
International Journal of Computer Applications (0975 – 8887)

International Conference on Quality Up-gradation in Engineering, Science and Technology (ICQUEST2015)

21

Customized Approach for Enhancing SIMS Performance

by using the Concept of Indexing

A. S. Dhanadhya
Government College of Engineering

Amravati 444 604, Maharashtra, India

P. N. Chatur, PhD
Government College of Engineering

Amravati 444 604, Maharashtra, India

ABSTRACT

Now a days everyone is trying to manage the data digitally

on computer rather than maintaining it with paper-pen as

because the management of data digitally is very easier than

maintaining it with paper and pen which was done early

days, this is also getting implemented in the field of

education very rapidly, hence huge amount of student

information is getting stored because of this digitalization of

world and increasing amount of students and institutes. And

as the size and complexity of the stored data is increasing

very fast it is giving an impact on the performance of the

management applications used. That is why storing and

retrieving the data from the databases of various universities

always requires efficient procedures or algorithms. Indexing

is a technique which stores and retrieves the data efficiently

from the database by mapping with the particular records.

Customized indexing methods becomes requisite so as to

retrieve and store data from the database in more efficient

way. There is a little more time complexity and more

wastage of the space for unallocated records in normal

indexing with equal number of alphabets in the primary

index. This paper proposes a customized and enhanced

approach to search the information from such databases with

reduced time complexity and latency time by specializing the

concept as well as by using indexing with repetitive

frequency so as to form the buckets with equal number of

records.

Keywords

Indexing, Buckets, Database, Performance.

1 INTRODUCTION

1.1 Problem Definition
Given a database of a Student Information System of some

specific institute. Aim is to design a MIS system with the

database which is indexed by using the concept of repetitive

indexing and considering all possible cases so as to enhance

the performance of the existing system without making any

additions in the actual database. It can improve the

performance i.e. minimize the data retrieval operation time

on the existing tables. It contains some survey based

observation of seven colleges [1].

By perception the time complexity can be reduced if you

organize the database as per the data as it appears by

legitimate analysis. As per the analysis, the data is stored into

different buckets before it is stored into the database and the

bucket may contain many records under that on single block.

Like the database of some institutes (as according to the

survey) is organized as a set of twenty six buckets. Which

means there are 26 buckets for each and every alphabet of

total 26 alphabets. And if there are 2700 students, there will

be 26 buckets of approximately 100 records each. But in this

kind of indexing, a problem is encountered which is that the

frequency of „X‟ or „Q‟ exposing as a starting alphabet

would be very close to zero while that of names starting with

„A‟ or „S‟ will be quite higher.

1.2 Scope of Problem
Currently as you can see Student Information Management

System is in practice in each college and university. In such

huge management systems, it is very important to worry

about the speed of data retrieval. To create databases and

index them, there are a lots of soft-wares and tool are

available.

So it is being searched for a technique that improves the

efficiency of SIMS system than that of the existing one. The

country India has a market which is cost sensitive and always

looks for a lower cost model for learning management

system, also the system should be easy-to maintain, easy-to-

use and low-cost.

For this reason, we preferred open-source technologies over

the commercial alternatives, concentrated on web-based

system so that it can be accessed from anywhere over

Internet with any platform using a web browser and have

nearly zero requirements for the end-user (no setup).

1.3 Reason for Selecting Problem

As already known and discussed as well, with the growth of

time, the information about the students is getting gathered

continuously and is getting doubled and redoubled because

of increasing number of colleges, universities and the sharply

increasing amount of data of earlier and new students. And

hence it shows how difficult is the level of management of

this very large amount of data. Student Information

Management System comes out as a solution for

management of this data [2] but again the problem of

managing this student data efficiently persists. Hence here

coming out with the solution to this problem that is

customized indexing, it helps in giving good efficiency for

the management of this large data of students through

different colleges, institutes, schools. In the existing student

information management system you are implementing

indexing over the single column only, it increases the

information retrieval speed when the query is fired on the

table over the column which is already indexed, but doesn‟t

proved the same speed or performance while accessing the

data over some other column which is not indexed [3]. Along

with this concept it‟s given a try to provide an extension to it

which is use of repetitive frequency while doing indexing.

1.4 Related Work
Given below is the related work done in the field of

management of student information.

In 2013, Prabhu T Kannan and Srividya K Bansal, proposed

a Unimate: A Student Information System. The goal of this

International Journal of Computer Applications (0975 – 8887)

International Conference on Quality Up-gradation in Engineering, Science and Technology (ICQUEST2015)

22

project is to develop a prototype for a low-cost web-based

application that provides features of both learning

management systems and student information systems, and is

customized to the needs of universities in India [4].

TANG Yu-fang and HANG Yong-sheng, in 2009 proposed a

paper on “Design and Implementation of College Student

Information Management System Based on Web Services”

They used .NET framework for the design of this system.

2 SYSTEM DEVELOPMENT

2.1 Aim and Objective
Aim

To enhance the performance of existing student information

management system by specialized indexing approach and

proper index selection for SIMS and also provide an

extension of customized indexing to it.

Objectives

 To gain higher data retrieval speed.

 Modify the level of indexing to better level.

 Do proper index selection for SIMS.

2.2 Research Methodologies Used

INDEXING

Separate data structures that allow DBMS to locate particular

records in the file of the base table more quickly are called

Indexes. It is not much worry of performance for MYSQL

when the tables are small and data size is small. But as the

new data gets added and the size of the tables increase, the

performance automatically degrades and it may result in

slower response time by the application or system. But

luckily, indexing in the MYSQL helps in retrieving data

records more efficiently and at much better speed. For

example, consider the following simple SQL statement.

SELECT

AVG (MARKS) FROM STUDENTS

GROUP BY DIVISION;

Figure 1: System Architecture Workflow

In the earlier case, when column MARKS and DIVISION

are not indexed, MYSQL will scan the whole table for

MARKS. Latter, it scans the whole table to do sorting to

group the result by city. The sorting and selecting process

becomes a slow one because of this. The MYSQL doesn't

need to do a full-length table look-up because index is

always sorted (similar to that of an index in an

encyclopedia). Therefore, an index on MARKS and

DIVISION will increase the process speed.

2.3 Proposed Workflow
Here, use of indexing plays little different role than the

existing indexing techniques.

The concept of indexing is specialized for Student

Information Management System.

By indexing the column before firing the query it is tried to

achieve better execution speed than the speed of query which

is fired over the column which is not indexed.

Input: Some College/University/School Student‟s Database

Output: Modified database which gives more efficiency for

fired queries.

1. Study the existing System:

 Check if any flaws in the existing system as a third

party user.

 Check if any flaws in the existing system at the

administrator level.

2. Choose suitable form of normalization and apply

normalization over it.

3. After studying the overall system, choose the columns to

be indexed.

4. Index those selected columns

5. Calculate and then compare the performance of those

when indexed and when not.

6. Finalize the best selected columns

7. Specialize the existing database for an application of

Student Information Management System

8. Provide an extension of customized indexing i.e. indexing

with repetitive frequency.

3 EXTENSION OF CUSTOMIZED

INDEXING
To achieve higher data retrieval speeds, the technique of

indexing is used. As per the analysis, the data is stored into

different buckets before it is stored into the database and the

bucket may contain many records under that on single block.

Like the database of GCOEA (as per the survey) is organized

as a set of twenty six buckets. Which means there are 26

buckets for each and every alphabet of total 26 alphabets.

But here you encounter a problem of uneven distribution of

number of records in among the total 26 buckets.

SPARSE INDEXING

 In dense index, there is an index record for every search key

value in the database which helps in searching faster.

However it requires more space to store the index records.

Search key value and a pointer to the actual record on the

disk is contained in the index record. If found, indices with

the duplicate keys, index points to the lowest search key in

each of the block [5].

 Let us consider the example of GCOEA‟s SIMS student

database which is a database of nearly 600 students. Now

consider (student name, pointer) pair as a sparse index file,

you will see the situation like shown in fig 2.

TIME COMPLEXITY CALCULATIOS

Statement: “Display all details of the students with name C”

Corresponding structured query language statement for the

above statement will be as follows

International Journal of Computer Applications (0975 – 8887)

International Conference on Quality Up-gradation in Engineering, Science and Technology (ICQUEST2015)

23

SELECT *

FROM STUDENTS

WHERE NAME = “C”

 Now when it starts for searching the detail of the student

“C”, it is found that C is not there in the index file as it is a

sparse index and it comes to the result that “C” falls in the

range of “A- D” and hence pointer to A is followed and

hence by now time complexity becomes 1 Unit as “A” is on

first position in the index.

Figure 2: Sparse Indexing Architecture

 After following the pointer it starts searching the actual data

file, diagram shows as “C” is the 40th record, the time

complexity needed to search “C” in actual data file is 40

Units. And hence the total time complexity needed to search

“C” becomes 1 + 40 i.e. 41 Units

MULTILEVEL INDEXING

 Index records has search-key value and data pointers. Along

with the actual database files, the index is stored on the disk.

The size of indices grows as the size of database grows. So

as to speed up the search, it is important to keep the index

records in the main memory. Outer index are the pointers

which point to the index file and inner index is the index file

that points to the actual data [6]. This architecture is show in

fig 3.

TIME COMPLEXITY CALCULATIOS

Again calculate the time complexity on the same GCOEA‟s

SIMS student database with the same SQL statement but the

database which is indexed using multilevel indexing.

SELECT *

FROM STUDENTS

WHERE NAME = “C”;

 Now when it starts for searching the detail of the student

“C”, it is found that C is not there in the outer index and it

comes to the result that “C” falls in the range of “A-J” and

hence pointer to A is followed and hence by now time

complexity becomes 1 Unit as “A” is on first position in the

index. Now it will check for “C” in the inner index as it is a

multilevel indexing. As “C” does not appear in the inner

index, “A” is followed which increases time complexity to 2.

After following the pointer it starts searching the actual data

file and hence the total time complexity needed to search “C”

becomes 2 + 40 i.e. 42 Units

So now there is not much difference in 41 and 42, hence here

a new method is proposed.

Figure 3: Multilevel Indexing Architecture

PROPOSED METHOD

Before starting the actual proposed method, calculate the

percentage of occurrence of each and every alphabet

considering it as a starting alphabet in the attribute student

name.

 Now allocate the buckets as per the calculation of

percentage of occurrence and map the pointers. This

proposed architecture is shown in the diagram below.

Considering the same database of GCOEA‟s SIMS, the

average percentage of occurrence of „a‟ as the starting

alphabet is 9.2% and then assign two buckets to the records

those start with the alphabet „a‟. And similarly as per these

percentage values are decided upon the number of buckets to

be assigned as per the percentage of occurrence of each

alphabet as a starting alphabet.

TIME COMPLEXITY CALCULATIOS

Once again calculate the time complexity on the same

GCOEA‟s SIMS student database with the same SQL

statement but the database which is indexed using multilevel

indexing.

SELECT *

FROM STUDENTS

WHERE NAME = “C”;

 Here the way of storing and retrieving the data is little

different, calculate the percentage of occurrence for all 26

alphabets and then decide upon some range of percentage for

each bucket. It is decided to 7.1 in this method. The table

below shows average and percentage of each of these

alphabets.

 Here in this case the time complexity of searching C is 4 + 1

i.e. 5. As the buckets are allocated depending upon the

percentage value of occurrence, the name starting with the

alphabet with more frequency percentage is allocated more

number of buckets and hence helps in faster searching i.e.

reduces the time complexity.

 Here in this case the time complexity of searching C is 4 +

1 i.e. 5. As the buckets are allocated depending upon the

percentage value of

International Journal of Computer Applications (0975 – 8887)

International Conference on Quality Up-gradation in Engineering, Science and Technology (ICQUEST2015)

24

Figure 4: Proposed Indexing Architecture

Table 1: Alphabate occurrence percentage and average

occurrence, the name starting with the alphabet with more

frequency percentage is allocated more number of buckets

and hence helps in faster searching i.e. recuces the time

complexity.

4 PERFORMANCE ANALYSIS AND

COMPARISON
Consider a test database „sakila‟ and next select the table

„sakila.film‟ which has total 1000 tuples. The schema of the

table „film‟ is sakila.fillm (title, description, release_year,

language_id, original_laguage, rental_duration, rental_rate,

length, replacement…). Now fire the following SQL query

on it.

SELECT title, description, release_year

FROM sakila.film

WHERE rental_duration = 6;

 After running this query, check for the execution time

needed in seconds for this query. For this use a tool named

“MySQL Query Browser”. It gives the query execution time

needed for a specific query to run over a specific table of

some database. See the results of this in the left hand side of

Table 2 below.

Now apply indexing over the column „rental_duration‟ and

create an index „tindex‟ on it and run the same SQL

statement again. And note the results of this also which are

shown on the right hand side of Table 2.

Once done with gathering the results, calculate average,

minimum and maximum query execution time and the query

execution time with the highest frequency. So obtain the

results as shown above, the average query execution time for

existing method is 0.0076 sec while the average query

execution time for proposed method is 0.0072 sec. Hence a

better performance is achieved with proposed method than

the existing one. And you can expect this performance to

enhance more as the size of the database will grow more and

more.

Table 2: Comparison of query execution time of existing

method and proposed method

Query Execution Time (in

Seconds) for Existing

Method

Query Execution Time (in

Seconds) for Proposed

Method

0.0079

0.0079

0.0058

0.0077

0.0078

0.0078

0.0080

0.0075

0.0096

0.0078

0.0083

0.0078

0.0081

0.0077

0.0101

0.0069

0.0078

0.0100

0.0076

0.0072

0.0072

0.0092

0.0071

0.0072

0.0089

0.0072

0.0075

0.0078

0.0072

0.0071

0.0071

0.0093

0.0066

0.0073

0.0070

0.0081

0.0073

0.0080

AVG = 0.0076

MIN = 0.0058

MAX = 0.0101

MAX FREQUENCY ->

0.0078 (freq. = 5)

AVG = 0.0072

MIN = 0.0066

MAX = 0.0093

MAX FREQUENCY ->

0.0072 (freq. = 5)

International Journal of Computer Applications (0975 – 8887)

International Conference on Quality Up-gradation in Engineering, Science and Technology (ICQUEST2015)

25

Figure 5: Performance Analysis and Comparison

5 FUTURE WORK AND

CONTRIBUTION

5.1 Software Proficiency
MICROSOFT VISUAL STUDIO and MySQL Workbench is

used because of its comprehensiveness and ease in using

environment for technical outcomes. The high-level GUI and

a good user-interface of this project is developed using

MICROSOFT VISUAL STUDIO. Also VISUAL STUDIO

supports good elements for a web application which gives a

very nice and decent look and a friendly environment for the

user. At the same time it helps in fast development and

execution. A good database server has been provided by

MySQL Workbench for managing a university/institute level

database. And for performance evaluation use a tool called

MySQL Query Browser.

5.2 Contribution in Future Work
 In almost all the institutes, universities or schools the

system will be useful.

 A better speed of retrieval can be achieved as another

advantage after implementation of this idea of

specializing the concept of indexing for SIMS. Hence the

most important contribution in future will be in changing

the whole Student Information Management System.

 One major thing or future scope is to combine the

Student Information Management System with the

concept of repetitive frequency indexing which is

discussed here.

6. CONCLUSION
 It is a challenging problem in the field of computer science

to manage the large size data efficiently. The performance

analysis discussed above shows that the proposed systems

gives a good performance than the existing one. The

advantage of equal number of records per bucket is achieved

by the customized indexing which is based in the frequency.

The comparison shows that the Time complexity has been

reduced drastically and hence we achieve the faster search.

7. REFERENCES
[1] Jin Mei-shan, Qiu Chang-li and Li Jing, \The

Designment of Student Information Management

System Based on B/S Architecture", 2nd International

Conference on Consumer Electronics, Communications

and Networks (CEC-Net), 2012, pp. 2153-2155.

[2] Prabhu T Kannan and Srividya K Bansal, \Unimate: A

Student Information System", IEEE International

Conference on Advances in Computing,

Communications and Informatics (ICACCI), 2013, pp.

1251-1256.

[3] GCOEA MIS System (http://10.121.11.205/GC

AMRAVATI/index.html), Access Date: 10 September

2014.

[4] TANG Yu-fang, HANG Yong-sheng, “Design and

Implementation of College Student Information

Management System Based on Web Services”, 978-1-

4244-3930-0/09/$25.00 ©2009 IEEE.

[5] A. S. Dhanadhya, Dr. P. N. Chatur, “Enhancing

Information Management System Performance by

Specializing the Concept of Indexing”, IJECS Volume 4

Issue 1 January, 2015.

[6] Prabhu T Kannan, Srividya K Bansal, “Unimate: A

Student Information System”, 978-1-4673-6217-

7/13/$31.00_c 2013 IEEE.

[7] Yaoping Wang ; Vu Pham ; Karmouch, A., “Issues on

the design of a global university database system,”

IEEE International Conference on Computer Design,

2006. ICCD 2006.

[8] Miihleisen, H.; Walther, T.; Tolksdorf, R.; “Multi -

level indexing in a distributed self-organized storage

system” 2011 IEEE Congress on Evolutionary

Computation (CEC).

[9] Yan Cao; He-feng Tong; Jie Yu; Dar-zen Chen; Mu-

hsuan Huang; Xu Zhang; Yong Luo; Yun-hua Zhao;

Ze-yu Zhang “Performance evaluation of universities in

China based on ESI database,” 2010 Proceedings of

PICMET '10.

[10] Anderson, N.; McMaster, K.; Sambasivam, S “A

comparative study of students' conceptual database

frameworks across universities,” 2010 IEEE Frontiers in

Education Conference (FIE).

IJCATM : www.ijcaonline.org

