
International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

38

Software Cost Estimation using Fuzzy Logic

 Ravishankar. S P. Latha
PG student, Associate Professor,
Department of CSE, Department of CSE,

Government College of Engineering, Government College of Engineering,
Tirunelveli. Tirunelveli.

ABSTRACT
The process of estimating time and cost required for

developing software is called software cost estimation. It is

one of the steps to be carried out in project planning. Early

software estimation models are based on regression analysis or

mathematical derivations. Today’s models are based on

simulation, neural network, genetic algorithm, soft computing,

fuzzy logic modeling etc. This paper aims to utilise an adaptive

fuzzy logic model to improve the accuracy of software time

and cost estimation. Using advantages of fuzzy set and fuzzy

logic can produce accurate software attributes which result in

precise software estimates. 63 Historic projects of NASA

dataset having COCOMO format is used in the evaluation of

the proposed Fuzzy Logic COCOMO II. Eight membership

functions available in fuzzy logic are used and a comparison is

made to find out which membership function yields better

result in terms of Mean Magnitude of Relative Error (MMRE)

and PRED (25%).

Keywords
software cost estimation models, COCOMO II, soft

computation techniques, fuzzy logic, Membership Function,

Mean Relative Error, PRED (25%).

1. INTRODUCTION
It is the responsibility of the project manager to make accurate

estimations of effort and cost. This is particularly true for

projects subject to competitive bidding where a bid too high

compared with competitors would result in losing the contract

or a bid too low could result in a loss to the organization.

Industry has a need for accurate estimates of effort and size at

a very early stage in a project. However, when software cost

estimates are done early in the software development process

the estimate can be based on wrong or incomplete

requirements. A software cost estimate process is the set of

techniques and procedures that organizations use to arrive at an

estimate. An important aspect of software projects is to know

the cost and the major contributing factor is effort. Software

cost estimation is applied in various government and non-

government organizations, defense organizations,

aeronautics, etc.
Various estimation models used are given by :

1.1 Sel Model
The Software Engineering Laboratory (SEL) of the University

of Maryland has established a model i.e. SEL Model [2] for

estimation. Estimation of effort according to SEL model is as

follows:

E SEL = 1.4 * (L) 0.93

Effort (E in Person-Months) and lines of code (L in thousands

of lines of code i.e. KLOC) are used as predictors.

1.2 Walston-Felix Model
The model developed by Walston and Felix at IBM provides a

relationship between delivered lines of source code (L in

thousands of lines) and effort E (E in person-month). This

model constitutes various aspects of the software development

environment such as user participation, customer-oriented

changes, memory constraints etc. According to Walston and

Felix model [2], effort is computed by:-

EW-F = 5.2* (L) 0.91

1.3 Basic Cocomo Model
 Basic COCOMO computes software development

effort (and cost) as a function of program size. Program size is

expressed in estimated thousands of source lines of code

(SLOC). COCOMO [2] applies to three classes of software

projects:

 Organic projects - "small" teams with "good" experience

working with "less than rigid" requirements

 Semi-detached projects - "medium" teams with mixed

experience working with a mix of rigid and less than rigid

requirements

 Embedded projects - developed within a set of "tight"

constraints .it is also combination of organic and semi-

detached projects (hardware, software, operational, etc.

The basic COCOMO equations take the form

Effort Applied,

E = ab * (SLOC)b
b [man-months]

Development Time,

D = cb *(Effort Applied)d
b [months]

People required ,

 P= Effort Applied / Development Time [count]

where, SLOC is the estimated number of delivered lines

(expressed in thousands) of code for project.

1.4 Intermediate Cocomo Model
COCOMO computes software development effort as function

of program size and a set of "cost drivers" that include

subjective assessment of product, hardware, personnel and

project attributes. This extension considers a set of four "cost

drivers" which are Product attributes, Hardware attributes,

Personnel attributes and Project attributes.

1.5 Detailed Cocomo Model
Detailed COCOMO [2] incorporates all characteristics of the

intermediate version with an assessment of the cost driver's

impact on each step (analysis, design, etc.) of the software

engineering process. The detailed model uses different efforts

multipliers for each cost drivers attribute these Phase Sensitive

effort multipliers are each to determine the amount of effort

required to complete each phase. In detailed COCOMO, the

effort is calculated as function of program size and a set of cost

drivers given according to each phase of software life cycle.

The five phases of detailed COCOMO are:-

 Plan and requirement.

 System design.

 Detailed design.

 Module code and test.

 Integration and test.

1.6 Putnam Model
The Putnam model [5] is an empirical software effort

estimation model. As a group, empirical models work by

http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Man-month

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

39

collecting software project data (for example, effort and size)

and fitting a curve to the data. Future effort estimates are made

by providing size and calculating the associated effort using

the equation which fit the original data. Putnam model

describes the time and effort required to finish a software

project of specified size. SLIM (Software Life cycle

Management) is the name given by Putnam to the proprietary

suite of tools his company QSM, Inc. has developed based on

his model. It is one of the earliest of these types of models

developed, and is among the most widely used.

2. PROPOSED SYSTEM
Inaccurate software cost estimation has plagued software

projects for decades. Poor estimates have not only led projects

to exceed budget and schedule but also, in many cases, be

terminated entirely. The ability to accurately estimate software

development time, cost, and manpower, changes as newer

methodologies replace old ones. Therefore, an accurate

software cost estimation model is highly required in software

project management.

This section, first, introduces the input data set description,

then the characteristics and strength of the COCOMO II and

fuzzy logic, briefly, then the new FL-COCOMO II is

explained.

2.1 Input Data set Description
The COCOMO II effort estimation model was

introduced in equation given below:

 17

Effort PM = A* [Size] E * ∏ EMi

 i=1

The inputs are the Size of software development, a

constant, A, an exponent, E and a number of values called

effort multipliers (EM) [1]. The number of effort multipliers

depends on the model. The Size is KSLOC. This is derived

from estimating the size of software modules that will

constitute the application program. It can also be estimated

from unadjusted function points (UFP) [3] , converted to

SLOC, then divided by one thousand.

Cost drivers are used to capture characteristics of the

software development that affect the effort to complete the

project. A cost driver is a model factor that drives the cost (in

this case Person-Months) estimated by the model. All

COCOMO II cost drivers have qualitative rating levels that

express the impact of the driver on development effort. These

ratings can range from Extra Low to Extra High. Each rating

level of every multiplicative cost driver has a value, called an

effort multiplier (EM) associated with it. This scheme

translates a cost driver's qualitative rating into a quantitative

one for use in the model. The EM value assigned to a

multiplicative cost driver's nominal rating is 1.00.

The table1 shows the the range of Scale Factors (SFs) used.

Table 1: The range of COCOMO II SFs

No. Scale Factor Range
1 Precedentedness (PREC) 0.00-6.20

2 Development Flexibility
(FLEX)

0.00-5.07

3 Architecture/Risk Resolution

(RESL)

0.00-7.07

4 Team Cohesion (TEAM) 0.00-5.48

5 Process Maturity (PMAT) 0.00-7.80

The table 2 shows the range of Effort Multipliers (EMs)

used.

Table 2: The range of COCOMO II EMs

2.2 The COCOMO II
The COCOMO I [1] model is a regression-based software cost

estimation model, which was developed by Boehm in 1981

and thought to be the most cited and the most plausible model

among all traditional cost estimation models. The COCOMO I

was a stable model on that time. One of the problems with the

use of COCOMO I today is that it does not match the

development environment of the late 1990’s. Therefore, in

1997, Boehm was developed the COCOMO II to solve most of

the COCOMO I problems.

Figure 1 shows the process of software schedule, cost, and

manpower estimation in the COCOMO II. The COCOMO II

includes several software attributes such as: 17 Effort

Multipliers (EMs), 5 Scale Factors (SFs), Software Size (SS),

and Effort estimation that are used in the Post Architecture

Model of the COCOMO II.

Figure 1: The process of software schedule, cost, and

manpower estimation in COCOMO II

No. Effort Multiplier Range

1 Required software reliability

(RELY)

0.82-1.26

2 Database size (DATA) 0.90-1.28

3 Product complexity (CPLX) 0.73-1.74

4 Developed for reusability
(RUSE)

0.95-1.24

5 Documentation match to life

cycle needs (DOCU)

0.81-1.23

6 Execution time constraint

(TIME) 1

1.00-1.63

7 Main storage constraint

(STOR)

1.00-1.46

8 Platform volatility (PVOL) 0.87-1.30

9 Analyst capability (ACAP) 1.42-0.71

10 Programmer capability (PCAP) 1.34-0.76

11 Personnel continuity (PCON) 1.29-0.81

12 Applications experience

(APEX)

1.22-0.81

13 Platform experience (PLEX) 1.19-0.85

14 Language and tool experience

(LTEX)

1.20-0.84

15 Use of software tools (TOOL) 1.17-0.78

16 Multi site development (SITE) 1.22-0.80

17 Required development

schedule (SCED)

1.43-1.00

Size
KSLOC

COCOMO

II

Effort

(PM)

Time

Estimation

Cost

Estimation

Staffing

Estimation

17 Effort

Multiplier

5 Scale

Factors

http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/w/index.php?title=QSM,_Inc.&action=edit&redlink=1

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

40

The formula for the process is given by:

 5 17

Effort PM = A* [Size] B+0.01*∑ SF
j * ∏ EMi

 j=1 i=1

 5

Schedule Months = C * (Effort) D+0.02*0.01*∑ SF
j

 j=1

Average Staffing People = Effort/Schedule

Cost = Effort * (Payment Month)

A=2.94; B=0.91; C=3.67; D=0.28

Size : Software Size(SLOC)

2.3 Fuzzy Logic

In 1965, Lofti Zadeh formally developed multi-value set

theory, and introduced the term fuzzy logic.[4]Fuzzy Logic

(FL) starts with the concept of fuzzy set theory. It is a theory

of classes with un-sharp boundaries, and considered as an

extension of the classical set theory. The membership!(") of an

element x of a classical set A, as subset of the universe X, is

defined by (2), as follows:

µ A (x) = 1 if x € A

µ A(x) = 0 if x € A

A system based on FL has a direct relationship with fuzzy

concepts (such as fuzzy sets, linguistic variables, etc.) and

fuzzy logic. The popular fuzzy logic systems can be

categorised into three types: Pure fuzzy logic systems, Takagi

and Sugeno’s fuzzy system, and fuzzy logic system with

fuzzifier and defuzzifier . Since most of the engineering

applications produce crisp data as input and expects crisp data

as output, the last type is the most widely used type of fuzzy

logic systems. Fuzzy logic system with fuzzifier and

defuzzifier, first, proposed by Mamdani and it has been

successfully applied to a variety of industrial processes and

consumer products. The main three steps of applying fuzzy

logic to a model are:

Step 1:

Fuzzification: It converts a crisp input to a fuzzy set

 Step 2:

 Fuzzy Rule-Based System: Fuzzy logic systems

use fuzzy IF-THEN rules .

 Fuzzy Inference Engine: Once all crisp input

values are fuzzified into their respective

linguistic values, the inference engine

accesses the fuzzy rule base to derive linguistic

values for the intermediate and the output

linguistic variables .

 Step 3:

 Defuzzification: It converts fuzzy output

into crisp output.

2.4 The FuzzyLogic COCOMO II (FL-

COCOMO II)
The new FL-COCOMO II is established based on the

COCOMO II and FL. The COCOMO II includes a set of input

software attributes: 17 EMs, 5 SFs, 1 SS and one output, Effort

estimation. The architecture of the FL-COCOMO II is shown

in Figure2.

Fig 2: The architecture of the FL-COCOMO II

The figure3 shows the Fuzzy Inference System (FIS) editor for

the proposed model using PSIGMF.

Fig3: FIS tool in MATLAB software.

The figure4 shows the fuzzification process of the PREC scale

factor using FIS tool available in MATLAB.

Fig4: The fuzzification of PREC Scale factor using FIS

tool in the MATLAB software.

The fuzzy rules for the FL-COCOMO II were defined through

the linguistic variables in the fuzzification process. The fuzzy

rules were also defined based on the connective AND between

17

EMs

MF

2

MF

3

5

SFs

MF

1

1SS

EFFORT

COCO

MO II
Merge

Cost

Estimation

Time

Estimation

Man

Power

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

41

input variables. Some of the examples of rules framed were

shown below:

If (PREC is VL) then (Effort is XH)

If (PMAT is VH) then (Effort is L)

If (CPLX is H) then (Effort is H)

If (PREC is L) and (KLOC is VH) then (Effort is VH)

 The figure 5 shows the rule editor in the fuzzy logic

tool box, which was used for framing rules.

Fig5: The fuzzy rule generation using FIS tool in the

MATLAB software

The defuzzification of the output “Effort” is performed using

the Mean of Maximum (MOM) technique.

3. EVALUATION METHODS `
The evaluation methods used are Mean Magnitude of Relative

Error (MMRE) and PRED(25%). The Magnitude of Relative

Error (MRE) is defined as :

MRE i = (Actual Effort i – Predicted Effort i) / Actual Effort i

The MRE value is calculated for each observation i that effort

is estimated at that observation. The aggregation of

MRE over multiple observations (N) can be achieved through

the Mean MRE (MMRE) as follows:

 N

MMRE = (1/N) ∑ MRE i
 i=1

where N is the total number of observations.

 PRED (25%) [1] is defined as the number of

observations which have got MRE less than 0.25.
Table 3: MMRE and PRED (25%) for various

membership functions

 Software cost is estimated using the equation which is given

below:

 Cost = Effort * (Payment Month)

 (Assuming Payment Month = Rs 20000)

 4. RESULTS
The figure 6 shows the comparison of MMRE for various

membership functions

Fig6: Comparison of MMRE for various membership

functions.

The figure 7 shows the comparison of PRED (25%) for various

membership functions.

Fig 7: Comparison of PRED(25%) for various membership

functions.

The table 3 shows the MMRE and PRED (25%) values

estimated for the proposed FL_COCOMOII model when

different membership functions available in fuzzy logic were

used.

The figure 8 shows the estimated effort values for the NASA’s

63 project data set using FL_COCOMOII method when the

Product Sigmoid (psigmf) Membership Function is used.

Sl.No.

Membership

Function MMRE PRED(25%)

1 dsigmf 0.37127 33.333

2 gauss2mf 0.37625 34.92063

3 gaussmf 0.359206 36.50794

4 gbellmf 0.374428 36.50794

5 pimf 0.35373 36.50794

6 psigmf 0.346349 36.50794

7 trapezoidalmf 0.358095 36.50794

8 triangularmf 0.675961 33.333

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

42

Fig 8: Estimated effort values for the NASA’s 63 project

dataset using psigmoid Membership Function

 5. CONCLUSION
One of the important issues in software project management is

accurate and reliable estimation of software time, cost, and

manpower, especially in the early phase of software

development. Software attributes usually have properties of

uncertainty and vagueness when they are measured by human

judgment. A software cost estimation model incorporates

fuzzy logic can overcome the uncertainty and vagueness of

software attributes. However, determination of the suitable

fuzzy rule sets for fuzzy inference system plays an important

role in coming up with accurate and reliable software

estimates. The objective of this paper was to examine the

application of applying fuzzy logic in software cost estimation

that can perform more accurate result.
 Hence from the table 3, the Product Sigmoid

membership function (psigmf) yields least MMRE and best

PRED (25%).

Cost can be found out using the equation if payment

is known

Cost = Effort * (Payment Month)

 Therefore the effort needed for a particular software project

using fuzzy logic is estimated. Also the effort is calculated

using various membership functions and compared the result

based on the MMRE and PRED (25%) obtained for each of the

membership functions.

 6. REFERENCES
[1] Iman Attarzadeh and Siew Hock Ow,” Improving

Estimation Accuracy of the COCOMO II Using an

Adaptive Fuzzy Logic Model” IEEE International

Conference on Fuzzy Systems, Taipei, Taiwan, June 27-

30, 2011.

[2] Mohd. Sadiq, Farhana Mariyam, Aleem Ali, Shadab

Khan, Pradeep Tripath, “Prediction of Software Project

Effort Using Fuzzy Logic” IEEE International

Conference on Fuzzy Systems, March 2011.

[3] Mohd. Sadiq, Abdul Rahman, Shabbir Ahmad, Mohammad

Asim, Javed Ahmad”, esrcTool: A Tool to Estimate the

Software Risk and Cost”, IEEE Second International

Conference on Computer Research and Development, pp.

886-890, July 2010.

[4] Prasad Reddy P.V.G.D, Sudha K.R , Rama Sree P &

Ramesh S.N.S.V.S.C,“Fuzzy Based Approach for

Predicting Software Development”, International Journal

of Software Engineering (IJSE), Volume (1): Issue (1).

[5] L. H. Putnam, “A general empirical solution to the macro

software sizing and estimating problem,” IEEE

Transactions on Software Engineering, 4(4), pp. 345 –

361, 1978. problem”, IEEE Transactions on Software

Engineering,4(4),pp.345-361,1978.

