
International Journal of Computer Applications (0975 – 8887)

International Conference on Recent Trends in engineering & Technology - 2013(ICRTET'2013)

23

Different Approaches of Mining Web Navigation Pattern:

Survey

Suchita A.Chavan
ME, Software Engineering

MIT, Aurangabad

ABSTRACT

Understanding the navigational behavior of website visitors is

a significant factor of success in the emerging business

models of electronic commerce and even mobile commerce.

In this paper, we describe the different approaches of mining

web navigation pattern.

General Terms

Web access pattern, Sequential patterns

Keywords
WAP, PTG,TSP

INTRODUCTION

The World Wide Web is a hypertext body of more than 800

million pages that continues to grow. It exceeds six terabytes

of data on roughly three million servers. Almost 1 million

pages get added daily, and typically, several hundred

gigabytes are changed every month. Hence, it is clear that the

Web currently constitutes one of the largest dynamic data

repositories. In addition to its ever-expanding size and lack of

structure, the World Wide Web has not been responsive to

user preferences and interests.

Recently, data mining techniques have been applied to extract

usage patterns from Web log data for development of

electronic commerce, mobile commerce, improving web page

organization.

There are numerous studies on the navigation behavior of

website visitors. Most are conducted by the techniques of

mining Web access patterns, such as improving the access

efficiency of Web pages by the adaptive website system,

reorganizing a website dynamically, identifying the target

group of Web visitors, strengthening the performance of Web

searches, and predicting user behaviour patterns in mobile

Web systems.

1. BASIC TECHNIQUES TO DISCOVER

WEB ACCESS PATTERN
Research efforts to discover Web access patterns focus

on three main paradigms in paper [2] i.e. association rules,

sequential patterns, and clustering.

1.1 Association rules.
These are probably the most elementary data mining

technique and, at the same time, the most used technique in

Web Usage Mining. Association rules are implications of the

form X) Y where the rule body X and the rule head Y are set

of items within a set of transactions. The rule X)Y states that

the transactions which contain the items in X are likely to

contain also the items in Y. When applied to Web Usage

Mining, association rules are used to find associations among

Web pages that frequently appear together in users_ sessions.

The typical result has the form: A:html; B:html) C:html"

which states that if a user has visited page A.html and page

B.html, it is very likely that in the same session the same user

has also visited page C.html.

1.2 Sequential patterns:
 These are used to discover frequent subsequences

among large amount of sequential data. In Web Usage

Mining, sequential patterns are exploited to find sequential

navigation patterns that appear in users_ sessions frequently.

The typical sequential pattern has the following form [14]: the

70% of users who first visited A.html and then visited B.html

afterwards, have also accessed page C.html in the same

session. Sequential patterns might appear syntactically similar

to association rules; in fact algorithms to extract association

rules can also be used for sequential pattern mining. However,

sequential patterns include the notion of time, i.e., at which

point of the sequence a certain event happened. In the above

example, pages A, B, and C appears sequentially, one after

another, in the user sessions; in the previous example on

association rules, information about the event sequence is not

considered.

There are essentially two classes of algorithms that

are used to extract sequential patterns: one includes methods

based on association rule mining; the other one includes

methods based on the use of tree structures and Markov

chains to represent navigation patterns. Some well-known

algorithms for mining association rules have been modified to

extract sequential patterns. For instance, [12,13]used

AprioriAll and GSP, two extensions of the Apriori algorithm

for association rules mining . Ref. [11] argues that algorithms

for association rule mining (e.g., Apriori) are not efficient

when applied to long sequential patterns, which is an

important drawback when working with Web logs.

Accordingly, [11] proposes an alternative algorithm in which

tree structures (WAP-tree) are used to represent navigation

patterns. The algorithm (WAP-mine) [11] and the data

structure (WAP-tree), specifically tailored for mining Web

access patterns, WAP-mine outperforms other Apriori-like

algorithms [11] like GSP.Tree structures are also used .

The GSP Algorithm makes multiple passes over

data. The first pass determines the frequent 1-item patterns

(L1). Each subsequent pass starts with a seed set: the frequent

sequences found in the previous pass (Lk−1). The seed set is

used to generate new potentially frequent sequences, called

candidate sequences (Ck). Each candidate sequence has one

International Journal of Computer Applications (0975 – 8887)

International Conference on Recent Trends in engineering & Technology - 2013(ICRTET'2013)

24

more item than a seed sequence. In order to obtain k-sequence

candidate Ck, the frequent sequence Lk−1 joins with itself

Apriori-gen way. This requires that every sequence s in Lk−1

joins with other sequences s in Lk−1 if the last k-2 elements of

s are the same as the first k-2 elements of s. For example, if

frequent 3-sequence set L3 has 6 sequences as follows: {((1,

2) (3)), ((1, 2) (4)), ((1) (3, 4)), ((1, 3) (5)), ((2) (3, 4)), ((2) (3)

(5))}. Inorder to obtain frequent 4-sequences, every frequent

3-sequence should join with the other 3-sequences that have

the same first two elements as its last two elements. Sequence

s = ((1, 2) (3)) can join with s =((2) (3, 4)) to generate a

candidate 4-sequence because the last 2 elements of s, (2) (3),

are the same as the first 2 elements of s. Then, element (4) can

be added to the sequence ((1, 2) (3)). Since element (4) is part

of the last element (3, 4) of s, ((2) (3, 4)), the new sequence is

((1, 2) (3, 4)). Also, ((1, 2) (3)) can join with ((2) (3) (5)) to

form ((1, 2) (3) (5)). The remaining sequences can not join

with any sequence in L3. Following the join phase is the

pruning phase, when the candidate sequences that have any of

their contiguous (k − 1)-subsequences having a support count

less than the minimum support, are dropped. The supports for

the remaining candidate sequences are found next to

determine which of the candidate sequences are actually

frequent (Lk). These frequent candidates become the seed for

the next pass. The algorithm terminates when there are no

frequent sequences at the end of a pass, or when there are no

candidate sequences generated. The GSP algorithm uses a

hash tree to reduce the number of candidates that are checked

for support in the database.

1.3 Clustering techniques:
It looks for groups of similar items among large

amount of data based on a general idea of distance function

which computes the similarity between groups. Clustering has

been widely used in Web Usage Mining to group together

similar sessions.

2. ALGORITHMS FOR MINING WEB

ACCESS PATTERNS

2.1 PrefixSpan
As per [5], Prefixspan is a pattern-growth method

like FreeSpan, which reduces the search space for extending

already discovered prefix pattern p by projecting a portion of

the original database that contains all necessary data for

mining sequential patterns grown from p. While FreeSpan

supports frequent pattern guided projection, PrefixSpan

supports prefix guided projection. Thus, projected database

for each f -list prefix pattern α consists of all sequences in the

original database D, containing the pattern α and only the

subsequences prefixed with the first occurrence of α are

included. Although PrefixSpan projects smaller sized

databases than FreeSpan, they both still incur non-trivial costs

for constructing and storing these projected databases for

every sequential pattern in the worst case.

2.1.1 Analysis of prefix span
No candidate sequence needs to be generated by

PrefixSpan. Unlike a priori-like algorithms, Prefix-Span only

grows longer sequential patterns from the shorter frequent

ones. It neither generates nor tests any candidate sequence

nonexistent in a projected database. Comparing with GSP,

which generates and tests a substantial number of candidate

sequences, PrefixSpan searches a much smaller space.

 Projected databases keep shrinking. As a

projected database is smaller than the original one because

only the suffix subsequences of a frequent prefix are projected

into a projected database. In practice, the shrinking factors can

be significant because 1) usually, only a small set of

sequential patterns grow quite long in a sequence database

and, thus, the number of sequences in a projected database

usually reduces substantially when prefix grows; and 2)

projection only takes the suffix portion with respect to a

prefix. Notice that FreeSpan also employs the idea of

projected databases. However, the projection there often takes

the whole string (not just suffix) and, thus, the shrinking

factor is less than that of PrefixSpan.

The major cost of PrefixSpan is the construction

of projected databases. In the worst case, PrefixSpan

constructs a projected database for every sequential pattern. If

there exist a good number of sequential patterns, the cost is

nontrivial.
 The above analysis shows that the major cost of

PrefixSpan is database projection, i.e., forming projected

databases recursively. Usually, a large number of projected

databases will be generated in sequential pattern mining. If the

number and/or the size of projected databases can be reduced,

the performance of sequential pattern mining can be further

improved.

One technique which may reduce the number and

size of projected databases is pseudo projection. The idea is

outlined as follows: Instead of performing physical projection,

one can register the index (or identifier) of the corresponding

sequence and the starting position of the projected suffix in

the sequence. Then, a physical projection of a sequence is

replaced by registering a sequence identifier and the projected

position index point. Pseudo projection reduces the cost of

projection substantially when the projected database can fit in

main memory.

Optimization techniques include (1)bi-level

projecting for reducing the number and sizes of projected

databases, and (2) Pseudo-projection for projecting memory-

only databases, where each projection consists of the pointer

to the sequence and offset of the postfix to the sequence.

2.2 Apriori

2.2.1 The general structure of the algorithms
 They make multiple passes over the data. In each

pass, start with a seed set of large sequences. Then use the

seed set for generating new potentially large sequences, called

candidate sequences. Find the support for these candidate

sequences during the pass over the data. At the end of the

pass, determine which of the candidate sequences are actually

large. These large candidates become the seed for the next

pass. In the first pass, all 1-sequences with minimum support,

obtained in the litemset phase, form the seed set. Then present

two families of algorithms, which we call count-all and count-

some. The count-all algorithms count all the large sequences,

including non-maximal sequences. The non-maximal

sequences must then be pruned out (in the maximal phase).

present one count-all algorithm, called AprioriAIl, based on

the Apriori algorithm for finding large itemsets .Then present

two count-some algorithms: Apriori-Some and Dynamicsome.

The intuition behind these algorithms is that since they are

only interested in maximal sequences, they avoid counting

sequences which are contained in a longer sequence if we first

count longer sequences. However, not to count a lot of longer

sequences that do not have minimum support. Otherwise, the

time saved by not counting sequences contained in a longer

sequence may be less than the time wasted counting

sequences without minimum support that would never have

International Journal of Computer Applications (0975 – 8887)

International Conference on Recent Trends in engineering & Technology - 2013(ICRTET'2013)

25

been counted because their subsequences were not large. Both

the count-some algorithms have a forward phase, in which

find all large sequences of certain lengths, followed by a

backward phase, where find all remaining large sequences.

The essential difference is in the procedure they use for

generating candidate sequences during the forward phase. As

AprioriSome generates candidates for a pass using only the

large sequences found in the previous pass and then makes a

pass over the data to find their support. Dynamicsome

generates candidates onthe- fly using the large sequences

found in the previous passes.

2.2.2 Drawbacks of Apriori:
The apriori-like sequential pattern mining

method,though reducing search space, bears three nontrivial,

inherent costs that are independent of detailed implementation

techniques

A huge set of candidate sequences could be generated in a

large sequence database. Since the set of candidate sequences

includes all the possible permutations of the elements and

repetition of items in a sequence, the a priori-based method

may generate a really large set of candidate sequences even

for a moderate seed set. For example, two frequent sequences

of length-1, (a) and (b) will generate five candidate sequences

of length-2: (aa), (ab), (ba), (bb), and ((ab)), where ((ab))

represents that two events, a and b, happen in the same time

slot. If there are 1,000 frequent sequences of length-1, such as

(a1); (a2); . . . ; (a1000), an a priori-like algorithm will

generate

candidate sequences. Notice that the cost of candidate

sequence generation, test, and support counting is inherent to

the a priori-based method, no matter what technique is applied

to optimize its detailed implementation.

 Multiple scans of databases in mining. The length of each

candidate sequence grows by one at each database scan. In

general, to find a sequential pattern of length l, the apriori-

based method must scan the database at least l times. This

bears a nontrivial cost when long patterns exist.

The apriori-based method generates a combinatorially

explosive number of candidates when mining long

sequential patterns. A long sequential pattern contains a

combinatorial explosive number of subsequences, and such

subsequences must be generated and tested in the a priori-

based mining. Thus, the number of candidate sequences is

exponential to the length of the sequential patterns to be

mined. For example, let the database contain only one single

sequence of length 100, (a1 a2 . . . a100), and the min_support

threshold be 1 (i.e., every occurring pattern is frequent). To

(re)derive this length-100 sequential pattern, the a priori-based

method has to generate 100 length-1 candidate sequences (i.e.,

(a1),(a2); . . . ; (a100)),

 length-2

candidate sequences, length-3

candidate sequences,1 and so on. Obviously, the total number

of candidate sequences to be generated

is

2.3 WAP-tree algorithm
In [1] proposed an algorithm using WAP-tree,

which stands for web access pattern tree. This approach is

quite different from the Apriori-like algorithms. The main

steps involved in this technique are summarized next. The

WAP-tree stores the web log data in a prefix tree format

similar to the frequent pattern tree (FP-tree) for non-sequential

data.

2.3.1 The general structure of the algorithms
1. The algorithm first scans the web log once to find

all frequent individual events.

2. It scans the web log again to construct a WAP-tree

over the set of frequent individual events of each

transaction.

3. It finds the conditional suffix patterns.

4. In the fourth step, it constructs the intermediate

conditional WAP-tree using the pattern found in

previous step.

5. Finally, it goes back to repeat Steps 3 and 4 until

the constructed conditional

WAP-tree has only one branch or is empty. Thus, with

the WAP-tree algorithm, finding all frequent events in the

web log entails constructing the WAP-tree and mining the

access patterns from the WAP tree.

WAP-tree algorithm scans the original database only

twice and avoids the problem of generating explosive

candidate sets as in Apriori-like algorithms. Mining efficiency

is improved sharply,

2.3.2 Drawback
WAP-tree mining is recursively constructs large

numbers of intermediate WAP-trees during mining and this

entails storing intermediate patterns, which are still time

consuming operations& which is rather costly. The mining

method using the WAP-tree alleviates both problems of

scanning the database repeatedly and generating tremendous

candidate sequences.

2.4 Incremental and interactive mining of web

traversal patterns
The essence of incremental data mining and

interactive data mining is the ability to use previous mining

results in order to reduce unnecessary processes when web

logs or web site structures are updated, or when the minimum

support is changed.
As per [3] ,they propose two novel incremental web

traversal pattern mining algorithms for the maintenance of

web traversal patterns when a database is updated or a web

site structure is changed. Also present an interactive web

traversal pattern mining algorithm to find all web traversal

patterns when min_sup is adjusted. This algorithm utilizes

previous mining results to find new web traversal patterns

such that the total mining time can be reduced.For that used

the lattice structure to store the previous mining results for

incremental Web traversal patterns. The patterns may be

obtained rapidly when the database or the website structure is

updated. The problem of choosing an appropriate storage

structure to store previous mining results now becomes very

important.

2.4.1 Drawback
The size of the lattice structure may become too

large to be loaded into the main memory.

International Journal of Computer Applications (0975 – 8887)

International Conference on Recent Trends in engineering & Technology - 2013(ICRTET'2013)

26

2.5 BIDE Algorithm
In [7] BIDE, an efficient algorithm for mining

frequent closed sequences without candidate maintenance.

The frequent closed sequences are regarded as a pattern

closure of all frequent sequential patterns .It adopts a novel

sequence closure checking scheme called BI-Directional

Extension and prunes the search space more deeply compared

to the previous algorithms by using the Back Scan pruning

method. A thorough performance study with both sparse and

dense, real, and synthetic data sets has demonstrated that

BIDE significantly outperforms the previous algorithm: It

consumes an order(s) of magnitude less memory and can be

more than an order of magnitude faster. It is also linearly

scalable in terms of database size.

2.5.1 Drawback

It consumes a lot of memory and leads to a huge

search space for pattern closure checking

3. Future work
In this survey paper, it is noticed that the former

mining algorithms suffer from either repetitive database scan

or high memory load. For algorithms with a single database

scan, they build special data structures to store the sequences

in the database. However, it may be difficult to hold all

sequences of the database in the data structure.

 So if we use Graph Traverse algorithm which will

pay attention to the tracks of website visitors will mine TSP,

in which the memory is loaded with the hyperlink structure of

the website instead of the sequence database. Then this

method can help to improve an efficient and effective way to

realize what targets the visitors may reach and how they are

achieved.

4. REFERENCES
[1] Ezeife, C. I., & Lu, Y. (2005). Mining Web log

sequential patterns with position coded pre-order linked

WAP-tree. Data Mining and Knowledge Discovery,

10,5–38.

[2] Facca, F. M., & Lanzi, P. L. (2005). Mining interesting

knowledge from Weblogs: A survey. Data and

Knowledge Engineering, 53, 225–241.

[3] Lee, Y.-S., & Yen, S.-J. (2007). Incremental and

interactive mining of Web traversal patterns. Information

Sciences, 178(2), 278–306.

[4] Li, H.-F., Lee, S.-Y., & Shan, M.-K. (2006). DSM-PLW:

Single-pass mining of path traversal patterns over

streaming Web click-sequences. Computer Networks,

50,1474–1487.

[5] Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H.,

Chen, Q., et al. (2004). Mining sequential patterns by

pattern-growth: The prefixspan approach. IEEE

Transactions on Knowledge and Data Engineering,

16(10), 1–17.

[6] Tseng, V.-S., & Lin, K.-W. (2006). Efficient mining and

prediction of user behavior patterns in mobile Web

systems. Information and Software Technology, 48,357–

369.

[7] Wang, J., Han, J., & Li, C. (2007). Frequent closed

sequence mining without candidate maintenance. IEEE

Transactions on Knowledge and Data Engineering,

19(8), 1042–1056.

[8] Xing, D., & Shen, J. (2004). Efficient data mining for

Web navigation patterns.Information and Software

Technology, 46, 55–63.

[9] Yan, X., Han, J., & Afshar, R. (2003). CloSpan: Mining

closed sequential patterns in large datasets. In Third

SIAM international conference on data mining (SDM),

SanFrancisco. CA (pp. 166–177).

[10] Yen, S.-J., & Chen, A. L. P. (2001). A graph-based

approach for discovering various types of association

rules. IEEE Transactions on Knowledge and Data

Engineering, 13(5), 839–845.

[11] J. Pei, J. Han, B. Mortazavi-asl, H. Zhu, Mining access

patterns efficiently from web logs, in: Pacific-Asia

Conference on Knowledge Discovery and Data Mining,

2000, pp. 396–407.

[12] X. Huang, N. Cercone, A. An, Comparison of

interestingness functions for learning web usage patterns,

in:Proceedings of the Eleventh International Conference

on Information and Knowledge Management, ACM

Press,2002, pp. 617–620.\

[13] B. Mortazavi-Asl, Discovering and mining user web-

page traversal patterns, Master_s thesis, Simon Fraser

University, 2001

[14] E.S. Nan Niu, M. El-Ramly, Understanding web usage

for dynamic web-site adaptation: A case study, in:

Proceedings of the Fourth International Workshop on

Web Site Evolution (WSE_02), IEEE, 2002, pp. 53–64.

