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ABSTRACT 

Understanding the navigational behavior of website visitors is 

a significant factor of success in the emerging business 

models of electronic commerce and even mobile commerce. 

In this paper, we describe the different approaches of mining 

web navigation pattern.   
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INTRODUCTION 

The World Wide Web is a hypertext body of more than 800 

million pages that continues to grow. It exceeds six  terabytes 

of data on roughly three million servers. Almost 1 million 

pages get added daily, and typically, several hundred 

gigabytes are changed every month. Hence, it is clear that the 

Web currently constitutes one of the largest dynamic data 

repositories. In addition to its ever-expanding size and lack of 

structure, the World Wide Web has not been responsive to 

user preferences and interests. 

Recently, data mining techniques have been applied to extract 

usage patterns from Web log data for development of 

electronic commerce, mobile commerce, improving web page 

organization. 

There are numerous studies on the navigation behavior of 

website visitors. Most are conducted by the techniques of 

mining Web access patterns, such as improving the access 

efficiency of Web pages by the adaptive website system, 

reorganizing a website dynamically, identifying the target 

group of Web visitors, strengthening the performance of Web 

searches, and predicting user behaviour patterns in mobile 

Web systems. 

1. BASIC TECHNIQUES TO DISCOVER 

WEB ACCESS PATTERN 
Research efforts to discover Web access patterns focus 

on three main paradigms in paper [2] i.e. association rules, 

sequential patterns, and clustering. 

1.1 Association rules.  
These are probably the most elementary data mining 

technique and, at the same time, the most used technique in 

Web Usage Mining. Association rules are implications of the 

form X ) Y where the rule body X and the rule head Y are set 

of items within a set of transactions. The rule X )Y states that 

the transactions which contain the items in X are likely to 

contain also the items in Y. When applied to Web Usage 

Mining, association rules are used to find associations among 

Web pages that frequently appear together in users_ sessions. 

The typical result has the form: A:html; B:html ) C:html" 

which states that if a user has visited page A.html and page 

B.html, it is very likely that in the same session the same user 

has also visited page C.html. 

1.2 Sequential patterns: 
 These are used to discover frequent subsequences 

among large amount of sequential data. In Web Usage 

Mining, sequential patterns are exploited to find sequential 

navigation patterns that appear in users_ sessions frequently. 

The typical sequential pattern has the following form [14]: the 

70% of users who first visited A.html and then visited B.html 

afterwards, have also accessed page C.html in the same 

session. Sequential patterns might appear syntactically similar 

to association rules; in fact algorithms to extract association 

rules can also be used for sequential pattern mining. However, 

sequential patterns include the notion of time, i.e., at which 

point of the sequence a certain event happened. In the above 

example, pages A, B, and C appears sequentially, one after 

another, in the user sessions; in the previous example on 

association rules, information about the event sequence is not 

considered. 

There are essentially two classes of algorithms that 

are used to extract sequential patterns: one includes methods 

based on association rule mining; the other one includes 

methods based on the use of tree structures and Markov 

chains to represent navigation patterns. Some well-known 

algorithms for mining association rules have been modified to 

extract sequential patterns. For instance, [12,13]used 

AprioriAll and GSP, two extensions of the Apriori algorithm 

for association rules mining . Ref. [11] argues that algorithms 

for association rule mining (e.g., Apriori) are not efficient 

when applied to long sequential patterns, which is an 

important drawback when working with Web logs. 

Accordingly, [11] proposes an alternative algorithm in which 

tree structures (WAP-tree) are used to represent navigation 

patterns. The algorithm (WAP-mine) [11] and the data 

structure (WAP-tree), specifically tailored for      mining Web 

access patterns, WAP-mine outperforms other Apriori-like 

algorithms [11] like GSP.Tree structures are also used .  

The GSP Algorithm makes multiple passes over 

data. The first pass determines the frequent 1-item patterns 

(L1). Each subsequent pass starts with a seed set: the frequent 

sequences found in the previous pass (Lk−1). The seed set is 

used to generate new potentially frequent sequences, called 

candidate sequences (Ck ). Each candidate sequence has one 
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more item than a seed sequence. In order to obtain k-sequence 

candidate Ck, the frequent sequence Lk−1 joins with itself 

Apriori-gen way. This requires that every sequence s in Lk−1 

joins with other sequences s in Lk−1 if the last k-2 elements of 

s are the same as the first k-2 elements of s. For example, if 

frequent 3-sequence set L3 has 6 sequences as follows: {((1, 

2) (3)), ((1, 2) (4)), ((1) (3, 4)), ((1, 3) (5)), ((2) (3, 4)), ((2) (3) 

(5))}. Inorder  to obtain frequent 4-sequences, every frequent 

3-sequence should join with the other 3-sequences that have 

the same first two elements as its last two elements. Sequence 

s = ((1, 2) (3)) can join with s =((2) (3, 4)) to generate a 

candidate 4-sequence because the last 2 elements of s, (2) (3), 

are the same as the first 2 elements of s. Then, element (4) can 

be added to the sequence ((1, 2) (3)). Since element (4) is part 

of the last element (3, 4) of s, ((2) (3, 4)), the new sequence is 

((1, 2) (3, 4)). Also, ((1, 2) (3)) can join with ((2) (3) (5)) to 

form ((1, 2) (3) (5)). The remaining sequences can not join 

with any sequence in L3. Following the join phase is the 

pruning phase, when the candidate sequences that have any of 

their contiguous (k − 1)-subsequences having a support count 

less than the minimum support, are dropped. The supports for 

the remaining candidate sequences are found next to 

determine which of the candidate sequences are actually 

frequent (Lk ). These frequent candidates become the seed for 

the next pass. The algorithm terminates when there are no 

frequent sequences at the end of a pass, or when there are no 

candidate sequences generated. The GSP algorithm uses a 

hash tree to reduce the number of candidates that are checked 

for support in the database. 

1.3 Clustering techniques: 
It looks for groups of similar items among large 

amount of data based on a general idea of distance function 

which computes the similarity between groups. Clustering has 

been widely used in Web Usage Mining to group together 

similar sessions. 

2. ALGORITHMS FOR MINING WEB 

ACCESS PATTERNS   
 

2.1 PrefixSpan  
As per [5], Prefixspan is a pattern-growth method 

like FreeSpan, which reduces the search space for extending 

already discovered prefix pattern p by projecting a portion of 

the original database that contains all necessary data for 

mining sequential patterns grown from p. While FreeSpan 

supports frequent pattern guided projection, PrefixSpan 

supports prefix guided projection. Thus, projected database 

for each f -list prefix pattern α consists of all sequences in the 

original database D, containing the pattern α and only the 

subsequences prefixed with the first occurrence of α are 

included. Although PrefixSpan projects smaller sized 

databases than FreeSpan, they both still incur non-trivial costs 

for constructing and storing these projected databases for 

every sequential pattern in the worst case. 

2.1.1 Analysis of prefix span  
No candidate sequence needs to be generated by 

PrefixSpan. Unlike a priori-like algorithms, Prefix-Span only 

grows longer sequential patterns from the shorter frequent 

ones. It neither generates nor tests any candidate sequence 

nonexistent in a projected database. Comparing with GSP, 

which generates and tests a substantial number of candidate 

sequences, PrefixSpan searches a much smaller space.  

 Projected databases keep shrinking. As a 

projected database is smaller than the original one because 

only the suffix subsequences of a frequent prefix are projected 

into a projected database. In practice, the shrinking factors can 

be significant because 1) usually, only a small set of 

sequential patterns grow quite long in a sequence database 

and, thus, the number of sequences in a projected database 

usually reduces substantially when prefix grows; and 2) 

projection only takes the suffix portion with respect to a 

prefix. Notice that FreeSpan also employs the idea of 

projected databases. However, the projection there often takes 

the whole string (not just suffix) and, thus, the shrinking 

factor is less than that of PrefixSpan. 

The major cost of PrefixSpan is the construction 

of projected databases. In the worst case, PrefixSpan 

constructs a projected database for every sequential pattern. If 

there exist a good number of sequential patterns, the cost is 

nontrivial. 
 The above analysis shows that the major cost of 

PrefixSpan is database projection, i.e., forming projected 

databases recursively. Usually, a large number of projected 

databases will be generated in sequential pattern mining. If the 

number and/or the size of projected databases can be reduced, 

the performance of sequential pattern mining can be further 

improved. 

One technique which may reduce the number and 

size of projected databases is pseudo projection. The idea is 

outlined as follows: Instead of performing physical projection, 

one can register the index (or identifier) of the corresponding 

sequence and the starting position of the projected suffix in 

the sequence. Then, a physical projection of a sequence is 

replaced by registering a sequence identifier and the projected 

position index point. Pseudo projection reduces the cost of 

projection substantially when the projected database can fit in 

main memory. 

Optimization techniques include (1)bi-level 

projecting for reducing the number and sizes of projected 

databases, and (2) Pseudo-projection for projecting memory-

only databases, where each projection consists of the pointer 

to the sequence and offset of the postfix to the sequence. 

 

2.2 Apriori  

2.2.1 The general structure of the algorithms  
  They make multiple passes over the data. In each 

pass, start with a seed set of large sequences. Then use the 

seed set for generating new potentially large sequences, called 

candidate sequences. Find the support for these candidate 

sequences during the pass over the data. At the end of the 

pass, determine which of the candidate sequences are actually 

large. These large candidates become the seed for the next 

pass. In the first pass, all 1-sequences with minimum support, 

obtained in the litemset phase, form the seed set. Then present 

two families of algorithms, which we call count-all and count-

some. The count-all algorithms count all the large sequences, 

including non-maximal sequences. The non-maximal 

sequences must then be pruned out (in the maximal phase). 

present one count-all algorithm, called AprioriAIl, based on 

the Apriori algorithm for finding large itemsets .Then present 

two count-some algorithms: Apriori-Some and Dynamicsome. 

The intuition behind these algorithms is that since they are 

only interested in maximal sequences, they avoid counting 

sequences which are contained in a longer sequence if we first 

count longer sequences. However, not to count a lot of longer 

sequences that do not have minimum support. Otherwise, the 

time saved by not counting sequences contained in a longer 

sequence may be less than the time wasted counting 

sequences without minimum support that would never have 
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been counted because their subsequences were not large. Both 

the count-some algorithms have a forward phase, in which 

find all large sequences of certain lengths, followed by a 

backward phase, where find all remaining large sequences. 

The essential difference is in the procedure they use for 

generating candidate sequences during the forward phase. As 

AprioriSome generates candidates for a pass using only the 

large sequences found in the previous pass and then makes a 

pass over the data to find their support. Dynamicsome 

generates candidates onthe- fly using the large sequences 

found in the previous passes. 

2.2.2 Drawbacks of Apriori: 
The apriori-like sequential pattern mining 

method,though reducing search space, bears three nontrivial, 

inherent costs that are independent of detailed implementation 

techniques 

A huge set of candidate sequences could be generated in a 

large sequence database. Since the set of candidate sequences 

includes all the possible permutations of the elements and 

repetition of items in a sequence, the a priori-based method 

may generate a really large set of candidate sequences even 

for a moderate seed set. For example, two frequent sequences 

of length-1, (a) and (b) will generate five candidate sequences 

of length-2: (aa), (ab), (ba), (bb), and ((ab)), where ((ab)) 

represents that two events, a and b, happen in the same time 

slot. If there are 1,000 frequent sequences of length-1, such as 

(a1); (a2); . . . ; (a1000), an a priori-like algorithm will 

generate  

 
candidate sequences. Notice that the cost of candidate 

sequence generation, test, and support counting is inherent to 

the a priori-based method, no matter what technique is applied 

to optimize its detailed implementation.  

 Multiple scans of databases in mining. The length of each 

candidate sequence grows by one at each database scan. In 

general, to find a sequential pattern of length l, the apriori-

based method must scan the database at least l times. This 

bears a nontrivial cost when long patterns exist. 

The apriori-based method generates a combinatorially 

explosive number of candidates when mining long 

sequential patterns. A long sequential pattern contains a 

combinatorial explosive number of subsequences, and such 

subsequences must be generated and tested in the a priori-

based mining. Thus, the number of candidate sequences is 

exponential to the length of the sequential patterns to be 

mined. For example, let the database contain only one single 

sequence of length 100, (a1 a2 . . . a100), and the min_support 

threshold be 1 (i.e., every occurring pattern is frequent). To 

(re)derive this length-100 sequential pattern, the a priori-based 

method has to generate 100 length-1 candidate sequences (i.e., 

(a1),(a2); . . . ; (a100)), 

 length-2 

candidate sequences, length-3 

candidate sequences,1 and so on. Obviously, the total number 

of candidate sequences to be generated 

is   

2.3 WAP-tree algorithm 
In [1] proposed an algorithm using WAP-tree, 

which stands for web access pattern tree. This approach is 

quite different from the Apriori-like algorithms. The main 

steps involved in this technique are summarized next. The 

WAP-tree stores the web log data in a prefix tree format 

similar to the frequent pattern tree (FP-tree) for non-sequential 

data. 

2.3.1 The general structure of the algorithms  
1. The algorithm first scans the web log once to find 

all frequent individual events. 

2.  It scans the web log again to construct a WAP-tree 

over the set of frequent individual events of each 

transaction. 

3. It finds the conditional suffix patterns. 

4. In the fourth step, it constructs the intermediate 

conditional WAP-tree using the pattern found in 

previous step. 

5.  Finally, it goes back to repeat Steps 3 and 4 until 

the constructed conditional  

WAP-tree has only one branch or is empty. Thus, with 

the WAP-tree algorithm, finding all frequent events in the 

web log entails constructing the WAP-tree and mining the 

access patterns from the WAP tree.  

WAP-tree algorithm scans the original database only 

twice and avoids the problem of generating explosive 

candidate sets as in Apriori-like algorithms. Mining efficiency 

is improved sharply,  

2.3.2 Drawback 
WAP-tree mining is recursively constructs large 

numbers of intermediate WAP-trees during mining and this 

entails storing intermediate patterns, which are still time 

consuming operations& which is rather costly. The mining 

method using the WAP-tree alleviates both problems of 

scanning the database repeatedly and generating tremendous 

candidate sequences.  

 

2.4 Incremental and interactive mining of web 

traversal patterns 
The essence of incremental data mining and 

interactive data mining is the ability to use previous mining 

results in order to reduce unnecessary processes when web 

logs or web site structures are updated, or when the minimum 

support is changed. 
As per [3] ,they propose two novel incremental web 

traversal pattern mining algorithms for the maintenance of 

web traversal patterns when a database is updated or a web 

site structure is changed. Also present an interactive web 

traversal pattern mining algorithm to find all web traversal 

patterns when min_sup is adjusted. This algorithm utilizes 

previous mining results to find new web traversal patterns 

such that the total mining time can be reduced.For that  used 

the lattice structure to store the previous mining results for 

incremental Web traversal patterns. The patterns may be 

obtained rapidly when the database or the website structure is 

updated. The problem of choosing an appropriate storage 

structure to store previous mining results now becomes very 

important. 

 

2.4.1 Drawback 
The size of the lattice structure may become too 

large to be loaded into the main memory. 
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2.5 BIDE Algorithm 
In [7] BIDE, an efficient algorithm for mining 

frequent closed sequences without candidate maintenance. 

The frequent closed sequences are regarded as a pattern 

closure of all frequent sequential patterns .It adopts a novel 

sequence closure checking scheme called BI-Directional 

Extension and prunes the search space more deeply compared 

to the previous algorithms by using the Back Scan pruning 

method. A thorough performance study with both sparse and 

dense, real, and synthetic data sets has demonstrated that 

BIDE significantly outperforms the previous algorithm: It 

consumes an order(s) of magnitude less memory and can be 

more than an order of magnitude faster. It is also linearly 

scalable in terms of database size. 

2.5.1 Drawback 

It consumes a lot of memory and leads to a huge 

search space for pattern closure checking 

3. Future work 
In this survey paper, it is noticed that the former 

mining algorithms suffer from either repetitive database scan 

or high memory load. For algorithms with a single database 

scan, they build special data structures to store the sequences 

in the database. However, it may be difficult to hold all 

sequences of the database in the data structure.  

 So if we use Graph Traverse algorithm which will 

pay attention to the tracks of website visitors will mine TSP, 

in which the memory is loaded with the hyperlink structure of 

the website instead of the sequence database. Then this 

method can help to improve an efficient and effective way to 

realize what targets the visitors may reach and how they are 

achieved. 
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