
International Conference on Research Trends in Computer Technologies (ICRTCT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

9

Automated Ranking for Web Databases using
K-Means Algorithm and UQDR Approach

 P.Ayyadurai [1], S.Jayanthi [2],

 M.E-Student, Assistant Professor,

 Srinivasan Engineering College, Srinivasan Engineering College,
 Dhanalakshmi Srinivasan group, Dhanalakshmi Srinivasan group,
 Perambalur, Tamilnadu, India Perambalur, Tamilnadu, India

ABSTRACT
The Usage of internet in now a day is more and it became

necessity for the people to do some applications such as

searching web data bases in domains like Animation, vehicles,

Movie, Real estates, etc. One of the problems in this context is

ranking the results of a user query. Earlier approaches for

addressing this problem have used frequencies of database

values, query logs, and user profiles. A common thread in

most of these approaches is that ranking is done in a user-

and/or query-independent manner. This paper simulates the

usage of ranking query results based on user and query

Dependent ranks by taking user and query similarities as input

including the workload. K- Means algorithm used for cluster

and re ranking process, multiple database system used for

clustering the data. Among rank learning methods, ranking

SVM has been favorably applied to various applications, e.g.,

optimizing search engines, improving data retrieval quality.

We define these similarities formally in discuss their

effectiveness analytically and experimentally over two distinct

web databases.

General Terms
Clustering, Support vector machine, K-means algorithm, Web

Databases.

Keywords
Automated Ranking, Animation Database, Vehicle and Movie

Databases, User similarity, Query similarity, workload.

1. INTRODUCTION
Data mining refers to extracting or ―mining‖ knowledge from

large amounts of data. The term is actually a misnomer.

Remember that the mining of gold from rocks or sand is

referred to as gold mining rather than rock or sand mining.

Thus, data mining should have been more appropriately

named ―knowledge mining from data,‖ which is unfortunately

somewhat long. ―Knowledge mining,‖ a shorter term, may not

reflect the emphasis on mining from large amounts of data.

Data mining is used in a wide range of industries - including

retail, finance, health care, manufacturing transportation, and

aerospaces.

The World Wide Web and its associated distributed

information services, such as Yahoo!, Google, America

Online, and AltaVista, provide rich, worldwide, on-line

information services, where data objects are linked together to

facilitate interactive access. Users seeking information of

interest traverse from one object via links to another. Such

systems provide ample opportunities and challenges for data

mining. For example, understanding user access patterns will

not only help improve system design but also leads to better

marketing decisions (e.g., by placing advertisements in

frequently visited documents, or by providing better

customer/user classification and behavior analysis). Capturing

user access patterns in such distributed information

environments is called Web usage mining (or Weblog

mining).

The emergence of the deep web has led to the proliferation of

a large number of web databases for a variety of applications
(e.g., airline reservations, animation, vehicle search,movie,

real estate scouting). These databases are typically searched

by formulating query conditions on their schema attributes.

When the number of results returned is large, it is time

consuming to browse and choose the most useful answer(s)

for further investigation. Currently, web databases simplify

this task by displaying query results sorted on the values of a

single attribute (e.g., Price, Mileage, etc.). However, most

web users would prefer an ordering derived using multiple

attribute values, which would be closer to their expectation.

Consider Google Base’s Vehicle database that comprises of a

table with attributes Make, Price, Mileage, Location, Color,

etc., where each tuple represents a vehicle for sale. We use the

following two scenarios as our running examples. To

decompose the notion of similarity into: 1) query similarity,

and 2) user similarity. While the former is estimated using

either of the proposed metrics – query-condition or query-

result, the latter is calculated by comparing individual ranking

functions over a set of common queries between users.

Although each model can be applied independently, we also

propose a unified model to determine an improved ranking

order.

The ranking function used in our framework is a linear

weighted-sum function comprising of: 1) attribute-weights

denoting the significance of individual attributes and 2) value-

weights representing the importance of attribute values. In

order to make our approach practically useful, a minimal

workload is important. One way to acquire such a workload is

to adapt relevance feedback technique used in document

retrieval systems. However there exist several challenges in

applying these techniques to Web databases directly.

 2.RELATED WORK

Although there was no notion of ranking in traditional

databases, it has existed in the context of information retrieval

for quite some time. With the advent of the Web, ranking

gained prominence due to the volume of information being

searched/browsed. Currently, ranking has become ubiquitous

and is used in document retrieval systems, recommender

systems, Web search/browsing, and traditional databases as

well. Below, we relate our effort to earlier work in these areas.

International Conference on Research Trends in Computer Technologies (ICRTCT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

10

2.1 Ranking in recommendation systems
Given the notion of user- and query-similarity, it appears that

our proposal is similar to the techniques of collaborative and

content filtering used in recommendation systems. However,

there are some important differences (between ranking tuples

for database queries versus recommending items in a specific

order) that distinguish our work.

 For instance, each cell in the user-item matrix of

recommendation systems represents a single scalar value that

indicates the rating/preference of a particular user.

2.2 Ranking in databases
Ranking query results for relational and Web databases has

received significant attention over the past years,

simultaneous support for automated user- and query-

dependent ranking has not been addressed in this context.

For instance, address the problem of query dependent ranking

by adapting the vector model from information retrieval,

where as do the same by adapting the probabilistic model.

However, for a given query, these techniques provide the

same ordering of tuples across all users.

3.PROBLEM DEFINITION AND

ARCHITECTURE

3.1 Problem Definition
Where a large set of queries given by varied classes of users is

involved, the corresponding results should be ranked in a

user- and query-dependent manner. The current sorting-based

mechanisms used by web databases do not perform such

ranking. While some extensions to SQL allow manual

specification of attribute weights, this approach is

cumbersome for most web users. To provide a single

ranking order for a given query across all users. In contrast

techniques for building extensive user profiles as well as

requiring users to order data tuples.

 TABLE 1.3.1

Sample Workload-A

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

U1

??

F12

-

-

F15

-

F17

-

U2

F21

F22

-

F24

-

F26

F27

-

U3

F31

F32

F33

F34

-

-

F37

-

TABLE 1.3.2

Sample Workload-B

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

U1

??

-

F13

-

F15

F16

F17

F18

U2

F21

F22

-

F24

-

-

-

F28

U3

F31

F32

-

F34

-

-

F37

F38

The ranking problem, thus, can be split into:

1.Identifying a ranking function using the similarity model:

Given W, determine a user Ux similar to Ui and a query Qy

similar to Qj such that the function FUxQy exists in W.

2. Generating a workload of ranking functions: Given a user

Ux asking query Qy, based on Ux’s preferences toward Qy’s

results, determine, explicitly or implicitly.

3.2 Functional and Ranking Architecture

 User profile

 User Input

Calling Search

Engine
 Query Similarity

K-Means algorithm

 User Similarity

 Clustering

Ranking Result and

Re-rank

Collaborative and

Content filtering

Recommended

System

 SVM

Exact Queries

Probabilistic

Learning Method

International Conference on Research Trends in Computer Technologies (ICRTCT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

11

3.3 Functional procedure
Step 1: Setup web and created new user profile.

Step 2: Searching user query on any search engine.

Step 3: Clusters the specific queries using K-Means algorithm.

Step 4: Re-ranking for different users arrived, rerank

automatically to support SVM.

Step 5: Filters and Test the exact query displayed.

4. K-MEANS AND SIMILARITY MODEL
In order to meaningfully restrict the number of queries that are

similar to each other, one alternative is to cluster queries in the

workload based on query similarity. This can be done using a

simple K-means clustering method . Using K-means, we cluster

m queries into K clusters based on a predefined K and number

of iterations.

4.1 Query similarity
For a value of K=2, the simple K-means algorithm will

generate two clusters—C1 containing Q1 and Q2 (along with

other similar queries), and C2 containing Q7 (in addition to

other queries not similar to Q1). Then estimate the similarity

between U1 and every other user only for the cluster C1 (since

it contains queries most similar to the input query).

4.2 User based similarity

TABLE 4.2.1

Sample Workload-A

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

U1

??

F12

 - -
F15

 -
F17

 -

U2

F21

F22

 -
F24

-

F26

F27

 -

U3

F31

F32

F33

F34

-

 -
F37

 -

TABLE 4.2.2

Sample Workload-B

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

U1

??

 -
F13

 -
F15

F16

F17

F18

U2

F21

F22

 -
F24

-

 - -
F28

U3

F31

F32

 -
F34

-

 -
F37

F38

 In this model, calculate user similarity for a given query Q1 by

U1, by selecting top-K most similar queries to Q1, each of

which has a ranking function for U1. Consequently for

workload-A, using k=3, the queries Q2, Q5, and Q7 would be

selected. Likewise, in the case of workload-B, this measure

would select Q3, Q5, and Q6 using the ―top-3‖ selection. Two

different workloads have been proposed to setup queries and

their performed effective analysis on the web.

4.3 workload based similarity
In order to address the problems in previous two models,

propose a workload-based top-K model that provides the

stability of the query-independent model (in terms of ensuring

that ranking is always possible, assuming there is at least one

nonempty cell in the workload for that user) and ensures that

similarity between users can be computed in a query dependent

manner.

5. EXPERIMENTAL EVALUATION
We have evaluated each proposed model (query-similarity and

user-similarity) in isolation, and then compared both these

models with the combined model for quality/accuracy. We also

evaluated the efficiency of our ranking framework.

Ideally, we would have preferred to compare our approach

against existing ranking schemes in databases. However, what

has been addressed in literature is the use of exclusive profiles

for user-based ranking (the techniques for the same do not

distinguish between queries) or the analysis of the database in

terms of frequencies of attribute values for query-dependent

ranking (which does not differentiate between users). In the

context of web databases like Google Base, the data are

obtained on-the-fly from a collection of data sources; thus,

obtaining the entire database for determining the individual

ranking functions, for comparing with query-dependent ranking

techniques, is difficult. Even, if we obtain ranking functions for

different queries, all users will see the same ranking order for a

given query. Thus, comparing such static ordering of tuples

against our approach (that determines distinct ranking of tuples

for each user and query separately) would not be a

meaningful/fair comparison. Similarly, we felt that the

comparing static user profiles (that ignore the different

preferences of the same user for different queries) to our

proposed definition of user similarity, for user-dependent

ranking will not be fair. Hence, we have tried to compare the

proposed user, query, and combined similarities to indicate the

effectiveness of each model with respect to the other two

models.

5.1 Quality Evaluation
Query similarity. Based on the two proposed models of query

similarity in the absence of a function Fij for a user-query pair

(Ui, Qj), the most similar query (Qc and Qr using the query-

condition and the query result model, respectively) asked by

Ui, for which a function (Fic and Fir, respectively) exists in the

workload, is selected and the corresponding function is used to

rank Qj’s results. We test the quality of both query similarity

models as follows: We rank Qj’s results (Nj) using Fic and Fir,

respectively, and obtain two sets of ranked results (R0 and

R00). We then use the original (masked) function Fij to rank Nj

and obtain the set (R). Since R represents the true ranking order

provided by Ui for Qj, we determine the quality of this model

by computing the Spearman rank correlation coefficient (8)

between R and R0, and between R and R00. If the coefficients

obtained are high (nearing 1.0), it validates our hypothesis (that

for similar queries, the same user displays similar ranking

preferences). Furthermore, if the coefficient between R and R0

is greater than the one between R and R00, our understanding

that query-condition model performs better than the query-

result model is validated. We performed the above process for

each user asking every query. The Analysis graph shows, over

both the domains, the query-condition model outperforms the

query-result model. The graphs indicate that the comparative

loss of quality (highest value of Spearman coefficient being

0.95 for query 5) is due to the restricted number of queries in

the workload. Although finding a similar query (for which a

ranking function is available) for a workload comprising of 20

queries and only 10 percent of ranking functions is difficult, the

results are very encouraging. Based on the results of these

experiments, we believe that the query similarity model would

perform at an acceptable level of quality even for large, sparse

workloads.

International Conference on Research Trends in Computer Technologies (ICRTCT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

12

5.2 Efficiency Evaluation
The goal of this study was to determine whether our framework

can be incorporated into a real-world application. We generated

a workload comprising of 1 million queries and 1 million users,

and randomly masked out ranking functions such that only

0.001percent of the workload was filled. We then generated 20

additional queries and selected 50 random users from the

workload.

We measure the efficiency of our system in terms of the

average time, taken across all users, to perform ranking over

the results of these queries (using K-Means Algorithm).

If we use main memory for storing the workload and not

use any precomputation and indexing for retrieval, determining

similarities (STEPS ONE & TWO) are computational

bottlenecks as compared to the latter. In order to reduce the

time for estimating query similarities, we can precompute

pairwise similarities between all values of every attribute in the

schema. Furthermore, in order to reduce the time to lookup

every query in the workload and then evaluate its similarity

with the input query, we use a value-based hashing technique

to store all the queries in the workload. Likewise, all users are

stored using a similar technique where the values

corresponding to a user refer to various properties of the user

profile.

6.CONCLUSION
In this Paper, proposed a user- and query-dependent solution

for ranking query results for web databases. formally defined

the similarity models (user, query, and combined) and

presented experimental results over two web databases to

corroborate our analysis. We demonstrated the practicality of

our implementation for real-life databases. Further, discussed

the problem of establishing a workload, and presented a

learning method for inferring individual ranking functions. Our

work brings forth several additional challenges. In the context

of web databases, an important challenge is the design and

maintenance of an appropriate workload that satisfies

properties of a similarity-based ranking.

ACKNOWLEDGEMENT

The authors thank the anonymous referees for their extremely

useful comments and suggestions on an earlier draft of this

paper.

REFERENCES
[1] Aditya Telang, Chengkai Li, and Sharma Chakravarthy.

―One Size Does Not Fit All: Toward User- and Query-

Dependent Ranking for Web Databases; IEEE Transactions On

Knowledge And Data Engineering, Vol. 24, No. 9, September

2012.

[2] Alex Penev, Raymond K. Wong; Finding Similar Pages in

a Social Tagging Repository; WWW 2008, April 21–25, 2008,

Beijing, China. ACM 978-1-60558-085-2/08/04.

[3] Cynthia Dwork, Ravi Kumar, Moni Naor, D. Sivakumar;

Rank Aggregation Methods for the Web; WWW10, May 1-5,

2001, Hong Kong. ACM 1-58113-348-0/01/0005.

[4] Hwanjo Yu, Youngdae Kim, and Seungwon Hwang. RV-

SVM: An Efficient Method for Learning Ranking SVM; Korea

Research Foundation Grant funded by the Korean

Government(KRF-2008-314-D00483)2009.

[5] Kaushik Chakrabarti, Surajit Chaudhuri, Seung-won

Hwang; Automatic Categorization of Query Results; SIGMOD

2004, June 13–18, 2004, Paris, France.

[6] Marko balabanovic, yoav shoham. Content based,

collaborative Recommendation; March 1997/Vol. 40, No. 3

Communication Of The ACM.

[7] Surajit Chadhuri, Gautam Das, Vagelis Hristidis;

Probabilistic Information Retrieval Approach for Ranking of

Database Query Results; ACM Transactions on Database

Systems, Vol. 31, No. 3, September 2006, Pages 1134–1168.

[8] Subbarao Kambhampati, Garrett Wolf, Yi Chen, Hemal

Khatri Bhaumik Chokshi, Jianchun Fan, Ullas Nambiar;

QUIC: Handling Query Imprecision & Data Incompleteness; in

Autonomous Databases;

(http://creativecommons.org/licenses/by/2.5/) CIDR 2007.

[9] Tapas Kanungo, Senior Member, IEEE, David M. Mount,

Member, IEEE, Nathan S. Netanyahu, Member, IEEE,

Christine D. Piatko, Ruth Silverman, and Angela; An Efficient

C-Means Clustering Algorithm: Analysis and Implementation;

IEEE Transactions On Pattern Analysis And Machine

Intelligence, Vol. 24, No. 7, July 2002.

[10] Weifeng Su, Jiying Wang, Qiong Huang, Fred

Lochovsky; Query Result Ranking over E-commerce Web

Databases; CIKM’06, November 6–11, 2006, Arlington, VA

Virginia, USA.

[11] Wei YAN, Li YAN, Zongmin MA.;Automated Ranking

of XML Fuzzy Query Results; Journal of Computational

Information Systems 8: 6 (2012) 2567–2574 Available at

http://www.Jofcis.com.

[12] Xiaodong Shi and Christopher C. Yang; Mining Related

Queries from Web Search Engine Query Logs Using an

Improved Association Rule Mining Model; Journal Of The

American Society For Information Science And Technology,

58(12):1871–1883, 2007.

