
International Conference on Research Trends in Computer Technologies (ICRTCT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

1

Effectiveness of Testcase Prioritization using APFD
Metric: Survey

R. Pradeepa

Assistant Professor,
Department of Computer Applications,

Sri Ramakrishna Engineering College,

Coimbatore, Tamilnadu, India

K. VimalaDevi, Ph.D.
Professor,

Department of Computer Science,

Kalasalingam University,

Krishnankovil, Tamilnadu, India

ABSTRACT

Test case prioritization techniques involve scheduling over

test cases in an order that improves the performance of

regression testing. It is inefficient to re execute every test

cases for every program function if once change occurs.

Test case prioritization is to be scheduled based on higher

priority than lower priority to meet some performance goal

(i.e. increase in the effectiveness of testing). The

performance goals are 1. rate of fault detection (how

quickly faults are detected) 2. Rate of code coverage at

fastest rate,3) Rate of increase of confidence in reliability

during the testing process to improve the software quality.

The problem of test case selection can be solved by

prioritizing the test case. The main aim of my paper is to

determine the effectiveness of prioritized and non-

prioritized test case with the help of APFD(Average

Percentage Faults Detected).

Keywords
Test Case Prioritization, Regression Testing, Average

Percentage of Faults Detected (APFD), Test Cases.

1. INTRODUCTION

Regression means retesting the unchanged parts of the

application. Test cases are re-executed in order to check

whether previous functionality of application is working

fine and new changes have not introduced any new bugs.

This test can be performed on a new build when there is

significant change in original functionality or even a single

bug fix. This is the method of verification. Verifying that

the bugs are fixed and the newly added features have not

created in problem in previous working version of

software. Testers perform functional testing when new

build is available for verification. The intend of this test is

to verify the changes made in the existing functionality and

newly added functionality. When this test is done , the

tester should verify if the existing functionality is working

as expected and new changes have not introduced any

defect in functionality that was working before this

change. Regression test should be the part of release cycle

and must be considered in test estimation.

Regression testing is usually performed after verification

of changes or new functionality. But this is not the case

always. For the release which is taking months to

complete, regression tests must be incorporated in the daily

test cycle.

 For weekly releases regression tests can be performed

when functional testing is over for the changes. By

reducing the cost of regression testing and increasing the

likely effectiveness of running the test suite in a time-

constrained execution environment, developers can afford

higher levels of verification. When experimenting with

prioritization techniques, regression faults can be obtained

in two ways : by locating natural faults and by the seeding

faults[20].

Test case prioritization techniques could be of great benefit

to increasing the effectiveness of test suites in practice.

Test case prioritization is a technique helps to increase the

rate of fault detection. In an empirical evaluation of

regression test suite prioritization technique ordering was

measured using an evaluation metric called

APFD(Average Percentage Faults Detected) and PTR

(Problem Tracking Report)

2. A SURVEY OF RECENT

RESEARCH IN THE FIELD USING

APFD METRIC

For test case prioritization process in regression testing

using APFD, various researchers have proposed several

researches contributions . A brief review of some

important contributions from the existing literature is

presented in this section.

Rothermel et al.[10] compared the proposed prioritisation

techniques like random prioritisation, optimal

prioritisation, and no prioritisation, using the Siemens suite

programs. Optimal prioritisation is possible because the

experiment was performed in a controlled environment,

i.e. the faults were already known. The results show that

all the proposed techniques produce higher APFD values

than random prioritization or no prioritisation. The

surrogate with the highest APFD value differes between

programs, suggesting that there is no single best surrogate.

Do and Rothermel applied coverage-based prioritisation

techniques to the JUnit testing environment, a popular unit

testing framework [23]. The results showed that prioritised

execution of JUnit test cases improved the fault detection

rate. One interesting finding is that the random

prioritisation sometimes resulted in an APFD value higher

than the untreated ordering, i.e. the order of creation.

When executed in the order of creation, newer unit tests

will be executed later. However, newer unit tests will

never have a higher chance of detecting faults. The

empirical results showed that random prioritisation could

exploit this weakness of untreated ordering in some cases.

Praveen Ranjan Srivastava [12] has presented a new test

case prioritization algorithm to compute average faults

discovered per minute. Using APFD metric results, he has

demonstrated the effectiveness of the algorithm and

International Conference on Research Trends in Computer Technologies (ICRTCT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

2

presented. Calculating the effectiveness of prioritized and

non-prioritized cases by means of APFD has been his main

objective.

R.Krishnamoorthi et al. [21] have proposed a Genetic

Algorithm (GA) based new test case prioritization method.

A superior rate of fault detection when compared to rates

of randomly prioritized test suites has been obtained, when

the new suite that consists of subsequences of the original

test suite prioritized by the proposed technique is executed

within a time-constrained execution environment. Test

cases have been prioritized utilizing structurally based

criterion by the experiment and the genetic algorithm has

been analyzed with regard to effectiveness and time

overhead. The effectiveness of the new test case orderings

have been calculated using an Average Percentage of

Faults Detected (APFD) metric.

R. Kavitha et al [5] have proposed an algorithm that

performs rate of fault detection and fault impact based

prioritization of test cases. Experimental results using

APFD have demonstrated that more effective severe fault

identification at earlier stage of the testing process could

be obtained by the proposed algorithm for prioritized test

cases compared to unprioritized ones.

Zheng Li et al. [22] have tested experimentally that genetic

algorithms perform well for test case prioritization. The

benefits of code coverage based prioritization techniques

are measured using a weighted average of the percentage

of faults detected (APFD) average percentage block

coverage (APBC), average percentage decision coverage

(APDC) and average percentage statement coverage

(APSC).

3.PRIORITIZED TEST SUITE

EFFECTIVENESS

The performance of the prioritization technique used in

this paper, it is must to assess effectiveness of the

sequence/ordering of the test suite. Effectiveness will be

measured by the rate of faults detected. The following
metric is used to calculate the level of effectiveness.

3.1 Average Percentage Of Faults

Detected (APFD) Metric
To quantify the goal of increasing a subset of the test

suite's rate of fault detection, we use a metric called APFD

developed by Elbaum et al.[6] that measures the rate of

fault detection per percentage of test suite execution. The

APFD is calculated by taking the weighted average of the

percentage of faults detected during the execution of the

test suite. APFD values range from 0 to 100; higher values

imply faster (better) fault detection rates. APFD can be

calculated as follows:

APFD=1-{(Tf1+Tf2+….+Tfm)/mn}+(1/2n) (1)

Where n be the no. of test cases and m be the no. of faults.

(Tf1,….,Tfm) are the position of first test T that exposes

the fault.

Table 1. Fault Matrix

To illustrate this measure, consider the program with 10

faults and a suite of 10 test cases 1 through 10 as shown in

Table 1.

Here comparison among the results of prioritized and non-

prioritized suite is done based on the results of the APFD

metric. This is average percentage of faults detected.

APFD is a standardized metric that is used to find the

degree of faults detected.

The prioritized order according to fi is:

T4 T2 T1 T7 T6 T9 T10 T5 T8 T3

No. of test cases (n) = 10

No. of faults (m) = 10

The position of the first test in T that exposes fault i. = Tfi

Applying APFD w.r.t. the prioritized test cases:

APFD = 1 – {(5 + 2 + 4 + 1 + 2 + 3 + 3 + 4 + 1 + 2) /

(10*10)} + {1/(2*10)}

= 1 – { 27 / 100} + { 1 / 20}

= 1 – 0.27 + 0.0

= 0.78

Now APFD value for non – prioritized test cases:

APFD = 1 – {(6 + 2 + 7 + 4 + 2 + 1 + 1 + 7 + 4 + 2) /

(10*10)} + {1/(2*10)}

= 1 – { 36 / 100} + { 1 / 20}

= 1 – 0.36 + 0.05

= 0.69

Figure 1 : APFD is higher for prioritized test case

order that reveal most faults early.

Thus the prioritized test cases yield better fault detection

than the non – prioritized test cases as shown in the chart.

Faults Test Cases

 T

1

T

2

T

3

T

4

T

5

T

6

T

7

T

8

T

9

T

10

f 1 X X

f 2 X X

f 3 X X

f 4 X X

f 5 X X

f 6 X

f 7 X X

f 8 X X

f 9 X X

f 10 X X

International Conference on Research Trends in Computer Technologies (ICRTCT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

3

3.1.1 Limitations of the APFD Metric

The APFD metric just presented relies on two

assumptions: (1) all faults have equal severity, and (2) all

test cases have equal costs. (These assumptions are

manifested in the fact that the metric simply plots the

percentage of faults detected against the fraction of the test

suite run.) Our previous empirical results [6, 7] suggest

that when these assumptions hold, the metric operates

well. In practice, however, there are cases in which these

assumptions do not hold: cases in which faults vary in

severity and test cases vary in cost. In such cases, the

APFD metric can provide unsatisfactory results.

3.2 Average Percentage Block Coverage

(APBC).

This measures the rate at which a prioritized test suite

covers the blocks.

3.3. Average Percentage Decision

Coverage (APDC).

This measures the rate at which a prioritized test suite

covers the decisions (branches).

3.4. Average Percentage Statement

Coverage (APSC).

This measures the rate at which a prioritized test suite

covers the statements.

3.5. Average Percentage Loop Coverage

(APLC).

This measures the rate at which a prioritized test suite

covers the loops.

3.6. Average Percentage Condition

Coverage (APCC).

This measures the rate at which a prioritized test suite

covers the conditions.

3.7. Problem Tracking Reports (PTR)

Metric

The PTR metric is another way that the effectiveness of a

test prioritization may be analyzed. Recall that an

effective prioritization technique would place test cases

that are most likely to detect faults at the beginning of the

test sequence. It would be beneficial to calculate the

percentage of test cases that must be run before all faults

have been revealed. PTR is calculated as follows:

 Ptr(t,p) = nd/n

Let t - be the test suite under evaluation, n - the total

number of test cases in the total number of test cases

needed to detect all faults in the program under test p

3.7.1 Limitations of the PTR Metric
However, the numerator of the PTR equation requires the

knowledge of the minimal number of test cases needed to

detect all faults. While it is easy to calculate the maximum

number of tests needed, test set size minimization is

equivalent to the NP-complete minimal set covering

problem.

4. REGRESSION TESTING

TECHNIQUES
There are number of available regression testing

techniques. Here we are representing all these techniques

in basic 3 categories as defined .

(i) Retest All: As the name suggest in this testing

technique we perform whole testing cycle again after the

inclusion of new code and component and related test

cases into it. Again the test cases will be generated,

sequence reset etc. This type of technique is not feasible in

most of time, as it requires much time and cost. But in

smaller software where a small change in code impact on

whole software at that time regression testing is used.

(ii) Regression Test Selection: This approach is a

modification over the existing retest all approaches. In this

approach instead of testing all cases a selection on the test

cases is performed. To perform this selection a test cases

categorization is performed. According to this rest table

cases are separated from whole test cases such as the

requirement based testing is generally need not to be

performed again. The code based test cases and the system

based test cases are selected to perform the testing process.

In this technique instead of rerunning the whole test suite,

we select a part of test suite to rerun if the cost of selecting

a part of test suite is less than the cost of running the tests

that RTS allows us to omit. RTS divides the existing test

suite into (1) Reusable test cases; (2) Re-testable test cases;

(3) Obsolete test cases.

(iii) Test Case Prioritization: All the test cases used in a

testing approach or the sequence are not alike. It means

each kind of test cases have there on values called the

basic prioritization of the test cases. Generally the

prioritization process is defined on the bases of state space

diagram of the cases. The test cases that exist on initial

stage of the test cases or the development process have the

lower priority and the test cases that affect the whole

system or tested repeatedly over the whole process having

the higher priority. Besides this the prioritization process is

further divided in number of sub techniques to assign the

priorities

a)The easiest type of assigning priorities is the random

prioritization but in most of the cases it does perform the

complete justification with the test cases selection.

Because of this such type of technique is never

recommended to generate the test cases.

(b) Optimal ordering: in which the test cases are prioritized

to optimize rate of fault detection. As faults are determined

by respective test cases and we have programs with known

faults, so test cases can be prioritized optimally. It is one of

the dynamic prioritization approach in which decision is

affected because of types of occurred faults and there

frequency.

(c) Total statement coverage prioritization: in which test

cases are prioritized in terms of total number of statements

by sorting them in order of coverage achieved. If test cases

are having same number of statements they can be ordered

pseudo randomly.

(d)Additional statement coverage prioritization: which is

similar to total coverage prioritization, but depends upon

feedback about coverage attained to focus on statements

not yet covered. This technique greedily selects a test case

that has the greatest statement coverage and then iterates

International Conference on Research Trends in Computer Technologies (ICRTCT - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

4

until all statements are covered by at least one test case.

The moment all statements are covered the remaining test

cases undergo Additional statement coverage prioritization

by resetting all statements to “not covered”.

5.CONCLUSION

Regression testing is the verification that previously

functioning software remains after a change. Regression

testing is time consuming and expensive process. A large

number of test case executions are expensive and time

consuming during regression testing. Where Test case

prioritization (TCP) is an effective and practical technique

in regression testing to reduce it. It schedules test cases in

the order of precedence that increases their ability to meet

some performance goals, such as code coverage, rate of

fault detection through APFD metric. Analysis is done for

prioritized and non-prioritized cases with the help of

APFD (average percentage fault detection) metric. It is

proven that when the prioritized cases are run then result is

more efficient. In future, test case prioritization can be

done by using more factors and evaluate by PTR,

Weighted Defect Density (WDD), Defect Removal

Efficiency (DRE), Defect Removable Efficiency (DRE),

Weighted Percentage Based on Fault Severity (WPFS) and

risk metrics. We conclude that prioritization of test case or

test suits have different aspects of fault detection. On the

basis of prioritization techniques, functionality of

regression testing can be improved in minimum time and

recourses. This can support to make a better software

product.

6. ACKNOWLEDGEMENTS

We would like to express my heartiest gratitude to all the

people who poured their efforts in compilation of this

work. We would like to thank almighty for giving us

strength to pull through this task and to all the individuals

who gave their best contribution in the related field of

research.

7. REFERENCES

[1] Sanjukta Mohanty, Arup Abhinna Acharya and Durga

Prasad Mohapatra, (2011), “A Survey On Model

Based Test Case Prioritization”. International Journal

of Computer Science and Information Technologies.

[2] Sahil Gupta, Himanshi Raperia, Eshan Kapur,

Harshpreet Singh and Aseem Kumar, (2012), “A

Novel Approach For Test Case Prioritization”.

International Journal of Computer Science,

Engineering and Applications.

[3] Prakash Srivastava, “Performance Evaluation of

Cost-cognizant Test Case Prioritization”.

International Journal of Computer Science and its

Applications.

[4] Sanjukta Mohanty , Arup Abhinna Acharya and

Durga Prasad Mohapatra, (2011), A Survey On

Model Based Test Case Prioritization. International

Journal of Computer Science and Information

Technologies.

[5] R. Kavitha and N. Sureshkumar, (2011) , “Factors

Oriented Test Case Prioritization Technique in

Regression Testing”. European Journal of Scientific

Research.

[6] S. Elbaum, A. Malishevsky, and G.

Rothermel.(2000), ”Prioritizing test cases for

regression testing”.

[7] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold.

“Test case prioritization: an empirical study”.

[8] S. Yoo, M. Harman, (2007) Regression Testing

Minimisation, Selection and Prioritisation : A Survey.

Software Testing, Verification And Reliability .

[9] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg

Rothermel, Sebastian Elbaum, (2006) , Costcognizant

Test Case Prioritization.

[10] S.Elbaum, A.Malishevsky, and G.Rothermel, (2002),

Test case prioritization: A family of empirical studies.

IEEE Transactions on Software Engineering.

[11] Dr.Varun Kumar, Sujata and Mohit Kumar ,(2011),

”Testcase Prioritization Using Fault Severity”, IJCST.

[12] Praveen Ranjan Srivastava, (2008) “Test Case

Prioritization”, Journal of Theoretical and Applied

Information Technology IEEE.

[13] Gregg Rothermel, Roland H. Untch, Chengyun Chu,

Mary Jean Harrold, (1999) “Test Case Prioritization:

An Empirical Study”, International Conference.

[14] G. Rothermel, R. H. Untch, C. Chu, and M. J.

Harrold, (2001) “Prioritizing Test Cases for

Regression Testing”, IEEE Transactions on Software

Engineering.

[15] Siripong roongruangsuwan, Jirapun daengdej, (2010)

“Test case prioritization techniques”, Journal of

Theoretical and Applied Information Technology,

IEEE.

[16] Sebastian Elbaum, Alexey G. Malishevsky and Gregg

Rothermel, (2002) “Test case prioritization: A family

of empirical studies,” IEEE Transactions on Software

Engineering.

[17] Gaurav Duggal, Mrs. Bharti Suri , “Understanding

regression testing techniques”, Guru Gobind Singh

Indraprastha University, Delhi, India.

[18] Sebastian Elbaum , Alexey Malishevsky , Gregg

Rothermel, (2001) “Incorporating Varying Test Costs

and Fault Severities into Test Case Prioritization” ,

Proceedings of the 23rd International Conference on

Software Engineering.

[19] Srinivasan Desikan,(2006),“A test methodology for

an effective regression testing”.

