different honeypots have

different levels of risk. Some introduce very little

risk, while others give the attacker entire platforms

from which to launch new attacks, Risk is variable,

depending on how one builds and deploys the

honeypot.

 Implementing this system on an existing website

could cause legality issues. Hence we intend to

make dummy websites to demonstrate how our

application functions.

8. CONCLUSION
A honeypot is just a tool. There are a variety of honeypot

options, each having different value to organizations

Production honeypots help reduce risk in an organization.

Research honeypots are different in that they are not used to

protect a specific organization. Instead they are used as a

research tool to study and identify the threats in the Internet

community. Regardless of what type of honeypot you use,

keep in mind the ‘level of interaction’. This means that the

more your honeypot can do and the more you can learn from

it, the more risk that potentially exists. You will have to

determine what is the best relationship of risk to capabilities

that exist for your problems. However, honeypots may be a

tool to help contribute to those best practices.

9. REFERENCES
[1] Lance Spitzner. Honeypots: Tracking Hackers. Addison-

Wesley, Boston. 2002.

[2] Cli®ord Stoll. Stalking the Wily Hacker.

Communications of the ACM. pp 484-

[3] Honeynet Research Alliance. Project Honeynet Website.

Retrieved May 16th

[4] Computer Emergency Response Team. dtscpd Exploit

Advisory. Ad-

[5] Niels Provos. Honeyd. Retrieved May 16th 2003 from

the World Wide

[6] http://www.citi.umich.edu/u/provos/honeyd/

[7] Dug Song and Niels Provos. Arpd. Retrieved May 16th

2003 from the World

[8] Wide http://www.citi.umich.edu/u/provos/honeyd/

[9] Net¯lter Core Team. ptables. Retrieved May 16th 2003

from the World Wide

[10] Web: http://www.net¯lter.org

[11] Martin Roesch. Snort. Retrieved May 17th 2003 from the

World Wide Web:

[12] http://www.snort.org

[13] Honeynet Research Alliance. Honeynet Project Snort

con¯gura-tion ¯le. Retrieved May 17th 2003 from the

World Wide Web:

[14] http://www.honeynet.org/papers/honeynet/tools/snort.co

nf.

[15] Lance Spitzner Honeypots: Tracking Hackers September

10, 2002 Addison-Wesley Professional

[16] James O'Toole / Pittsburgh Post-Gazette Specter revises

early attack ad against possible rival Toomey April 4,

2009

[17] Niels Provos, Thorsten Holz Virtual Honeypots: From

Botnet Tracking to Intrusion Detection. July 16, 2007

[18] TANUSHA A Firefox Extension for Detecting Stored

Cross Site Scripting Attack MARCH 23, 2011

[19] Stuart McDonald SQL Injection: Modes of Attack,

Defence, and Why it matters April 8, 2002

[20] Lance Spitzner Honeytokens: The Other Honeypot 17

July, 2003

http://www.informit.com/authors/author_bio.aspx?ISBN=9780321108951
http://www.amazon.com/s/ref=rdr_kindle_ext_aut?_encoding=UTF8&index=books&field-author=Niels%20Provos
http://www.amazon.com/s/ref=rdr_kindle_ext_aut?_encoding=UTF8&index=books&field-author=Thorsten%20Holz
http://securityresearch.in/index.php/author/tanusha/?ubiquitous_id=25
http://securityresearch.in/index.php/articles/a-firefox-extension-for-detecting-stored-xss/?ubiquitous_id=43
http://securityresearch.in/index.php/articles/a-firefox-extension-for-detecting-stored-xss/?ubiquitous_id=43
http://securityresearch.in/index.php/articles/a-firefox-extension-for-detecting-stored-xss/?ubiquitous_id=43

17-18 December 2012, ICRTITCS – 2012, TCSC, Mumbai, India

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

13

[21] Sainath Patil Nageshri B Karhade Honeyweb: a web-

based high interaction client honeypot -30 Mar’12

[22] L. Spitzner, (2002). Honeypots: Tracking Hackers. 1st

edition. Addison-Wesley Professiona. ISBN-10:

0321108957.

[23] Lance Spitzner. Honeypots: Catching the insider threat.

In ACSAC ’03: Proceedings of the 19th Annual

Computer Security Applications Conference, page 170,

Washington, DC, USA,2003. IEEE Computer Society.

[24] Fabien Pouget and Marc Dacier. Honeypot-based

forensics. In AusCERT Asia Pacific Information

technology Security Conference 2004, Brisbane,

Australia, May 2004.

[25] BRUCE PERENS ,PHP 5 Power Programming y,

September 23,

