
International Conference on Research Trends in Computer Technologies (ICRTCT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

14

Prioritization based Test Case Generation using

Regression Testing

 L.UmaRani R.Pradeepa
 Student, Assistant Professor,

 Department of Computer Applications, Department of Computer Applications,
 Sri Ramakrishna Engineering College, Sri Ramakrishna Engineering College,

Vattamalai palayam, coimbatore-641022. Vattamalai palayam, coimbatore-641022.

ABSTRACT

Test case prioritization involves scheduling test cases in an

order that increases the effectiveness in achieving some

performance goals. One of the most important performance

goals is the rate of fault detection. Test cases should run in an

order that increases the possibility of fault detection and also

that detects the most severe faults at the earliest in its testing

life cycle. A test case prioritization, assigns each test case a

selection probability according to its potential ability to

achieve some certain testing goal. It selects prioritized test

cases to run to get higher testing Performance. Test case

prioritization techniques could be of great benefit to

increasing the effectiveness of test suites in practice. Test case

prioritization is a technique. It helps to increase the rate of

fault detection or code. Whereas Regression test prioritization

is completed in a time constrained execution environment in

which testing occurs for only a fixed time period. Based on

test case prioritization using regression testing calculating the

efficiency for each test cases. This can support to make a

better software product.

Keywords: Test Case, Regression Testing, Test Case

Prioritization, Error, Testing Efficiency.

1. INTRODUCTION

Test cases are manually generated for every software. As a

result it consumes more time for testing and increases the

complexity. Regression testing is retesting changed segments

of application system. It is performed frequently to ensure the

validity of the altered software. In most of the cases, time and

cost constraint is prominent; hence the whole test suite cannot

be run. Thus, prioritization of the test cases becomes essential.

The priority criteria can be set accordingly e.g. to increase rate

of fault detection, to achieve maximum code coverage.

Regression testing is a necessary but expensive process in the

software lifecycle. One of the regression testing approach, test

case prioritization , aims at sorting and executing test case in

the order of potential abilities to achieve certain testing

objective.

1.1 Test Case Prioritization
Test case prioritization techniques schedule test cases in an

execution order according to some criterion. These criteria can

test case cost basis or time basis. The purpose of prioritization

is to detect faults in the system in minimum time or cost. It

also improves the functionality of a quality product. Test case

prioritization can address a wide variety of objectives to

increase the rate of fault detection that revealing faults earlier

in a run of regression tests. It also increases the rate of

detection of high-risk faults, locating those faults earlier in the

testing process. It may be wish by a testers to increase the

likelihood of revealing regression errors related to specific

code changes earlier in the regression testing process and to

increase their coverage of coverable code in the system under

test at a faster rate. With help of this testers may wish to

increase their confidence in the reliability of the system under

test at a faster rate.

1.2 Regression test selection.

Retest all technique takes time and effort as all

test cases are used to test the program again, so

may be quite expensive. This technique much better

as it uses information about program, modified

program, test cases to select subset of test cases

for testing.

2. AVERAGE PERCENTAGE FAULT

DETECTION(APFD)

Average Percentage of Faults Detected (APFD)

metric [1] was used to determine the effectiveness

of the new test case orderings, but it considered

faults and test cases cost to be uniform.

2.1 Test Case Prioritization Problem

Given: T is a test suite; PT is the set of permutations of T; (all

possible prioritizations of T) f is a function from PT to a real

number (award value) then Find T' Є PT such that (for all T'')

T'' Є PT, (T'' != T') [f (T') >= f (T'')

Here, PT represents the set of all possible prioritizations

(orderings) of T and f is a function that, applied to any such

ordering, yields an award value for that ordering.

Empirical Study: APFD Measures [1] Let T be a test suite

containing n test case,and let F be a set of m faults revealed by

T .Let T Fi be the first test case in ordering T, of T which

International Conference on Research Trends in Computer Technologies (ICRTCT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

15

reveals fault I . The APFD for test suite T’ is given by the

equation:

APFD = 1- [(TF1+TF2+TF3+….+TFm) / nm] +

[1/(2*n)]

Table-1a

Fau

lt

>>

test

Cas

es

F

1

F

2

F

3

F

4

F

5

F

6

F

7

F

8

F

9

F1

0

T1 x x

T2 x x x

T3 x x x x x x x

T4 x

T5 x x x

APFD =1-[(1+3+3+3+1+2+2+5+5+5)/ (5*10)

]+(1/(2*5)

=1- (30/50) +(1/10)

= 1-0.6+0.1

= 0.4+0.1

= 0.50

= 50%

Table-1b

Fau

lt

>>

test

Cas

es

F

1

F

2

F

3

F

4

F

5

F

6

F

7

F

8

F

9

F1

0

T3 x x x x x x x

T5 x x x

T2 x x x

T1 x x

T4 x

APFD = 1- [(1+1+1+1+1+1+1+2+2+2)/ (5*10)

]+(1/(2*5)

=1- (13/50) +(1/10)

= 1-0.26+0.1

= 0.74+0.1

= 0.84

 = 84%

In similar way we can find out APFD for all permutation of

test suit .Thus in regression testing ,out of all APFD value the

maximum percentage value is most priority test suit for best

result in minimum time execution. In other words fault are

found as early as possible in regression testing help of test

case prioritization.

Figure-1 Prioritization

In Figure. 1, the test case 3 identifies most number of faults.

The test case 3 is top in the prioritized order and it is executed

first. Thus the proposed prioritization technique will identify

most number of severe faults at an early stage.

Figure-2 APFD calculation

In Figure. 2, APFD percentage of test cases executed against

percentage of faults detected. The the proposed prioritization

technique will identify most number of severe faults at an

early stage.

 All APFD can be calculated with the following C Language

functional code

for(i=0;i<tn;i++)

{

for(j=0;j<=fn;j++)

 printf("%3d",t[i][j]);

 printf("\n");

International Conference on Research Trends in Computer Technologies (ICRTCT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

16

}

printf("total test case in test suit>>");

 scanf("%d",&tsn);

 printf("enter test case order in test suite>>>"); //i.e.3 5 2 4 1

for(i=0;i<tsn;i++) s

canf("%d",&b[i]);

 printf("\n");

for(i=0;i<tsn;i++)

printf(" b=[%d]%d",i,b[i]);

 m=0; for(i=0;i<tsn;i++)

{

for(j=0;j<tn;j++)

 {

if(b[i] == t[j][0])

 { for(k=0;k<=fn;k++)

c[m][k]=t[j][k];

} }

m++;

}

 printf("\ntcno f1 f2 f3 f4 \n");

for(i=0;i<tsn;i++)

 {

for(j=0;j<=fn;j++)

 printf("%3d",c[i][j]);

printf("\n");

}

for(j=1;j<=fn;j++)

 {

count=0;

for(i=0;i<tsn;i++)

 {

 if(c[i][j] == 1)

{

count=count+1;

}

 if(count>1)

 {

 c[i][j]=0;

count=1;

} } }

for(i=0;i<tsn;i++)

 {

for(j=0;j<=fn;j++)

printf("%3d",c[i][j]);

printf("\n");

 }

s=0;

sum=0;

for(i=0;i<tsn;i++)

 for(j=1;j<=fn;j++)

{

if(c[i][j] ==1) f[++s]=i+1;
}

for(i=0;i<s;i++)

 printf(" %d \t ",f[i]);

for(i=1;i<=s;i++)

sum=sum+f[i];

 if(s<fn)

{

sum =sum+fn;

}

In above C-Language code we can calculate APFD for

different test suite and compare the results for test case

prioritazation .tn is number of test cases ,fn is number of

faults ,tsn-number of test case in test suit.

fault found by a test case represent show by 1 value in

corresponding row and column oterwise it represent 0 value

.All 0 and 1 value stored in two dimensional array.

3. TIME BASED TEST CASE

PRIORITIZATION

There are many existing approaches to regression test

prioritization that focus on the coverage of or modifications to

the structural entities within the program under test [3], [4],

[5]. None of these prioritization schemes explicitly consider

the testing time budget like the time-aware technique

presented in paper [6] Elbaum et al. and Rothermel et al.

focus on general regression test prioritization and the

identification of a single test case reordering that will increase

the effectiveness of regression testing over many subsequent

changes to the program. They had described a time-aware test

suite prioritization technique. Experimental analysis

demonstrates that their approach can create time-aware

prioritizations that significantly outperform other

prioritization techniques.

3.1 Measures of Time-Aware Test Suite

Prioritization

Kristen R. Walcott et al [6] described other factors of test case

prioritization i.e. Time-Aware Test Suite Prioritization

.Problem description as below time aware test suit

prioritization Given: (i) A test suite, T, (ii) the collection of all

permutations of elements of the power set of permutations of

T, perms (2T) , (iii) the time budget, tmax, and (iv) two

functions from perms(2T) to the real numbers, time and fit.

Problem: Find the test tuple Smax belongs to perm (2T) such

that time (Smax)<=tmax and for all S’ belongs to perms(2T)

where Smax is not equal to S’ and time (S’) <=tmax

,fit(smax)>fit(s’).

For example, suppose that regression test suite T contains six

test cases with the initial ordering for T that contains (T1; T2;

T3; T4; T5; T6), as described in Table 2. For the purposes of

motivation, this example assumes a priori knowledge of the

faults detected by T in the program P. As shown in Figure

1(a), test case T1 can find seven faults,

(F1,F2,F3,F4,F5,F6,F7), in nine minutes, T2 finds one fault,

(F1), in one minute, and T3 isolates two faults, (F1,F5), in

three minutes.

Test cases T4; T5; and T6 each find three faults in four

minutes,(F2,F3,F7) ,(F4,F6,F8) and ,(F2,F4,F6), Respectively.

Supposing that the time budget for regression testing is twelve

minutes. Without a time budget, the test tuple (T1; T4; T5;

T6; T3; T2) would execute. Out of this, only the test tuple S1=

T1 would have time to run when under a twelve minute time

constraint and would only a total of seven faults, as noted in

Table 2(b). Since time is a principal concern, it may also seem

intuitive to order the test cases with regard to their execution

time. In the time constrained environment, a time-based

prioritization S2= (T2T3; T4; T5) could be executed and find

eight defects, as described in Table-2(b). Another option

would be to consider the time budget and fault information

together.Therefore, the \intelligent" prioritization, S4, is

favored over S2 because it is able to detect more faults earlier

in the execution of the tests.

International Conference on Research Trends in Computer Technologies (ICRTCT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

17

Table-2a

Table-2b

Table-2c

3.2 Prioritization for Multiple Processing

Queues

Test case prioritization is an effective technique to detect the

faults with minimum time or cost. It helps to increase the rate

of fault detection or code coverage in regression testing.

3.3 The Test Case Prioritization Problem in

Parallel Scenario

As per Bo Qu Changhai Nie et al [7] all existing methods can

only prioritize test cases to a single queue. Once there are two

or more machines that participate in testing, all exiting

techniques are not applicable any more. To extend the

prioritization methods to parallel scenario, this paper defines

the prioritization problem in such scenario and applies the

task scheduling method to prioritization algorithms to help

partitioning a test suite into multiple prioritized subsets.

Basically in Existing test case prioritization techniques

prioritize test cases in a single set, potentially assuming that

there is only one processing queue that selects test cases to

run[8,9]. However, there would often be two or more

testers/machines that participate in testing in practice.

Comparison of two different definition of prioritization in

parallel scenario involves one more step, dividing test suite to

several subsets. So at a high level, test case prioritization in

parallel scenario works as follow: (1) apply an RTS technique

to test suite T, yielding T’, (2) divide T’ to several subsets, (3)

assign a selection probability to each test case in every

subsets, (4) for each processing queue, select a test case from

corresponding subsets using the probabilities assigned in step

3, and run it, (5) collect feedbacks and adjust the probabilities

if necessary, and (6) repeat step 4 until there is no more test

case or resources are exhausted. But problem is how to divide

the test suite and set their selection probabilities.

3. BEFORE PRIORITIZATION AND

AFTER PRIORITIZATION

The comparison between before prioritization and after

prioritization test case, which shows that number of test cases

needed to find out all faults are less in the case of prioritized

test case compared to non prioritized test case. It can be

observed from Figure. 3, that the after prioritization technique

needs 57% of test cases to find out all the faults. But 47% of

test cases are needed to find out all the faults in the case of

before prioritization, if test cases are executed in before

prioritized order.

 F1 F2 F3 F4 F5 F6 F7 F8

T1 X X X X X X X

T2 X

T3 X X

T4 X X X

T5 X X X

T6 X X X

 Time

Limit:

12minutes

 Fault

S1

Time

S2

APFD

S3

Intelligent

S4

 T1 T2

T3

T4

T5

T2

T1

T5

T4

T3

Total

Faults

Total

Time

7

9

8

12

7

10

8

11

Test

Case

#Fault Time

cost

(min)

Avg.

Fault

per

min.

T1 7 9 0.778

T2 1 1 1.0

T3 2 3 0.667

T4 3 4 0.75

T5 3 4 0.75

T6 3 4 0.75

International Conference on Research Trends in Computer Technologies (ICRTCT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

18

Figure-3 Before and After prioritization

It can be observed from Figure. 3, that the after prioritization

technique needs 57% of test cases to find out all the faults.

But 47% of test cases are needed to find out all the faults in

the case of before prioritization, if test cases are executed in

before prioritized order. APFD percentage of test cases

executed against percentage of faults detected.

5. TESTING EFFICIENCY

Test efficiency is not only about test execution alone, but all

or most of test activities, like test planning, comprehension,

test cases creation, review, execution, defect tracking and

closure.

Test Efficiency helps to calculate the efficiency of testing i.e.

how many defects were leaked to the customer as compared to

number of defects reported by the testing team. Generally

almost 10-15 % of defects will be leaked and is considered

acceptable. In the recent years, Companies have stared

spending huge amount of money for developing quality. Due

to this defect leakage percentage has come down to less than

10%.

Testing Efficiency(Test Case Based) = Number of Defects

 Found by test case/Number of test cases

Figure-4 Testing Efficiency

From the Figure.4, it is observed that the prioritized test cases

identify the faults at an early stage. The APFD measures of

prioritized test cases are higher In Figure.1, Test case 3 can

identify more number of faults when compared to others.

Thus Test case 3 will be first executed. From Figure.1, we

observed that the proposed method identifies the severe fault

in the early stage. So it will reduce the computational time.

6. CONCLUSION

Regression testing is the verification that previously

functioning software remains after a change. A large number

of test case executions are expensive and time consuming

during regression testing. Where Test case prioritization

(TSP) is an effective and practical technique in regression

testing to reduce it. It schedules test cases in order of

precedence that increases their ability to meet some

performance goals, such as code coverage, rate of fault

detection. We have study and conclude that prioritization of

test case or test suits have different aspects of fault detection.

On the basis of prioritization techniques, functionality of

regression testing can improved in minimum time and

recourses. Based on test case prioritization using regression

testing calculating the efficiency for each test cases.This can

support to make a better software product. Test effectiveness

and cost can be calculated for future work.

REFERENCES[1] S. Elbaum, A. Malishevsky and G.

Rothermel. Incorporating varying test costs and fault

severities into test case prioritization. In Proceedings of

the 23rdInternational Conference on Software

Engineering, pages 329-338, May 2001.

[2] Gregg Rothermel et al” Test Case Prioritization: An

Empirical Study”PICSM , Oxford, UK, September, 1999

[3] H. Do, G. Rothermel, and A. Kinneer. Empirical studies of

test case prioritization in a JUnit testing environment. In

Proc. Of 15th ISSRE, pages 113{124, 2004.

 [4] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test

case prioritization: A family of empirical studies. IEEE

Trans. Softw. Eng., 28(2):159{182, 2002.

[5] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing test

cases for regression testing. IEEE Trans. on Softw.

Eng.,27(10):929{948, 2001.

 [6] Kristen R. Walcott et al,” Time Aware Test Suite

Prioritization”,ACM, ISSTA’06, , Portland, Maine, USA,

July 17–20, 2006

 [7] Bo Qu Changhai Nie et al, “Test Case Prioritization for

Multiple Processing Queues”, ISISE-08,pg. 646-49

IEEE, 2008.

 [8] G. Rothermel, R. H. Untch, C. Y. Chu, M. J. Harrold.

Prioritizing test cases for regression testing. IEEE

Transactions on Software Engineering, 27(10):929-948,

October 2001.

 [9] B. Qu, C. Nie, B. Xu and X. Zhang. Test Case

Prioritization for Black Box Testing. In Proceedings of

the International Computer Software and Applications

Conference, pages 465-474, July, 2007.

[10] W.E. Wong, J.R. Horgan, S. London, and H. Agrawal,

“A Study of Effective Regression Testing in Practice,”

Proc. Eighth Int’l Symp.Software Reliability Eng., pp.

230-238, Nov. 1997.

International Conference on Research Trends in Computer Technologies (ICRTCT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

19

[11] Sandeep Kaur and Rajandeep Kaur, "Various Techniques

of Regression Testing," An International Journal of

Engineering Sciences, Vol. 4, pp.391-397, Sep 2011.

[12] Xiaofang Zhang, Changhai Nie, Baowen Xu and Bo Qu,

“Test Case Prioritization based on Varying Testing

Requirement Priorities and Test Case Costs”,

Proceedings of Seventh International Conference on

Quality Software (QSIC’07), 2007.

[13] Hema Srikanth and Laurie Williams, “Requirements-

Based Test Case Prioritization”, North Carolina State

University, ACM SIGSOFT Software Engineering,

pages 1-3, 2005.

[14] Elbaum S, Rothermel G, Kanduri S, Malishevsky AG

(2004) Selecting a cost-effective test case prioritization

technique. Soft Qual J 12(3):185–210.

