
International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

9

Memory Efficient IPV4/V6 Lookup using Path

Compression

 C.Shalini D.Shalini Punithavathani

PG student Professor & HOD

Department of CSE Department of CSE

Government College of Engineering, Tirunelveli Government College of Engineering, Tirunelveli

ABSTRACT

With the rapid growth of the Internet, IP-lookup becomes the

bottle-neck in network traffic management. Therefore, the

design of high speed IP routers has been a major area of

research. The focus of this paper is on achieving significant

reduction in memory requirements for the longest prefix-match

operation needed in IPv4/v6 lookups. The Longest Prefix

Matching (LPM) is one of the problems in the uni-bit trie

representation, in which the number of nodes and the memory

requirement is high for IP lookup. To solve this problem we

propose a classic trie-based approach in IP lookup. We propose

an algorithm to compress the uni-bit-trie representation of a

given routing table by using single-prefix distance bounded path

compression algorithm. This algorithm determines the optimal

maximum skip distance at each node of the trie to minimize the

total memory requirement.

Keywords
IP-lookup, longest prefix matching, skip distance, routing

tables

1. INTRODUCTION
Memory efficiency with compact data structures for

Internet Protocol (IP) lookup has recently gained much

interest in the research community. Internet Protocol (IP)

lookup in routers can be implemented by some form of tree

traversal [2]. The length of the IP address is 32 bits in IPv4 and

128 bits in IPv6 [3]. This increased length allows for a broader

range of addressing hierarchies and a much larger number of

addressable nodes. Every machine that is on a TCP/IP network

(a local network, or the Internet) has a unique Internet Protocol

(IP) address.

According to the Internet Architecture Board (IAB), an IPv6

address consists of two parts: a 64-bit network/sub-network ID

followed by a 64-bit host ID. At the core router, only the 64-bit

network/sub-network ID is relevant in making the forwarding

decisions. The increase in the size of routing table and the

extension of the prefix length necessitate high memory-efficient

lookup algorithms to reduce the size of the storage memory.

Existing compression techniques [4], [5] can increase the total

memory requirement and the computational complexity at the

nodes, while reducing the total number of nodes.

The main objective for this paper is on achieving significant

reduction in memory requirements for the longest prefix match

operation needed in IPv4/v6 lookups. So the distance-bounded

path compression algorithm for trie-based IP lookup is

proposed. It makes the single-prefix distance-bounded path

compression. This algorithm can compress the trie of a given

routing table to significantly reduce the total memory

requirement.

 The distance-bounded path compression [1] algorithm

supports over 330K IPv4/v6 prefixes and sustains a high

throughput of 466 million lookups per second. The key issues

to be addressed in designing architecture [2] for IP packet

forwarding engine are: size of supported routing table,

throughput, scalability (with multiple chips or external storage),

in-order packet output, incremental update, and power

consumption.

2. EXISTING SYSTEM
In trie-based approaches [6], [7], [8], [9] IP- lookup is

performed by simply traversing the trie according to the bits

in the IP address. These designs have a compact data

structure, but large number of trie nodes; hence, moderate

memory efficiency.

2.1 IP lookup

IP Lookup is considered the core function of a router. Internet

Protocol (IP) lookup in routers can be implemented by some

form of tree traversal. The nature of IP lookup is longest prefix

matching (LPM). LPM refers to an algorithm used by routers in

IP networking to select an entry from a routing table.

2.2 Longest prefix matching

The IP lookup operation requires a longest matching prefix

computation at wire speeds. At every hop (router), for each

packet of the destination IP address is matched against a

database of IP prefixes. Each prefix entry consists of a prefix

and a next hop value.

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

10

Table 1: A Sample Routing Table (Maximum

 Prefix Length=8)

 Prefix Next

Hop

 Prefix Next

Hop

 P0
* 0 P5 11111* 5

P1
0010* 1 P6 0101* 6

P2
01100*

2 P7 1* 7

P3
010111* 3 P8 0* 8

P4
110101* 4

In this routing table [10], binary prefix P1 (0010∗) matches all

destination addresses that begin with 0010. Similarly, prefix P4

matches all destination addresses that begin with 110101. The 8-

bit destination address IP= 01011111 is matched by the prefixes

P0, P3, P6, and P8. Since |P0| = 0, |P3| = 6, |P6| = 4, |P8| = 1.

Here P3 is the longest prefix that matches IP (|P| is defined as

the length of prefix P). In longest prefix routing, the next hop

index for a packet is given by the table entry corresponding to

the longest prefix that matches its destination IP address.

 For an incoming packet, its destination address is

compared with all the current prefixes in the routing table and

the next-hop associated with the longest matching prefix [11] is

determined to be the output port for the packet.

2.3 Trie-based IP Lookup
The most common data structure in algorithmic solutions for

performing LPM is some form of trie [12]. Trie is a binary tree,

where a prefix is represented by a node. The value of the prefix

corresponds to the path from the root of the tree to the node

representing the prefix [13]. The branching decisions are made

based on the consecutive bits in the prefix.

A trie is called a uni-bit trie if only one bit is used for making

branching decision at a time. The routing table can be drawn as a

binary search tree is called uni-bit trie. The uni-bit trie can be

compressed as in [14], [4], [5] to reduce the number of nodes.

The compression techniques can greatly increase the total

memory requirement and the computational complexity at the

nodes.

The prefix set in table 1 corresponds to the uni-bit trie. The

prefix bits are scanned from left to right. If the scanned bit is 0,

the node has a child to the left and a bit of 1 indicates a child to

the right. Normally, each trie node contains two fields: the

represented prefix and the pointer to the child nodes.

The uni-bit trie, IP lookup is performed by traversing the trie

according to the bits in the IP address. When a leaf is reached,

the prefix associated with the leaf is the longest matched prefix

for that IP address. The time to look up a uni-bit trie (which is

traversal in a bit-by-bit fashion), is equal to the prefix length.

The use of multiple bits in one scans increase the search speed.

Such a trie is called multiple bit trie. The number of bits scanned

at a time is called stride.

Existing designs cannot support large IPv6 routing tables

consisting of over 300k prefixes. The memory requirement also

increases for routing tables with high percentage of distinct

prefixes. It is also unclear as how to scale these designs to

support larger routing tables and/or longer prefix lengths.

3. PROPOSED SYSTEM

 Path compression techniques work well to reduce the

number of trie nodes [14]. Yet, reducing the total number of

nodes does not necessarily lead to the reduction of the memory

footprint. The ultimate goal is to reduce the total required

storage.

 This paper focuses on the classic trie-based approach

for IP lookup. To overcome the limitations of the LPM, we

proposed the single-prefix distance-bounded path compression

algorithm.

3.1 Single-Prefix Distance-Bounded Path

Compression (SPDBPC):

Fig 1: Sample Trie

 This is the sample trie for the single-prefix distance-

bounded path compression algorithm. By using this, we have to

perform the compression for this trie and also find skip distance.

In this path compression algorithm the length of a non-branching

path in a trie varies from 1 to the maximum depth of the trie.

Fig 2: Compressed trie for skip-distance=1(ST=skip string)

This compressed trie is designed from the sample trie with the

maximum skip-distance of 1, and the total number of nodes is

11. A memory-efficient implementation of path compressed

trie requires: (1) the skip distance to be bounded and (2) the

optimal maximum skip-distance D to be determined to

minimize the memory requirement.

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

11

 Fig 3: Compressed trie for skip-distance=2

The above compressed trie is designed from the figure 2; with

the total number of nodes are 9, and the maximum skip-

distance of 2.

Each node of the SP-DBPC trie has the following data fields:

(1) 2 child pointers, (2) skip-string, (3) length of actual skip-

string, (4) position of prefix bit, and (5) next hop information.

3.2 Algorithm 1: SP-DBPC

Input: Current trie node n, maximum skip-distance D

Output: Compressed trie

Initialize m = # of trie nodes to be merged and d = skip-distance

Find the non-branching path P of the current node, and calculate

d

Check whether d ≤ D then

Set m = d

Otherwise

Set m = D

Merge m nodes of P to the current node

Update the skip-string of the current node

Update children of the super-node

SP-DBPC (n → left child, D)

SP-DBPC (n → right child, D)

3.3 Procedure for SP-DBPC

 The single-prefix distance-bounded path compression

algorithm works as follows.

 First, SP-DBPC finds the non-branching path P at

each node of the trie (starting from the root), and then

calculates the skip-distance d for the current node.

 Let m denote the number of nodes following the

current node on path P that can be merged with the

current node. The number of nodes (m) can be

calculated as min (d, D).

 After the calculation is done the skip-string of the

current node is updated. Now the child-nodes of the

last merged node become the child-nodes of the

current node.

 Finally, The SP-DBPC algorithm is then executed

recursively until the leaf-node is reached. Once the

algorithm completes, the total number of nodes is

calculated and returned.

3.4 Search in a SP-DBPC trie

Trie search algorithm is a good choice for IP forwarding engine

due to its simple search at each node. However, in a sparse trie

such as one found in IPv6, the number of nodes in the trie

drastically expands as the prefix length increases from 32 bits to

64 bits. After building the compressed trie, IP-lookup operation

can be performed as follows.

The destination IP address is extracted from the incoming

packet. At each node of the compressed trie, there are 3 steps to

be executed. The steps are,

1) The skip-string and its skip-distance d are extracted. If d = 0,

skip to Step 3.

2) The skip-string is compared with the next d bits of the IP

address. If there is no match and the current node is not a prefix-

node, then the search is terminated. Otherwise, the next hop

information is updated and the search is terminated.

3) If the current node is a prefix-node, then the next hop

information is updated and the IP address is left-shifted by (d+1)

positions. If a leaf-node is reached, then the search is terminated;

otherwise, go back to Step 1.

4. CONCLUSION AND FUTUREWORK

This project is on achieving significant reduction in memory

requirements for the longest prefix match operation needed in

IPv4/v6 lookups. This proposed scheme determines the optimal

maximum skip distance at each node of the trie to minimize the

total memory requirement. This algorithm achieve high memory

efficiency, and low memory bandwidth requirement.

The future work is to extend the algorithm to have level-based

skip-distances and number of prefixes per node for different trie

levels.

5. REFERENCES
[1] Hoang Le, Weirong Jiang Juniper, Viktor K. Prasanna,

Memory-Efficient IPv4/v6 Lookup on FPGAs Using

Distance-Bounded Path Compression. IEEE International

Symposium on Field-Programmable Custom Computing

Machines, 2011, 242-249.

[2] H. Le, W. Jiang, and V. K. Prasanna. A sram-based

architecture for trie-based ip lookup using fpga. In Proc.

FCCM ’08, 2008.

[3] M. Behdadfar, H. Saidi, H. Alaei, and B. Samari. Scalar

prefix search - a new route lookup algorithm for next

generation internet. In Proc. INFOCOM ’09, 2009.

[4] D. R. Morrison. Patricia—practical algorithm to retrieve

information coded in alphanumeric. J. ACM, 15(4):514–

534, 1968.

[5] K. Sklower. A tree-based packet routing table for berkeley

unix. In Winter Usenix Conf., pages 93–99, 1991.

[6] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh. A tree

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

12

based router search engine architecture with single port

memories. In Proc. ISCA ’05, pages 123–133, 2005.

[7] A. Basu and G. Narlikar. Fast incremental updates for

pipelined forwarding engines. IEEE/ACM Trans. Netw.,

13:690–703, June 2005.

[8] H. Song, M. S. Kodialam, F. Hao, and T. V. Lakshman.

Scalable ip lookups using shape graphs. In Proc. ICNP ’09,

2009.

[9] I. Sourdis, G. Stefanakis, R. de Smet, and G. N. Gaydadjiev.

Range tries for scalable address lookup. In Proc. ANCS ’09,

2009.

[10] M. Wang, S. Deering, T. Hain, and L. Dunn. Non-random

generator for ipv6 tables. In HOTI ’04, pages 35–40, 2004.

[11] R. Sangireddy, N. Futamura, S. Aluru, and A. K. Somani.

Scalable, memory efficient, high-speed ip lookup

algorithms. IEEE/ACM Trans. Netw., 13(4):802–812, 2005.

[12] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous,

"Survey and Taxonomy of IP Address Lookup

Algorithms," IEEE Network, vol. 15, no. 2, pp. 8-23, 2001.

[13] H. Le and V. K. Prasanna. Scalable high throughput and

power efficient ip-lookup on fpga. In Proc. FCCM ’09,

2009.

[14] A. Andersson and S. Nilsson. Efficient implementation of

suffix trees. Softw. Pract. Exper., 25:129–141, February

1995.

