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ABSTRACT 
The Usage of internet in now a day is more and it became 

necessity for the people to do some applications such as 

searching web data bases in domains like Animation, vehicles, 

Movie, Real estates, etc. One of the problems in this context is 

ranking the results of a user query. Earlier approaches for 

addressing this problem have used frequencies of database 

values, query logs, and user profiles. A common thread in 

most of these approaches is that ranking is done in a user- 

and/or query-independent manner. This paper simulates the 

usage of ranking query results based on user and query 

Dependent ranks by taking user and query similarities as input 

including the workload. K- Means algorithm used for cluster 

and re ranking process, multiple database system used for 

clustering the data. Among rank learning methods, ranking 

SVM has been favorably applied to various applications, e.g., 

optimizing search engines, improving data retrieval quality. 

We define these similarities formally in discuss their 

effectiveness analytically and experimentally over two distinct 

web databases. 

General Terms 
Clustering, Support vector machine, K-means algorithm, Web 

Databases. 

Keywords 
Automated Ranking, Animation Database, Vehicle and Movie 

Databases, User similarity, Query similarity, workload. 

1. INTRODUCTION 
Data mining refers to extracting or ―mining‖ knowledge from 

large amounts of data. The term is actually a misnomer. 

Remember that the mining of gold from rocks or sand is 

referred to as gold mining rather than rock or sand mining. 

Thus, data mining should have been more appropriately 

named ―knowledge mining from data,‖ which is unfortunately 

somewhat long. ―Knowledge mining,‖ a shorter term, may not 

reflect the emphasis on mining from large amounts of data. 

Data mining is used in a wide range of industries - including 

retail, finance, health care, manufacturing transportation, and 

aerospaces. 

The World Wide Web and its associated distributed 

information services, such as Yahoo!, Google, America 

Online, and AltaVista, provide rich, worldwide, on-line 

information services, where data objects are linked together to 

facilitate interactive access. Users seeking information of 

interest traverse from one object via links to another. Such 

systems provide ample opportunities and challenges for data 

mining. For example, understanding user access patterns will 

not only help improve system design but also leads to better 

marketing decisions (e.g., by placing advertisements in 

frequently visited documents, or by providing better 

customer/user classification and behavior analysis). Capturing 

user access patterns in such distributed information 

environments is called Web usage mining (or Weblog 

mining). 

The emergence of the deep web has led to the proliferation of 

a large number of web databases for a variety of applications 
(e.g., airline reservations, animation, vehicle search,movie, 

real estate scouting). These databases are typically searched 

by formulating query conditions on their schema attributes. 

When the number of results returned is large, it is time 

consuming to browse and choose the most useful answer(s) 

for further investigation. Currently, web databases simplify 

this task by displaying query results sorted on the values of a 

single attribute (e.g., Price, Mileage, etc.). However, most 

web users would prefer an ordering derived using multiple 

attribute values, which would be closer to their expectation. 

Consider Google Base’s  Vehicle database that comprises of a 

table with attributes Make, Price, Mileage, Location, Color, 

etc., where each tuple represents a vehicle for sale. We use the 

following two scenarios as our running examples. To 

decompose the notion of similarity into: 1) query similarity, 

and 2) user similarity. While the former is estimated using 

either of the proposed metrics – query-condition or query-

result, the latter is calculated by comparing individual ranking 

functions over a set of common queries between users. 

Although each model can be applied independently, we also 

propose a unified model to determine an improved ranking 

order. 

The ranking function used in our framework is a linear 

weighted-sum function comprising of: 1) attribute-weights 

denoting the significance of individual attributes and 2) value-

weights representing the importance of attribute values. In 

order to make our approach practically useful, a minimal 

workload is important. One way to acquire such a workload is 

to adapt relevance feedback technique used in document 

retrieval systems. However there exist several challenges in 

applying these techniques to Web databases directly.  

 2.RELATED WORK 

Although there was no notion of ranking in traditional 

databases, it has existed in the context of information retrieval 

for quite some time. With the advent of the Web, ranking 

gained prominence due to the volume of information being 

searched/browsed. Currently, ranking has become ubiquitous 

and is used in document retrieval systems, recommender 

systems, Web search/browsing, and traditional databases as 

well. Below, we relate our effort to earlier work in these areas. 
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2.1 Ranking in recommendation systems 
Given the notion of user- and query-similarity, it appears that 

our proposal is similar to the techniques of collaborative and 

content filtering used in recommendation systems. However, 

there are some important differences (between ranking tuples 

for database queries versus recommending items in a specific 

order) that distinguish our work.  

 For instance, each cell in the user-item matrix of 

recommendation systems represents a single scalar value that 

indicates the rating/preference of a particular user. 

2.2 Ranking in databases 
Ranking query results for relational and Web databases has 

received significant attention over the past years, 

simultaneous support for automated user- and query-

dependent ranking has not been addressed in this context.  

For instance, address the problem of query dependent ranking 

by adapting the vector model from information retrieval, 

where as do the same by adapting the probabilistic model. 

However, for a given query, these techniques provide the 

same ordering of tuples across all users. 

3.PROBLEM DEFINITION AND 

ARCHITECTURE 

3.1 Problem Definition 
Where a large set of queries given by varied classes of users is 

involved, the corresponding results should be ranked in a 

user- and query-dependent manner. The current sorting-based 

mechanisms used by web databases do not perform such 

ranking. While some extensions to SQL allow manual 

specification of attribute weights, this approach is 

cumbersome for most web users.      To provide a single 

ranking order for a given query across all users. In contrast 

techniques for building extensive user profiles as well as 

requiring users to order data tuples. 
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TABLE 1.3.2 

Sample Workload-B 

      

Q1 

    

Q2 

    

Q3 

    

Q4 

     

Q5 

    

Q6 

    

Q7 

   

Q8 

     

U1 

     

?? 

      

- 

    

F13 

      

- 

     

F15 

    

F16 

    

F17 

   

F18 

     

U2 

     

F21 

    

F22 

      

- 

    

F24 

       

- 

      

- 

      

- 

   

F28 

    

U3 

     

F31 

    

F32 

      

- 

    

F34 

       

- 

      

- 

    

F37 

   

F38 

 
The ranking problem, thus, can be split into: 

1.Identifying a ranking function using the similarity model: 

Given W, determine a user Ux similar to Ui and a query Qy 

similar to Qj such that the function FUxQy exists in W. 

2. Generating a workload of ranking functions: Given a user 

Ux asking query Qy, based on Ux’s preferences toward Qy’s 

results, determine, explicitly or implicitly. 

3.2 Functional  and Ranking Architecture
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3.3 Functional procedure 
Step 1: Setup web and created new user profile. 

Step 2: Searching user query on any search engine. 

Step 3: Clusters the specific queries using K-Means algorithm. 

Step 4: Re-ranking for different users arrived, rerank 

automatically to support SVM. 

Step 5: Filters and Test the exact query displayed. 

4. K-MEANS AND SIMILARITY MODEL 
In order to meaningfully restrict the number of queries that are 

similar to each other, one alternative is to cluster queries in the 

workload based on query similarity. This can be done using a 

simple K-means clustering method . Using K-means, we cluster 

m queries into K clusters based on a predefined K and number 

of iterations. 

4.1 Query similarity  
For  a value of K=2, the simple K-means algorithm will 

generate two clusters—C1 containing Q1 and Q2 (along with 

other similar queries), and C2 containing Q7 (in addition to 

other queries not similar to Q1).  Then estimate the similarity 

between U1 and every other user only for the cluster C1 (since 

it contains queries most similar to the input query). 

4.2 User based similarity 
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 In this model, calculate user similarity for a given query Q1 by 

U1, by selecting top-K most similar queries to Q1, each of 

which has a ranking function for U1. Consequently for 

workload-A, using k=3, the queries Q2, Q5, and Q7 would be 

selected. Likewise, in the case of workload-B, this measure 

would select Q3, Q5, and Q6 using the ―top-3‖ selection. Two 

different workloads have been proposed to setup queries and 

their performed effective analysis on the web. 

4.3 workload based similarity 
In order to address the problems in previous two models, 

propose a workload-based top-K model that provides the 

stability of the query-independent model (in terms of ensuring 

that ranking is always possible, assuming there is at least one 

nonempty cell in the workload for that user) and ensures that 

similarity between users can be computed in a query dependent 

manner. 

5. EXPERIMENTAL EVALUATION 
We have evaluated each proposed model (query-similarity and 

user-similarity) in isolation, and then compared both these 

models with the combined model for quality/accuracy. We also 

evaluated the efficiency of our ranking framework. 

Ideally, we would have preferred to compare our approach 

against existing ranking schemes in databases. However, what 

has been addressed in literature is the use of exclusive profiles 

for user-based ranking (the techniques for the same do not 

distinguish between queries) or the analysis of the database in 

terms of frequencies of attribute values for query-dependent 

ranking (which does not differentiate between users). In the 

context of web databases like Google Base, the data are 

obtained on-the-fly from a collection of data sources; thus, 

obtaining the entire database for determining the individual 

ranking functions, for comparing with query-dependent ranking 

techniques, is difficult. Even, if we obtain ranking functions for 

different queries, all users will see the same ranking order for a 

given query. Thus, comparing such static ordering of tuples 

against our approach (that determines distinct ranking of tuples 

for each user and query separately) would not be a 

meaningful/fair comparison. Similarly, we felt that the 

comparing static user profiles (that ignore the different 

preferences of the same user for different queries) to our 

proposed definition of user similarity, for user-dependent 

ranking will not be fair. Hence, we have tried to compare the 

proposed user, query, and combined similarities to indicate the 

effectiveness of each model with respect to the other two 

models. 

5.1 Quality Evaluation 
Query similarity. Based on the two proposed models of query 

similarity in the absence of a function Fij for a user-query pair 

(Ui, Qj), the most similar query (Qc and Qr using the query-

condition and the query result model, respectively) asked by 

Ui, for which a function (Fic and Fir, respectively) exists in the 

workload, is selected and the corresponding function is used to 

rank Qj’s results. We test the quality of both query similarity 

models as follows: We rank Qj’s results (Nj) using Fic and Fir, 

respectively, and obtain two sets of ranked results (R0 and 

R00). We then use the original (masked) function Fij to rank Nj 

and obtain the set (R). Since R represents the true ranking order 

provided by Ui for Qj, we determine the quality of this model 

by computing the Spearman rank correlation coefficient (8) 

between R and R0, and between R and R00. If the coefficients 

obtained are high (nearing 1.0), it validates our hypothesis (that 

for similar queries, the same user displays similar ranking 

preferences). Furthermore, if the coefficient between R and R0 

is greater than the one between R and R00, our understanding 

that query-condition model performs better than the query-

result model is validated. We performed the above process for 

each user asking every query.  The Analysis graph shows, over 

both the domains, the query-condition model outperforms the 

query-result model. The graphs indicate that the comparative 

loss of quality (highest value of Spearman coefficient being 

0.95 for query 5) is due to the restricted number of queries in 

the workload. Although finding a similar query (for which a 

ranking function  is available) for a workload comprising of 20 

queries and only 10 percent of ranking functions is difficult, the 

results are very encouraging. Based on the results of these 

experiments, we believe that the query similarity model would 

perform at an acceptable level of quality even for large, sparse 

workloads. 
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5.2 Efficiency Evaluation 
The goal of this study was to determine whether our framework 

can be incorporated into a real-world application. We generated 

a workload comprising of 1 million queries and 1 million users, 

and randomly masked out ranking functions such that only 

0.001percent of the workload was filled. We then generated 20 

additional queries and selected 50 random users from the 

workload. 

We measure the efficiency of our system in terms of the 

average time, taken across all users, to perform ranking over 

the results of these queries (using  K-Means Algorithm ). 

If we use main memory for storing the workload and not 

use any precomputation and indexing for retrieval, determining 

similarities (STEPS ONE & TWO) are computational 

bottlenecks as compared to the latter. In order to reduce the 

time for estimating query similarities, we can precompute 

pairwise similarities between all values of every attribute in the 

schema. Furthermore, in order to reduce the time to lookup 

every query in the workload and then evaluate its similarity 

with the input query, we use a value-based hashing technique 

to store all the queries in the workload. Likewise, all users are 

stored using a similar technique where the values 

corresponding to a user refer to various properties of the user 

profile. 

6.CONCLUSION 
In this Paper, proposed a user- and query-dependent solution 

for ranking query results for web databases. formally defined 

the similarity models (user, query, and combined) and 

presented experimental results over two web databases to 

corroborate our analysis. We demonstrated the practicality of 

our implementation for real-life databases. Further,  discussed 

the problem of establishing a workload, and presented a 

learning method for inferring individual ranking functions. Our 

work brings forth several additional challenges. In the context 

of web databases, an important challenge is the design and 

maintenance of an appropriate workload that satisfies 

properties of a similarity-based ranking. 
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