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ABSTRACT 

Making recognition more reliable under uncontrolled lighting 

conditions is one of the most important challenges for 

practical face recognition systems. This paper uses  strengths 

of robust illumination normalization, local texture based face 

representations, distance transform based matching and 

multiple feature fusion to tackle this problem. The 

contributions of this paper include: 1) a simple and efficient 

pre-processing chain that eliminates most of the effects of 

changing illumination while still preserving the essential 

appearance details that are needed for recognition; 2)introduce 

local ternary patterns (LTP), a generalization of the local 

binary pattern (LBP) local texture descriptor that is more 

discriminant and less sensitive to noise in uniform region 3) 

improve robustness by adding Gabor wavelets and LBP—

showing that the combination is considerably more accurate 

than either feature set alone. The resulting method provides 

state-of-the-art performance on Extended Yale-B dataset with 

an acceptance ratio of 85%. This can be used in many 

applications like surveillance, forensics, banking and login 

systems. 

Index Terms 

Face recognition, illumination invariance, image pre-

processing, kernel principal components analysis, local binary 

patterns, visual features. 

 

1. INTRODUCTION 
Face recognition has received a great deal of attention from 

the scientific and industrial communities over the past several 

decades owing to its wide range of applications in information 

security and access control, law enforcement, surveillance, 

and more generally image understanding .Numerous 

approaches have been proposed, including eigenfaces[16] , 

fisherfaces [3], and laplacianfaces[7], nearest feature line-

based subspace analysis[9], neural networks[8], [14], elastic 

bunch graph matching, wavelets, Multiscale Retinex[15]  and 

kernel methods[11].Most of these methods were initially 

developed with face images collected under relatively well-

controlled conditions and in practice they have difficulty in 

dealing with the range of appearance variations that 

commonly occur in unconstrained natural images due to 

illumination, pose, facial expression, aging, partial occlusions, 

etc[6]. 

              This paper focuses mainly on the issue of robustness 

to lighting variations.Traditional approaches for dealing with 

this issue can be broadly classified into three categories: 

appearance-based, normalization-based, and feature-based 

methods. In direct appearance-based approaches, training 

examples are collected under different lighting conditions and 

directly used to learn a global model of the possible 

illumination variations. Normalization based approaches seek 

to reduce the image to a more ―canonical‖ form in which the  

illumination variations are suppressed. The third approach 

extracts illumination-insensitive feature sets [3],[12],[14],[17]  

directly from the given image. These feature sets range from 

geometrical features [8] to image derivative features such as 

edge maps[10] , local binary patterns (LBP) , Gabor wavelets 

[1][4], and local autocorrelation filters. Although such 

features offer a great improvement on raw gray values, their 

resistance to the complex illumination variations that occur in 

real-world face images is still quite limited. For example, even 

though LBP features are completely invariant to monotonic 

global gray-level transformations, their performance degrades 

significantly under changes of lighting direction and 

shadowing[5]. 

 In this paper, an integrative framework that combines the 

strengths of all three of the above approaches was proposed. 

The overall process can be viewed as a pipeline consisting of 

image normalization, feature extraction, and subspace 

representation[1]. Each stage increases resistance to 

illumination variations and makes the information needed for 

recognition more manifest. The method centres on a rich set 

of robust visual features that is selected to capture as much as 

possible of the available information. A well-designed image 

preprocessing pipeline  is prepended to  enhance robustness. 

 

                      

 

                                                           

 

 

 

2. ILLUMINATION NORMALISATION 
This section describes our illumination normalization method. 

This is a pre-processing chain run before feature extraction 

that incorporates a series of stages designed to counter the 

effects of illumination variations, local shadowing, and 

highlights while preserving the essential elements of visual 

appearance. 
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Fig 1 Steps in face recognition method 
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2.1 Gamma Correction  
It is a nonlinear gray-level transformation that replaces I gray-

level with I γ where γ is a user-defined parameter. This 

enhances the local dynamic range of the image in dark or 

shadowed regions while compressing it in bright regions and 

at highlights. A power law with exponent γ is used. Here we 

use γ=0.2. 

2.2 Difference of Gaussian filtering Gamma 

correction does not remove the influence of overall intensity 

gradients such as shading effects. DoG filtering is a 

convenient way to achieve the resulting band pass behaviour. 

Fine details remain critically important for recognition so the 

inner (smaller) Gaussian is typically quite narrow(σ0 ≤1pixel) 

while the outer one σ1 might have of 2–4 pixels or more, 

depending on the spatial frequency at which low frequency 

information becomes misleading rather than informative. 

2.3 Masking  

If facial regions that are felt to be irrelevant or too variable 

need to be masked out, the mask should be applied at this 

point. Otherwise, either strong artificial gray-level edges are 

introduced into the DoG convolution, or invisible regions are 

taken into account during contrast equalization. 

2.4 Contrast Equalisation  

The final stage of our preprocessing chain rescales the image 

intensities to standardize a robust measure of overall contrast 

or intensity variation. It is important to use a robust estimator 

because the signal typically contains extreme values produced 

by highlights, small dark regions such as nostrils, garbage at 

the image borders, etc. One could use (for example) the 

median of the absolute value of the signal for this, but here we 

have preferred a simple and rapid approximation based on a 

two stage process as follows: 

 

 

The exact functional form is not critical. Here we use the 

hyperbolic tangent I(x, y) →τ tanh (I(x, y)/τ), limiting I to the 

range (-τ,τ) 

 

Fig. 2. (Top) the stages of our image preprocessing 

pipeline, and (bottom) an example of the effect of the three 

stages—from left to right: input image; image after 

Gamma correction; image after DoG filtering; image after 

robust contrast normalization. 

 

 

3. LTP FEATURE EXTRACTION 

3.1 Local Ternary Pattern 

 LBPs have proven to be highly discriminative features for 

texture classification [1] and they are resistant to lighting 

effects in the sense that they are invariant to monotonic gray-

level transformations. However because they threshold at 

exactly the value of the central pixel ic they tend to be 

sensitive to noise, particularly in near-uniform image regions, 

and to smooth weak illumination gradients.Here we extend 

LBP to 3-valued codes, LTP, in which gray-levels in a zone of 

width ±t around  ic are quantized to zero, ones above this are 

quantized to 1 and ones below it to -1, i.e., the indicator s(u) is 

replaced with a 3-valued function.When using LTP for visual 

matching, we could use 3n valued codes, but the uniform 

pattern argument also applies in the ternary case. 

 

 

 

For simplicity, the experiments below use a coding scheme 

that splits each ternary pattern into its positive and negative 

halves subsequently treating these as two separate channels of 

LBP descriptors for which separate histograms and similarity 

metrics are computed, combining the results only at the end of 

the computation. 

 

Fig:4 Local Ternary Pattern conversion 

3.2Local Binary Pattern   

Ojala et al.  introduced Local Binary Patterns (LBPs) as a 

means of summarizing local gray-level structure. The LBP 

operator takes a local neighborhood around each pixel, 

thresholds the pixels of the neighborhood at the value of the 

central pixel and uses the resulting binary-valued image patch 

as a local image descriptor. It was originally defined for 3X3 

neighborhoods, giving 8-bit integer LBP codes based on the 

eight pixels around the central one. Formally, the LBP 

operator takes the form[2] 

 

LBP(xc, yc)=   Σ  2n s(in-ic)  

 

I(x,y) 

I(x,y) 

(mean,(min(τ,│I(x’,y’)│)
α
))

1/α 

S’(u,ic,t)= 

 1, u  ≥  ic + t 

 0, u - ic  | < t 

-1, u ≤  ic – t 

 

 

 

 

 

 

 

 

 

n=0 

7 



International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012) 

Proceedings published in International Journal of Computer Applications® (IJCA) 

26 

 

Fig:3 Local Binary Pattern conversion 

3.3 Calculation of Z-score for LBP  

It is more appropriate to use a Hausdorff-distance-like 

similarity metric that takes each LBP or LTP pixel code in 

image xand tests whether a similar code appears at a nearby 

position in image y, with a weighting that decreases smoothly 

with image distance. Given a 2-D reference image x , we find 

its image of LBP or LTP codes and transform this into a set of 

sparse binary images bk, one for each possible LBP or LTP 

code value (i.e., 59 images for uniform codes). Each bk 

specifies the pixel positions at which its particular LBP or 

LTP code value appears. We then calculate the distance 

transform dk image of each . Each pixel of gives the distance 

to the nearest image pixel with code.  

dk(x,y)=min(max(ak,bk)) 

where ak,bk specifies the pixel positions at which LBP or LTP 

code value appears. 

 The distance or similarity metric dk  from image x to 

image y is then, 

D(x,y)= Σ  dx
k

y
(i,j) ( i, j) 

 

The full method incorporates the aforementioned 

preprocessing chain and LBP or LTP features with distance 

transform based comparison.  

𝑍𝐿𝐷𝐴 =
𝐷 − µ

𝜎
 

where μ,σ are respectively, the mean and standard deviation , 

D is the distance similarity metric and ZLBP ranges from 0 to 1 

 

4. LINEAR DISCRIMINANT ANALYSIS 

Linear Discriminant Analysis (LDA) is a commonly used 

techniques for data classification and dimensionality 

reduction. Linear Discriminant Analysis easily handles the 

case where the within class frequencies are unequal and their 

performance has been examined on randomly generated test 

data. This method maximizes the ratio of between-class 

variance to the within-class variance in any particular data set 

thereby guaranteeing maximal separability. This method also 

helps to better understand the distribution of the feature data. 

Let the training set of images be Ґ 1 , Ґ2,.....Ґm. The average 

face of the set is defined by 

   

                                          Ψ=1/m Σ  Ґn 

 

the between and withinclass scatter matrices Sb and Sw are 

defined as: 

                           Sb=Σ Pr(Ci)(μi-μ)(μi-μ)=ϕbϕb
T 

 

where Pr(Ci) is the prior probabilityof class Ci and usually is 

assigned to 1/m                         

                           Sw= Σ   Pr(Ci) Σi= ϕwϕw
T 

                            

                              V=1/m Σ ϕbϕw
T 

 

Then is then subject to principal component analysis which 

seeks a set of M orthogonal vectors u1.........um 

                                Wk=Uk
T(Ґ-ψ) 

The weights from the vectorsΏ=(W1,W2,..........WK) 

Euclidean distance Dk=║Ώ-Ώk║ 

4.1 Calculation of Z-score for LDA 

 The Z-score for LDA is calculated as follows: 

                                          

      ZLDA= 

where μ,σ are respectively, the mean and standard deviation , 

D is the distance similarity metric and ZLDA  ranges from 0 to 

1. 

 4.2 Calculation of Fused score 

We fuse the Gabor and LBP similarity scores using 

the simple sum rule: 

Z=ZLDA+ZLBP 

This fused Z-score is compared with the threshold value 0.5 , 

if the score is less than the threshold then the face is 

recognised else it is not recognised.      
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5. DISCUSSION AND CONCLUSION 
This project provides a simple, efficient image preprocessing 

chain whose practical recognition performance is better than 

current illumination normalization methods and a rich 

descriptor for local texture called LTP that generalizes LBP 

while fragmenting less under noise in uniform region is used. 

Then a distance transform based similarity metric is used to 

capture the local structure and geometric variations of 

LBP/LTP face images.A heterogeneous feature fusion-based 

recognition framework, combines two popular feature sets 

Gabor wavelets and LBP, is used to provide better efficiency 

in face recognition. This can be used in many applications like 

surveillance, forensics, banking and login systems. Also it 

provides an acceptance ratio of 85%. 

The accepatance ratio and  rejection  ratio are calculated using 

the following equations: 

Acceptance ratio =
1

N
 (accept ratio)i

N

i=1
 

accept ratio =
1

K
 (

No. of relevant images retrieved

Total no of relevant images
)j

K

j=1
 

where N and  K are the number of image group and  

the number of images in each group respectively  

 

Rejection rate =
1

K
 (

No. of relevant images rejected

Total no of  processed images
)j

K

j=1
 

 

where S is the total number of images that is processed. 

The following table shows the acceptance ratio and rejection 

ratio for the different number of images. 

Table 1 Acceptance and rejection ratio 

No. of  

images 

Acceptance 

ratio 

Rejection 

ratio 

20 90 0.01 

40 87.5 0.025 

60 86.7 0.033 

80 86.25 0.047 

100 85 0.05 

 

No. of images 

 

 

 

No. of images 

 

 

6. FUTURE ENHANCEMENT 
This project provides a simple, efficient image pre-processing 

chain whose practical recognition performance is better than 

current illumination normalization methods. The complexities 

of face recognition mainly lie in the constantly changing 

appearance of human face, such as variations in occlusion, 

illumination and expression. By using the Self-Organizing 

Map (SOM) instead of a mixture of Gaussians to learn the 

subspace that represented each individual, the performance 

against the partial occlusions and variant expressions can be 

improved.  

Based on the localization of the training images, there are two 

strategies of learning the SOM topological space, namely to 

train a single SOM map for all the samples and to train a 

separate SOM map for each class, respectively. A soft k 

nearest neighbour (soft k-NN) ensemble method, can be 

effectively used to exploit the outputs of the SOM topological 

space. 
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