
International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

16

Efficient Cache Sharing Protocol for Mobile Nodes

Arathi.R.R.B.Tech.,(M.E)

Dept. of Computer Science &
Engineering

Jerusalem Engineering College
Anna University of Technology,

Chennai

 Lilly Sheeba.S.(Ph.D)

Dept. of Information
Technology

Jerusalem Engineering College
Anna University of Technology,

Chennai

Yogesh.P. M.E.,Ph.D

Dept. of Information
Science & Technology

Anna University,
Chennai

ABSTRACT

Mobile Ad hoc Network provide an attractive solution for

networking in the situations where network infrastructure or

service subscription is not available. Its usage can further be

extended by enabling communications with external networks

such as Internet or cellular networks through gateways.

However, data access applications in MANETs suffer from

dynamic network connections and restricted energy supplies.

Caching helps MANETs, to reduce average latency and

wireless bandwidth, and also in alleviating from the situation

of heavy traffic near the data centre. With data being cached

by mobile nodes, a request to the data centre can easily be

serviced by a nearby mobile node instead of the data center

alone. In this paper we have proposed a Time Based

Approach which provides access to recent data on demand

basis. In this system, the data comes along with a time stamp.

This approach provides data availability even with limited

resources. We have evaluated the performance of our strategy

using simulation and compared with existing non cooperative

caching scheme.

Keywords

MANETs, caching, cache sharing, data retrieval, cache

replacement.

1. INTRODUCTION

Extensive growth in mobile and wireless communication has

led to the development of Mobile Ad hoc networks

(MANETs) which is an infrastructure less network. MANETs

permit mobile nodes to form a dynamic and temporary

communication network without using any pre-existing

infrastructure. The flexibility and ease of deployment of

MANET found it very useful in many application areas like

battlefield, disaster recovery, etc. However in MANETs,

major issues like routing, security and data availability remain

as open problems for research. Data availability is a vital issue

since the ultimate goal of using MANETs is to provide

information access to mobile hosts. MANETs can be extended

by connecting with some other wired or wireless network like

the Internet. An attractive technique that improves data

availability is caching. Generally speaking, caching is to copy

a portion of the data from the data provider to a smaller and

faster storage device known as cache, so that future data

accesses can be resolved from the cache with less cost. One

thing to point out is that caching is a logical entity instead of a

physical entity.

The important goal of ad hoc networks is to provide mobile

nodes with easy access to information. However, MANETs

are limited by intermittent network connections, restricted

power supplies, and limited computing resources. These

restrictions raise several new challenges for data access

applications with the respects of data availability and access

efficiency. In ad hoc networks, due to frequent network

partition, data availability is lower than that in traditional

wired networks. Cooperative caching provides an attractive

solution for this problem. Cooperative caching is a technique

that allows the sharing and coordination among the mobile

nodes. However, the movement of nodes, limited storage

space and frequent disconnections limit the availability. By

the caching of frequently accessed data in ad hoc networks we

can improve data accessibility, performance and availability.

Due to mobility and resource constraints of ad hoc networks,

caching techniques designed for wired network may not be

applicable to ad hoc networks. In ad hoc network, most of the

exchanged data in any application domain whether military or

sporting is time specific or time sensitive, after which the data

becomes an invalid one. It can be either marked for deletion

or deleted from memory after the speculated time.

An example scenario is during International Sporting events

like Olympic Games, the demand from users to access the

Internet to get related information increases. This accessed

information can then be shared with other users of same

interest if they are in the vicinity of this ad hoc domain.

However the accessed information can be considered valid

only for a short period of time, after which the medal tally

might have changed. Hence any information that is accessed

can be made to be relayed along with time related

information.

In general, a good cache management technique for MANETs

should address these issues:

A cache discovery algorithm that is efficient to discover

requested data items from the neighbour node and decide on

caching the data items for future use.

There should be a cache replacement algorithm to replace the

cached data items when the caching space is not enough to

cache the new ones.

A cache update algorithm to ensure that the cached data items

are updated.

In this paper we consider all these issues and proposed a new

cache protocol based on time specification. Hence any

information that is accessed can be made to be relayed along

with time related information. If this information is already

present then it checks if the received one is a cached

information and if it is latest , makes an update. Moreover

since all cached information are time specific, the information

can be automatically deleted from the cache after the

speculated time interval. This time variant may either be

proposed by the data server or by the intermediate node that is

responding to the particular information access request.

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

17

In this work, we administer three policies to enhance the

cache performance in a mobile environment. The three

policies are Data Item Admission policy, Data Item Discovery

policy and a Data Item Replacement Policy. These three

policies effectively respond to time specific information.

The rest of this paper is organized as follows: We review the

related work in section 2. Section 3 describes about the

system model. In section 4 we describe our proposed caching

scheme. The performance of proposed protocol is evaluated in

section 5 with a simulation study. Section 6 will conclude the

paper.

2. RELATED WORKS

Caching is a key technique for improving data retrieval rate in

both wired and wireless networks. The two basic types of

cache sharing are push approach and pull approach. In push

based cache sharing, a node broadcasts the caching update to

all its neighbour nodes, on receiving a new data item. This

updated information resides in the neighbouring nodes for

future use. Push based scheme improves the data availability

at the cost of communication overhead. The disadvantage of

the scheme is that an advertisement may become useless if no

demand for the cached items occur in the vicinity. One more

problem with the push based approach is that the caching

information may not be used if the node moves out from the

zone or due to cache replacement. These drawbacks are

overcome with the pull based scheme. In case of pull based

approach, a node broadcasts a request packet to all its

neighbours, when it wants to access a new data item. If a

neighbour has the requested data item it sends the data back to

the requester node. The main disadvantage here is that, if the

requested data item is not cached by any node in the

neighbourhood then the request originator must wait for the

time out interval to expire before it resends the request to the

data centre. This leads to access latency. Another drawback

here is, if more than one node have cached the requested data

item then multiple copies will return to the requester which in

turn will result in extra communication.

Duane Wessels and Kim Claffy[4], introduced the

standardized and widely used Internet cache protocol(ICP).

As a message-based protocol, ICP supports communication

between caching proxies using a simple query-response

dialog.

Cache Digests [1] are a response to the problems of latency

and congestion. Cache Digests support peering between cache

servers without a request-response exchange taking place. A

summary of the contents of the server (the Digest) is fetched

by other servers which peer with it. Using Cache Digests it is

possible to determine with a relatively high degree of

accuracy whether a given URL is cached by a particular

server. This is done by feeding the URL and the HTTP

method by which it is being requested into a hash function

which returns a list of bits to test against in the Cache Digest.

In [8], Web Proxy Caching is considered as one of the most

important technique for reducing web traffic, which accounts

for a large percentage of internet traffic today using Zips law

which gives the relative probability of a request for popular

page i, is 1/i.

[5] proposes various cooperative caching schemes in mobile

ad hoc networks, while in the past these schemes were

exclusively proposed for wired networks in a highly static

environment. The performance of the dynamic environment

highly depends on the mobility of the nodes and frequent

disconnections of the node from the network.

Chand [9], proposed a Cooperative Cache Management

strategy which allows sharing and coordination of cached data

among clients to minimize data access latency and to improve

information availability. In this paper a utility based cache

replacement policy is adopted, to reduce the local cache miss

ratio. Here the least recently used data items having the

highest probability of replacement. The main disadvantage

with this approach is that, not all data can be replaced based

on least utility, since information that are accessed in various

applications can have varying time specifications. For

instance in a shopping mall application the stock related

information can be cached and retained within a node for

some more time when compared to information that are being

cached in a military and emergency application. In case of

military and emergency related applications frequently

updating the cached data, is highly inevitable because the

accessed data must be only recent information. Another

disadvantage cited here is that only some clients retain state

information within a zone.

According to Chow [2] mobile clients can access data items

from the cache of their neighbouring peers by adopting

COCA or Cooperative Caching Scheme wherein two types of

mobile clients are identified namely Low Activity Mobile

Clients in which data items are replicated and High Mobility

Mobile Clients that make use of these replicas. This data

replication scheme reduces both server workload and access

miss ratio. The main disadvantage here is that it does not take

into account the cache admission policy to be adopted in case

of replicated data. In short, it consumes large amount of the

available resources by caching the same data item in different

nodes.

Build upon the COCA framework Chow [3] proposed a

Group Based COCA scheme (GroCOCA) which defines a

tightly coupled group as a set of peers that possess similar

movement pattern and exhibit similar data affinity. In

GroCOCA a centralized incremental clustering algorithm is

used to discover all groups dynamically and the mobile hosts

in same group manage their cached data items cooperatively.

This scheme reduces access latency and server request ratio

effectively.

[3] and [6], proposes COOP, a novel cooperative caching

scheme for data access applications in MANETs. The

objective is to improve data availability and access efficiency

by collaborating local resources of mobile devices. COOP

addresses two basic problems of cooperative caching: cache

resolution and cache management. It finds the requested data

efficiently and manages local cache to improve the capacity of

cooperated caches. This scheme significantly reduces

response delay and improves data availability for data access

applications.

An aggregation caching mechanism was proposed by Lim

[10] for improving the data accessibility and reducing average

access latency. To retrieve data as quickly as possible, the

query is issued and broadcasted to all the nodes in the network

which in turn send acknowledgements individually to the

source of broadcast. The requesting node will then send the

request for the data to the node from which it has received the

first acknowledgement. This scheme is inefficient in terms of

bandwidth usage because of the broadcasts which will more

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

18

likely decrease the throughput of the system due to intensive

flooding of the request packets.

In [11], Cache discovery problem is given key focus. It

proposes a self-resolver paradigm, in which a client user itself

queries and measures which node it should access. In addition

to the self-resolver cache discovery framework, stability of a

multihop route is considered.

Two caching schemes CacheData and CachePath was

proposed in [6]. In CacheData scheme the intermediate nodes

cache a data item to serve future requests, while forwarding

the data to another requester node. With CachePath scheme,

the intermediate nodes cache only the information of the path

to the request originator and uses this information to redirect

future requests to the nearby nodes with cached data. A

Hybrid Cache scheme is also proposed here to overcome the

bottlenecks of the above schemes. In Hybrid Cache

mechanism, when a mobile node forwards a data item, it

caches the data or the path based on some criteria like size of

the data item and time to live of the data. The main drawback

with these schemes is that the cached information in a node

cannot he shared if the node does not lie on the forwarding

path of a request to the data centre.

Chiu [7] proposed two protocols IXP and DPIP. In IXP

(Factor Push) which is a push based scheme, each node shares

its cache contents with all the nodes in its zone. A node

always makes its cache contents known to all nodes within its

zone by broadcasting factor packets. DPIP (Data Pull/Factor

Push) is a pull based protocol by exploiting in-zone request

broadcasts. The disadvantage with this work is that it is based

on Count Vector Cache replacement policy. According to this

policy, the data item with highest count or the data which has

been accessed and retained in many nodes is the one first

marked for replacement. Hence any data item with count

vector value equal to zero will never be replaced. The vital

issue here is the unnecessary usage of available cache space.

3. SYSTEM MODEL

Let us consider a mobile ad hoc network shown in Fig. 1. This

network has no fixed infrastructure and node are free to move

anywhere in the network. Since nodes are mobile so the

topology is dynamic and temporary. In this topology

N1,N2…N12 are mobile nodes. There exists a data center, N1

, that contains the database of n data items x1, x2,..., xn. This

data server may be connected to some external wired or

wireless network like Internet. When a node requires some

data item it sends request to data server. When a node receives

a data item it caches the data item locally for future use.

In any mobile node, the resources that might be available

might be limited. Because of this constraint only some data

items can be accommodated within the mobile cache. The

system administers three policies namely Data Item

Discovery, Data Item Admission and Data Item Replacement

to overcome this limitation. Here since each information is

associated with a time factor, the data items are admitted,

updated or replaced purely based on this. Moreover if the

local cache of a node is full then the data items are diverted

towards the neighbours who have enough space.

Fig 1: System Model

Here each node maintains a Data Item Table and each data in

the table corresponds to three entries. For instance, the data

entries for data x1 are as follows. The first entry is x1.present

which is a boolean value. It is TRUE, if the data is present in

the local cache of the node and FALSE if otherwise. The next

entry is x1.neighbour which indicates the neighbour node that

has cached the data x1. The third entry for the data is

x1.time_factor which is a time attribute whose value gives the

time period up to which the data can be retained in the cache.

This value is determined initially by the data server and is

delivered along with the data on request.

4. PROPOSED ALGORITHM

The idea of our proposed algorithm is based upon the fact that

each node in the network is willing to share its cache contents

with its neighbours. When a node updates its local cache it

broadcasts these updates to all neighbour node in the zone.

Each node in the zone will maintain a Data Item Table.

4.1 Data Item Discovery

When a data item x1 is requested by a node R, first the node

will check whether x1.present is TRUE or FALSE to see the

data is locally available or not. If it is TRUE, then it

immediately displays the data item. If it is FALSE, then the

node checks for the corresponding entry in x1.neighbor. If

matching entry is found and a neighbour node has the data

item, then the request is forwarded to that node. On the other

hand, if no matching entries are found, then the request is

directed towards the data server itself.

If any matching entry corresponding to the data item is found

in any intermediate node on the way to the data server, the

node immediately responds to the request instead of

forwarding the request. The flowchart for data item discovery

is shown in Fig. 2.

 1

 2

5

8

10

11

9

3

 4

6

7

12

Data Center

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

19

 Fig 2: Data Item Discovery

4.2 Data Item Admission

Node R that requested the data item x1 receives it along with

the time factor t1 . Initially, it is checked if the received data

item is a new one or just an update of an existing data item by

comparing the time factor of the received data item with the

corresponding entry for the data item in the data item table. It

then checks its cache to find any space availability, to

accommodate the data item if it is a new one, in its cache. In

case of any unavailability it checks for space availability in its

neighbouring nodes, and if present, the data item is forwarded

to the neighbour and corresponding entries are updated. The

update information is then broadcast along with time factor to

all its neighbours and corresponding entries in the neighbour

nodes are updated. Upon receiving the data item update

packet the node compares the received time factor value with

that of the system time. If the received factor indicates a

recent data then corresponding changes are made in the data

item table. The flowchart for data item admission is shown in

Fig. 3.

Fig 3: Data Item Admission

4.3 Data Item Replacement

When a node is powered on, it checks through the data items

in its cache table. In case any data item is present in the nodes

cache, with its x1.timefactor lesser than the current system

time then all the entries corresponding to that data item will

be either marked for deletion or automatically deleted from

the cache. This is an automatic replacement policy. The

flowchart for automatic data item replacement is shown in Fig

.4.

If cache space is not available, a forced data item replacement

is done. Here sorting is applied to the time factors of the data

items in cache table .Then the data item with least time factor

value is removed. The flowchart for forced data item

replacement is shown in Fig. 5.

 Fig 4: Automatic data item replacement

x1.time_

factor <

systime

Mark the data

item for deletion

Data

Items are

consistent

Data Item table

check

Yes

No

Client receives data

item

Cache

space

available in

neighbour ?

If cache

space

available ?

Apply data item

replacement

Save the data item

Save data item in

neighbor node

Save the data item

Broadcast update

packets

Yes

Yes

No

No

Client Request Data

Locally

cached?

Data is in

neighbour

node ?

Entry

matched ?

Display
Data

Item

Forward request

to Neighbor

Sent data item to

client

Forward request

to data center

Check Data

Item table

Forward request

to data center

Intermedi

ate Node

present ?

No

No

No

Yes

Yes

Yes

Yes

No

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

20

Fig 5: Forced data item replacement

5. PERFORMANCE EVALUATION

We evaluate the performance of proposed caching scheme

through simulation experiments.

5.1 Simulation Model

The simulation model is constructed on the basis of the ns2

simulator . In our simulation setting, a group of nodes spread

randomly in an area of 1500 m x1500 m. The number of

mobile nodes varies from 50 to 100 with the default number

of nodes being 70. One node is designated as the data center,

and it is located at the upper left-hand corner of the area

throughout the simulation. A node moves according to the

random waypoint model. After the client reaches its

destination it pauses for a period and repeats this movement

pattern. There are N data items at the data server. Data

requests are served on an FCFS basis at each node. Unless

otherwise specified, the size of each data item is 1,000 bytes;

other packets, such as request packets and update packets, are

assumed to be 20 bytes long. The default data access pattern is

uniformly distributed. When the server sends a data item to a

client, it sends a time specification value along with the data.

5.2 Simulation Results

 For performance comparison with proposed scheme (PS),

one other scheme non-cooperative (NC) caching is also

implemented. In NC, locally missed data items are fetched

from the origin server. This strategy is taken to be baseline

case against which the proposed caching schemes are

compared. Performance metric: access latency is evaluated.

Fig. 6. shows the performance evaluation graph. The system

workload becomes higher with increasing number of nodes in

the system, so that access latency increases in NC caching

scheme. On the other hand, performance of proposed scheme

(PS) improves slightly as the number of nodes increases

because there is a higher chance for the nodes to obtain the

required data items from their neighbouring nodes. The access

latency is defined as a sum of the transmission time and the

time spent on waiting for a required communication channel,

if it is busy.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

number of nodes

a
c
c
e
s
s
 l

a
te

n
c
y
 (

s
e
c
)

NC

PS

 Fig 6: Access latency versus number of nodes

 6. CONCLUSION

In this work, a highly reactive Cache Sharing Algorithm is

proposed, to effectively and efficiently utilize the space

available in the node and all its neighbours. The node and its

neighbours cooperate, in caching a data item plus stops from

any duplicate entries made for the same data item within a

zone. Moreover since time factors are involved, even if a node

moves out due to network partition, the corresponding entries

will be deleted from its cache at the speculated time, thereby

providing for space availability and eliminating the case of

looping problem.

Additional care is taken to maintain only updated data items,

taking data consistency as a vital factor. Since timing

parameters are taken into consideration, if the cached data is

not recent and is an outdated one, then an automatic

replacement mechanism is encountered to prevent

unnecessary space utilization.

All these, make this algorithm a unique one, in enhancing the

performance of the cache system in a MANET environment,

where node mobility and limited resources are the key issues,

by providing for enhanced data availability features even with

constrained resources.

Our future work includes more extensive performance

evaluation. Some cache conscious techniques can be

employed to provide for varying cache sizes and node density,

which need not be constant always.

7. ACKNOWLEDGEMENTS
I must thank, first and foremost my internal guide Mrs.S.Lilly

Sheeba, Senior Lecturer, Department of Information

Technology, and project coordinator Dr.C.R.Rene Robin,

Head of the department, Department of Computer Science and

Engineering, without whose guidance and patience, this

dissertation would not be possible. And engineering, project

panel members, Professors of the Department of Computer

Science and Engineering for their consistent encouragement

and ideas.

8. REFERENCES

[1] A. Rousskov and D. Wessels (1998), “Cache Digests,”

Computer Networks and ISDN Systems, vol. 30, nos

22-23, pp. 2155-2168.

[2] C.Y.Chow, H.V. Leong, and A. Chan (2004), “Peer-to-

Peer Cooperative Caching in Mobile Environments,”

Proc. 24th Int’l Conf. Distributed Computing Systems

Workshops (ICDCSW ’04), pp. 528-533.

Data Item table check

Apply sorting on
time factor

Remove the least

valued data item

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

21

[3] C.Y.Chow, H.V. Leong, and A.T.S. Chan (2004),

“Group-Based Cooperative Cache Management for

Mobile Clients in Mobile Environments,” Proc. 33rd

Int’l Conf. Parallel Processing (ICPP ’04), pp. 83-90.

[4] D. Wessels and K. Claffy (1998), “ICP and the Squid

Web Cache,” IEEE J. Selected Areas in Comm., pp.345-

357.

[5] F. Sailhan and V. Issarny (2003), “Cooperative caching

in ad hoc networks “, Proc. MDM’03, pp.13-28.

[6] G. Cao, L. Yin, and C.R. Das (2004), “Cooperative

Cache-Based Data Access in Ad Hoc Networks,”

Computer,vol. 37, no. 2, pp. 32-39.

[7] Ge-Ming Chiu and Cheng-Ru Young (2009), “Exploiting

In-Zone Broadcasts for Cache Sharing in Mobile Ad Hoc

Networks IEEE Trans. Mobile Computing, vol. 8, no.3.

[8] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker

(1999), “Web Caching and Zipf-Like Distribution:

Evidence and Implication,”Proc. IEEE INFOCOM ’99,

pp. 126-134.

[9] N. Chand, R.C. Joshi, and M. Misra (2007),

“Cooperative Caching in Mobile Ad Hoc Networks

Based on Data Utility,” Mobile Information System, vol.

3, no. 1, pp. 19-37.

[10] S. Lim, W. Lee, G. Cao, and C.R. Das (2006), “A Novel

Caching Scheme for Improving Internet-Based Mobile

Ad Hoc Networks Performance,” Elsevier J. Ad Hoc

Networks, vol. 4, no. 2, pp. 225-239.

[11] T. Moriya and H. Aida (2003), “Cache Data Access

System in Ad Hoc Networks,” Proc. Vehicular

Technology Conf. (VTC ’03), vol. 2, pp. 1228-1232.

[12] T.Hara (2002), “Cooperative caching by mobile clients

in push based information systems”, Proc. CIKM’02,

pp.186-193.

[13] NS Notes and Documentation,

http://www.isi.edu/nsnam/ns/, 2008.

[14] Y. Du and S. Gupta (2005),”COOP – A Cooperative

Caching Service in MANETs”, Proceedings of the IEEE

ICAS/ICNS , pp.58–63

[15] Yu Du, Sandeep K.S. Gupta and Georgios

Varsamopoulos (2009), “Improving on-demand data

access efficiency in MANETs with cooperative caching,

AdHoc Networks”, 7 (3), pp.579-598.

