
International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

17

Query Optimization using SQL Approach for Data Mining

Analysis

M.Stella Inba Mary
PG Scholar

Department of CSE (PG)
National Engineering College, Kovilpatti

V.Kalaivani
Associate Professor

Department of CSE (PG)
National Engineering College, Kovilpatti

ABSTRACT
Relational databases are acceptable repository for structured

data; integrating data mining algorithms with a relational

DBMS is an essential research issue for database

programmers. In a relational database, a significant effort is

required to prepare a summary data set that can be used as

input for the data mining process. It requires many complex

SQL queries, joining tables and aggregating columns. This

paper realizes the research on extending SQL code for data

mining processing and related work on query optimization.

Also the paper proposes the following approaches,

transposition, pivoting and cross tabulation. The approaches

exhibit efficient optimizations with SQL extensions using

aggregated Queries.

Keywords

Relational DBMS, SQL, Aggregation, Query Optimization.

1. INTRODUCTION
The integration of data mining algorithms with a relational

Data Base Management System (DBMS) is an important and

challenging problem; a considerable effort is required to

prepare an abstract of data set that can be used as input for a

data mining models. Implementations of pivoting (horizontal

layout) functionality already exist for the purpose of data

presentation [8], but these operations are usually performed

either outside the RDBMS or as a simple post-processing

operation outside of query processing.

Building a suitable data set for data mining purposes is a time-

consuming task. This task generally requires writing long

SQL statements or customizing SQL code if it is

automatically generated by some tool. There are two main

ingredients in such SQL code: joins and aggregations. The

most widely-known aggregation is the sum of a column over

groups of rows. Some other aggregations return the average,

maximum, minimum or row count over groups of rows. There

exist many aggregation functions and operators in SQL.

Unfortunately, all these aggregations have limitations to build

data sets for data mining purposes.

One of the primary goals of business intelligence is to

transform raw data into meaningful information, by

combining its sources, discovering its dependencies and

patterns, and using them to predict future trends. The Data

Mining Query task provides a means for capturing their

outcome into an arbitrary table. Query execution leverages

data mining models, which apply specifically crafted

algorithms to data exposed via a mining structure.

This paper introduces a new set of aggregate functions that

can be used to build data sets in a horizontal layout

automating SQL query writing and extending SQL

capabilities. In data mining, statistical or machine learning

algorithms generally require aggregated data in summarized

form [3]. Based on current available functions and clauses in

SQL, a significant effort is required to compute aggregations

when they are desired in a cross tabular (horizontal) form,

suitable to be used by a data mining algorithm. This paper

explains how to evaluate and optimize horizontal aggregations

generating standard SQL code.

Figure 1 gives an example showing the input table, and a

horizontal aggregated table. To compute queries like

‖summarize sales for each store by each day of the week‖;

‖compute the total number of items sold by department for

each store‖. These queries can be answered with standard

SQL, but additional code needs to be written or generated to

return results in tabular form. Aggregations can be used to

generate SQL code from a data mining tool to build data sets

for data mining analysis.

Table 1.Input Table

N S1 S2 SUM

 1

2

3

4

5

6

7

8

3 A 9

2 B 6

1 B 10

2 B 0

2 A 1

1 A Null

3 A 8

2 A 7

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

18

Table 2.Aggregated column for Input Table

2. RELATED WORK
To prepare summarized format for data mining algorithm,

many methods are introduced by researchers in the past.

Carlos Ordonez [3] introduced three SQL implementations of

the popular K-means clustering algorithm to integrate it with a

relational DBMS. Xiaoxin Yin [14] proposed a new approach,

called CrossMine, which includes a set of novel and powerful

methods for multirelational classification.

Carlos Ordonez [2] focused on programming Bayesian

classifiers in SQL. Carrasco [6] defined a new type of object

dmFSQL consists of a series of operations on the object

project (create, alter, drop…). The DML of dmFSQL executes

the true DM process.

Elena Baralis[9] presented the IMine indx, a general and

compact structure which provides tight integration of item set

extraction in a relational DBMS. Charu C. Aggarwal[7]

provided a survey of uncertain data mining and management

applications. Sally McClean[11] considered the problem of

aggregation using an imprecise probability data model. Conor

Cunningham [8] described PIVOT and UNPIVOT, two

operators on tabular data that exchange rows and columns.

Haixun Wang [14] implemented ATLaS, to develop complete

data-intensive applications in SQL—by writing new

aggregates and table functions in SQL, it includes query

rewriting, optimization techniques and the data stream

management module.Carlos Ordonez [1] introduced

techniques to efficiently compute fundamental statistical

models inside a DBMS exploiting User-Defined Functions

(UDFs).Two summary matrices on the data set are

mathematically shown to be essential for all models

There exist many proposals that have extended SQL syntax.

Programming three methods with SQL queries is explored in

[5], which shows a horizontal layout of the data set enables

easier and simpler SQL queries. Alternative SQL extensions

to perform spreadsheet-like operations were introduced in

[16]. Their optimizations have the purpose of avoiding joins

to express cell formulas, but are not optimized to perform

partial transposition for each group of result rows.

The closest data mining problem associated to OLAP

processing is association rule mining [17]. SQL extensions to

define aggregate functions for association rule mining are

introduced, In this case the goal is to efficiently compute

itemset support.

3. PROPOSED WORK

3.1 Motivation:

The proposed work provides the small syntax extension to the

SELECT statement, which allows understanding the proposal

in an intuitive manner. The proposed extension represents

non-standard SQL because the columns in the output table are

not known when the query is parsed. The input table does not

change while the aggregation is evaluated because new values

may create new result columns. The new approach extends

standard SQL aggregate functions with a ―transposing‖ BY

clause followed by a list of columns to produce a horizontal

set of numbers instead of one number.

3.2 Extended SQL syntax:

SELECT L1….Lj , H(A BY R1…..Rk)

FROM F

GROUP BY L1…….Lj ;

 R1…..Rk - should be a parameter associated to the

aggregation itself. That is they appear inside the

parenthesis as arguments,

 H() represents some SQL aggregation (e.g. sum(),

count(), min(), max(), avg()).

The function H () must have at least one argument

represented by A, followed by a list of columns.

 L1….Lj - The result rows are determined by these

columns in the GROUP BY clause if present. Result

columns are also determined by all potential

combinations of columns R1; : : : ;Rk,

The proposal has the following rules.

 The GROUP BY clause is optional

 When the clause GROUP BY is present there

should not be a HAVING clause.

 The transposing BY clause is optional.

 Horizontal aggregations can be combined with

vertical aggregations or other horizontal

aggregations.

 The argument to aggregate represented by A is

required; A can be a column name or an arithmetic

expression. In the particular case of count () A can

be the .DISTINCT keyword.

3.3 Aggregated Table Definition:

CREATE TABLE FH (L1 int …,Lj int

,X1 real…Xd real) PRIMARY KEY(L1……..Lj);

 Table FH that has {L1….Lj} as primary key and d

columns corresponding to each distinct subgroup.

 FH has d columns for data mining analysis and j + d

columns in total, where each Xj corresponds to one

aggregated value based on a speci_c R1; : : : ;Rk

values combination.

3.4 Discussion

In a data mining project most of the effort is spent in

preparing and cleaning a data set. This effort involves

deriving metrics and coding categorical attributes from the

data set and storing them in a tabular form for analysis so that

they can be used by a data mining algorithm. To get a

consistent query evaluation, the SQL extension to use locking

concepts.

The main reasons are that any insertion into table during

evaluation may cause inconsistencies:

S1 S2_A S2_B

1

2

3

Null

8

17

10

6

Null

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

19

(1) it can create extra columns in output table, for a new

combination of R1….Rk;

(2) it may change the number of rows of that table,

for a new combination of L1…..Lj ;

(3) it also may change actual aggregation values .

 In order to return consistent answers, to use table-level locks

on input and output tables, acquired before the first statement

starts and released after table has been populated.

In other words, the entire set of SQL statements becomes a

long transaction. Hence to use the highest SQL isolation

level: SERIALIZABLE, an alternative simpler solution

would be to use a static (read-only) copy during query

evaluation. That is, aggregations can operate on a read-only

database without consistency issues.

For all proposed methods to evaluate horizontal aggregations,

to summarize common requirements,

(1) All methods require grouping rows using one or

several queries.

(2) All methods must initially get all distinct

combinations to know the number and names of result

columns. Each combination will match an input row with a

result column.

This step makes query optimization difficult by standard

query optimization methods because such columns cannot be

known when a horizontal aggregation query is parsed and

optimized.

3.5 Proposed Methods

The main goal is to define a template to generate SQL code by

combining aggregation and transposition. The proposal has

two perspectives such as to evaluate efficient aggregations

and perform query optimization. The first one includes the

following approaches, pivoting, transposition and cross-

tabulation.

Pivoting approach is a built-in method in a commercial

DBMS. It can help evaluating an aggregated tabular format

for summarized data set.

It perform the following steps,

The pivoting method is used to write cross-tabulation queries

that rotate rows into columns, aggregating data in the process

of the rotation. The output of a pivot operation typically

includes more columns and fewer rows than the starting data

set.

The pivot computes the aggregation functions specified at the

beginning of the clause. Aggregation functions must specify a

GROUP BY clause to return multiple values; the pivot

performs an implicit GROUP BY.

New columns corresponding to values in the pivot, each

aggregated value is transposed to the appropriate new column

in the cross-tabulation.

The subclauses of the pivot have the following semantics:

expr - specify an expression that evaluates to a constant value

of a pivot column.

Subquery – to specify a subquery, all values found by the

subquery are used for pivoting. The subquery must return a

list of unique values at the execution time of the pivot query.

ANY - The ANY keyword is used only in conjunction with

the XML keyword. The ANY keyword acts as a wildcard and

is similar in effect to subquery. The output is not the same

cross-tabular format returned by non-XML pivot queries.

CUBE -The CUBE operation in the simple_grouping_clause

groups the selected rows based on the values of all possible

combinations of expressions in the specification. It returns a

single row of summary information for each group. You can

use the CUBE operation to produce cross-tabulation values.

The Transposition method is producing several rows for one

input row. An important difference is that, compared to

PIVOT, TRANSPOSE allows two or more columns to be

transposed in the same query, reducing the number of table

scans.

Cross-tabulations also called as crosstabs, are statistical

reports that group data by one field, creating one column for

each distinct value of another field. In colloquial terms, this

way of representing data is called "breaking down the data by

X and Y," where X and Y are the names of two columns in

the dataset. In SQL crosstab produces a SQL query to cross-

examine a database and generate a cross-tabulation report.

The amount of parameters needed to achieve the result is kept

to a minimum. In this approach, to indicate which columns

and rows to cross and from which table(s) they should be

taken. Compared to spreadsheet based cross-tabulations, SQL

crosstab has two distinct advantages, i.e. it keeps the query in

the database work space, fully exploiting the engine

capabilities, and does not limit the data extraction to one table.

In order to evaluate the query optimization using the

above approaches, the query optimizer takes three input

parameters:

 (1) The input table F,

 (2) The list of grouping columns L1…, Lm;

 (3) The column to aggregate (A).

The basic goal of a efficient aggregation is to transpose the

aggregated column A by a column subset of L1, . . . , Lm;

A SQL statement can be executed in many different ways,

such as full table scans, index scans, nested loops, and hash

joins. The query optimizer determines the most efficient way

to execute a SQL statement after considering many factors

related to the objects referenced and the conditions specified

in the query. This determination is an important step in the

processing of any SQL statement and can greatly affect

execution time.

The optimizer first evaluates expressions and conditions

containing constants as fully as possible. The optimizer

determines the goal of optimization. For a join statement that

joins more than two tables, the optimizer chooses which pair

of tables is joined first, and then which table is joined to the

result.

The SQL Server Query Optimizer is a cost-based optimizer. It

analyzes all methods for a given query, Therefore, it is the

SQL Server component that has the biggest impact on the

performance of any real time databases applications. After all,

selecting the right execution method could mean the

difference between a query execution time of milliseconds,

and one of minutes or even hours. Naturally, a better

understanding of how the Query Optimizer works can help

both database administrators and developers to write better

queries and to provide the Query Optimizer with the

information it needs to produce efficient execution plans.

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

20

4. EXPERIMENTAL RESULTS
The proposed methods are implemented in the commercial

data base applications. To execute the efficient aggregated

queries for these large data sets and to evaluate optimization

strategies for aggregation queries with synthetic data sets,

provide the results as follows.

The analyzed queries have aggregation with different

grouping and cross tabulations. Finally, to evaluate query

optimizations, compare the query evaluation methods with

time complexity with dimensionality.

Fig 2a show the summarized sales information for the

products in two branches. The SQL query with Pivoting and

Transposition produces the same results but they has the

different time complexity.

 Fig 2 a) Query Evaluation for Data Sets

The main task of optimization is to assess the acceleration

obtained by precomputing a cube This optimization provides a

different gain, depending on the methods. Fig 2b shows the

time optimization between built in SQL query and the

proposed approaches. The Select and Join optimization is best

for small n, for pivoting for large n and for CASE there is

rather a less dramatic improvement all across n.

Fig 2b) Query Optimization

Based on the time complexity, time grows as n grows for all

methods. Hence n is the main performance factor for

PIVOTING and Transpositions methods, d is the data set

dimensionality (number of cross-tabulated aggregations). It is

used to evaluate the query. This analysis considers every

method precomputes FV.

In existing system, there exist two DBMS limitations with

horizontal aggregations: reaching the maximum number of

columns in one table and reaching the maximum column

name length when columns are automatically named .A

horizontal aggregation can return a table that goes beyond the

maximum number of columns in the DBMS when the set of

columns {R1, . . .,Rk} has a large number of distinct

combinations of values, or when there are multiple horizontal

aggregations in the same query. On the other hand, the second

important issue is automatically generating unique column

names. If there are many subgrouping columns R1, . . .,Rk or

columns are of string data types, this may lead to generate

very long column names, which may exceed DBMS limits. it

will be difficult or impossible to compute a data mining

model.

In the new approach, the large column name length can be

solved. The problem of d going beyond the maximum number

of columns can be solved by vertically partitioning FH so that

each partition table does not exceed the maximum number of

columns allowed by the DBMS. Evidently, each partition

table must have L1, . . . , Lj as its primary key. Alternatively,

the column name length issue can be solved by generating

column identifiers with integers and creating a ―dimension‖

description table that maps identifiers to full descriptions, but

the meaning of each dimension is lost. An alternative is the

use of abbreviations, which may require manual input.

5. CONCLUSION

The proposed approaches implements an abstract but minimal

extension to SQL standard aggregate functions to compute

efficient summarized data set which just requires specifying

sub grouping columns inside the aggregation function call.

From a query optimization perspective,

The proposed system describes the possibility of extending

SQL OLAP aggregations with horizontal layout capabilities.

Horizontal aggregations produce tables with fewer rows, but

with more columns. The aggregated tables are useful to create

data sets with a horizontal layout, as commonly required by

data mining algorithms and OLAP cross-tabulation.

The output of a query optimization can immediately be

applied back to the data gathering, transformation, and

analysis processes. Anomalous data can be detected in

existing data sets, and new data entry can be validated in real

time, based on the existing data. SQL Server Data Mining

contains multiple algorithms that can perform churn analysis

based on historical data. Each of these algorithms will provide

a probability.

In future, research issues is proposed on extending SQL code

for data mining processing. The related work on query

optimization is proposed and compared to horizontal

aggregations with alternative proposals to perform

transposition or pivoting.

It includes to develop more complete I/O cost

models for cost-based query optimization and to study

optimization of horizontal aggregations processed in parallel

in a shared-nothing DBMS architecture.

5. REFERENCES
[1] Carlos Ordonez,‖ Statistical model computation with

UDFs‖, IEEE Transactions on Knowledge and Data

Engineering, vol. 22, no.22, pp. 1752 - 1765, Dec. 2010.

[2] Carlos Ordonez, Pitchaimalai. S.K, ―Bayesian Classifiers

Programmed in SQL‖, IEEE Trans. Knowledge and

Data Eng, vol. 22, no. 1, pp.909-921, Jan. 2010.

[3] Carlos Ordonez, ―Integrating K-means clustering with a

relational DBMS using SQL‖ IEEE Trans. Knowledge

and Data Eng, vol. 18 no. 2, pp.181-201, Feb. 2006

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4967589&refinements%3D4294967131%26openedRefinements%3D*%26sortType%3Ddesc_Publication+Year%26ranges%3D1999_2010_Publication_Year%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DOrdonez%2CC+data
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4967589&refinements%3D4294967131%26openedRefinements%3D*%26sortType%3Ddesc_Publication+Year%26ranges%3D1999_2010_Publication_Year%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DOrdonez%2CC+data
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4967589&refinements%3D4294967131%26openedRefinements%3D*%26sortType%3Ddesc_Publication+Year%26ranges%3D1999_2010_Publication_Year%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DOrdonez%2CC+data

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

21

[4] Carlos Ordonez, Omiecinski. E, ―Efficient Disk-Based

K-Means Clustering for Relational Databases‖, IEEE

Trans. Knowledge and Data Eng., vol. 16, no. 8, pp.909-

921, Aug. 2004.

[5] Carlos Ordonez, Zhibo Chen, ―Horizontal Aggregations

in SQL to Prepare Data Sets for Data Mining Analysis‖,

IEEE Trans. Knowledge and Data Eng., vol. PP, no. 99,

Jan. 2011.

[6] Carrasco, R.A.; Vila, M.A.; Araque, F.,‖ dmFSQL: a

Language for Data Mining‖, DEXA '06. 17th

International Workshop on 2006, pp-440-444, 2006

[7] Charu C. Aggarwal, Philip S. Yu. ―A Survey of

Uncertain Data Algorithms and Applications‖, IEEE

Transactions on Knowledge and Data Engineering, Vol.

21, No. 5. pp. 609-623, May 2009.

[8] Cunningham.C, Graefe.G, and Galindo-Legaria.C.A,

PIVOT and UNPIVOT: Optimization and execution

strategies in an RDBMS, In Proc. VLDB Conference,

pages 998–1009, 2004.

[9] Elena Baralis, Tania Cerquitelli, Silvia Chiusano,

"IMine: Index Support for Item

Set Mining," IEEE Transactions on Knowledge and Data

Engineering, vol. 21, no.4, pp 493-506, April 2009

[10] Hendrik Decker, ―Inconsistency – Tolerant Integrity

Checking‖, IEEE Transactions on Knowledge and

Data Engineering, Vol. 23, No. 2., pp- 218 – 234, Feb

2011

[11] McClean, S. Scotney, B. Shapcott, M. ―Aggregation of

Imprecise and Uncertain nformation in Databases‖,

Knowledge and Data Engineering, IEEE Transactions ,

Vol. 13, No. 6, pp 902 – 912, Nov/Dec 2001 .

[12] Netz, A, Chaudhuri. S, Fayyad. U, Bernhardt. J,

"Integrating Data Mining

with SQL Databases: OLE DB for Data Mining",17th

International Conference on 2001, pp.379-387, 2001

[13] Pitchaimalai, S., Ordonez, C., Garcia-Alvarado, C.,

―Efficient Distance computation Using SQL Queries and

UDFs‖, IEEE HPDM (High Performance Data Mining

Workshop, at ICDM), 2008.

[14] Wang.H, Zaniolo.C, and Luo.C.R, ―ATLaS: A small but

complete SQL extension for data mining and data

streams‖. In Proc. VLDB Conference, pages -1113–

1116, 2003

[15] Yin, X. Han, J. Yang, J. Yu, P.S. ―Efficient

Classification across Multiple Database Relations: A

Cross Mine Approach‖ IEEE Trans. Knowledge and

Data Eng., vol. 18, no. 6, pp. 770-783, Jun. 2006.

[16] A. Witkowski, S. Bellamkonda, T. Bozkaya,

G.Dorman, N. Folkert, A. Gupta, L. Sheng, and

S.bramanian. ―Spreadsheets in RDBMS for

OLAP‖ In Proc. ACM SIGMOD Conference,

pages 52–63, 2003.

[17] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating

association rule mining with relational database

systems: lternatives and implications.’ In Proc. ACM

SIGMOD Conference, pages 343–354, 1998

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11152
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11152
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7304
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7304
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7304

