
International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

1

Novel Tree based Approach for Mining Sequential
Pattern in Progressive Database

S. Daniel Rajkumar

PG Scholar Dept of CSE
Velammal Engineering College

Chennai

T.K.S. Rathish Babu
Asst. Professor Dept of CSE

Velammal Engineering College
Chennai

Dr. N. Sankar Ram
Professor & Head Dept of CSE
Velammal Engineering College

Chennai

ABSTRACT

The sequential pattern mining on progressive databases is

comparatively very new, in which progressively find out the

sequential patterns in time of interest. Time of interest is a

sliding window which is continuously move forwards as the

time goes by. As the focus of sliding window changes, the

new items are added to the dataset of interest and obsolete

items are removed from it and become up to date. In previous

pattern mining techniques sequential patterns are generated,

the newly arriving patterns may not be identified as frequent

sequential patterns due to the existence of old data and

sequences. Progressive databases have posed new challenges

because of the following innate characteristics such as it

should not only add new items to the existing database but

also removes the obsolete items from the database. The

proposed tree based approach efficiently overcomes the

inconsistencies in the existing methodologies and the

execution time also prominent good for huge databases.

General Terms

Data Mining, Sequential Database, Apriori All, Incremental

Database, Time of Interest, Progressive Database.

Keywords

Progressive Database, Time of Interest, PS-Tree, Fast Pisa

Algorithm.

1. INTRODUCTION
Data mining is the process of extracting exciting information

or patterns from large information repositories such as

relational database, data warehouses, XML repository, etc.

Also data mining is known as one of the core processes of

Knowledge Discovery in Database (KDD). Many people take

data mining as a synonym for another popular term,

Knowledge Discovery in Database (KDD). Otherwise other

people treat Data Mining as the core process of KDD.

Commonly there are three processes. One is called

preprocessing, which is executed before data mining

techniques are applied to the correct data. The pre processing

includes data cleaning, integration, selection and

transformation. The main process of KDD is the data mining

process, in this process different algorithm are applied to

produce hidden knowledge. After that another process called

post processing, this evaluates the mining result according to

users’ requirements.

First clean and integrate the databases. Ever since the data

source may come from different databases, which may have

some inconsistencies and duplications, clean the data source

by removing those noises or make some compromises.

Suppose it have two different databases, different words are

used to refer the similar thing in their schema. When

incorporate the two sources only choose one of them, if they

denote the same thing. And also real world data tend to be

incomplete and noisy due to the manual input mistakes. The

incorporated data sources can be stored in a database, data

warehouse or other repositories.

Figure 1: Knowledge Discovery Process

A variety of data mining techniques are applied to the data

source, different knowledge comes out as the mining result.

That knowledge is evaluated by certain rules, such as the

domain knowledge or concepts. After the evaluation, as

shown in Figure 1, if the result does not satisfy the

requirements or contradicts with the domain knowledge, redo

some processes until getting the right results. Depending on

the evaluation result we may have to redo the mining or the

user may modify his requirements. After the knowledge, the

final step is to visualize the results. They can be displayed as

raw data, tables, decision trees, rules, charts, data cubs or 3D

graphics. This process is try to make the data mining results

easier to be used and more understandable.

2. SEQUENTIAL PATTERN MINING
Sequential pattern is a sequence of item sets that frequently

occurred in a specific order, all items in the same item sets are

supposed to have the same transaction time value or within a

time gap. Usually all the transactions of a customer are

together viewed as a sequence, usually called customer-

Graphical

User

Interface

Pattern

Evaluation

Data Mining

Tools

Data

Repositories

Knowledge

Base

Data

Warehouse

Other

Repositorie

s

Database

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

2

sequence, where each transaction is represented as an item

sets in that sequence, all the transactions are list in a certain

order with regard to the transaction time.

Support is defined as follows if s is contained in the

corresponding customer sequence; the support of sequence s

is defined as the fraction of customers who support this

sequence.

 Number of support customers

 Support(S) =

 Total number of customers

Sequential pattern mining is the process of extracting certain

sequential patterns whose support exceed a predefined

minimal support threshold. Since the number of sequences

can be very large, and users have different interests and

requirements, to get the most interesting sequential patterns,

usually a minimum support is predefined by users. By using

the minimum support we can prune out those sequential

patterns of no interest, consequently make the mining process

more efficient. Obviously a higher support of sequential

pattern is desired for more useful and interesting sequential

patterns. However some sequential patterns that do not satisfy

the support threshold are still interesting. The Table 1 is the

example for sequential database.

Table 1. Sequential Database

Customer id Transaction

time

Purchased

items

1 Jan 03’2012 30

1 Jan 05’2012 90

2 Dec 27’2011 10,20

2 Dec 21’2011 40,50,80

3 Jan 04’2012 30,50,10

2.1 Sequential Pattern Mining in Static

Database
There are many researches about mining sequential patterns in

a static database. It was first addressed by Agarwal and

Srikant [1]. In general sequential pattern mining algorithms

can be classically categorized into three classes. (i) Apriori

based horizontal partitioning methods such as Generalized

Sequential Pattern mining [4], which adopts multiple-pass

candidate generation and test approach in sequential pattern

mining. (ii) Apriori based vertical partitioning methods such

as Sequential Pattern Discovery using Equivalent classes [5],

utilizes combinatorial properties to decompose the original

problem into smaller sub-problems that can be independently

solved in main memory using efficient lattice search and

simple join operations.(iii) Projection based pattern growth

algorithms such as prefix-projected sequential pattern mining

algorithms [2], which represents the pattern growth

methodology and finds the frequent items after scanning

database once. In addition to the traditional algorithms there

are many which include closed sequential pattern mining [4],

maximal sequential pattern mining [5] and constraint

sequential pattern mining [3].

2.2 Sequential Pattern Mining in

Incremental Database
The incremental sequential pattern mining algorithms resolve

major drawback of the sequential pattern mining algorithms

such as mining the patterns from up-to-date database without

deleting the obsolete. The key algorithms of incremental

sequential pattern mining are: Parthasarathy et al. [1],

developed an incremental mining algorithm ISM by

maintaining a sequence lattice of an old database. Sequence

lattice includes all the frequent sequences and all the

sequences in the negative border. Later Masseglia et al. [6],

proposed another incremental algorithm ISE for incremental

mining of sequential patterns when new transactions are

added to the database. This algorithm adopts candidate

generation and test approach. Hang Cheng et al. [3], presented

Incspan algorithm which mines sequential pattern over an

incremental databases. The limitation of these algorithms is its

inability to delete the obsolete data.

2.3 Sequential Pattern Mining in

Progressive Database
Progressive sequential pattern mining is a generalized pattern

mining methodology that brings out the most recent frequent

sequential patterns. This algorithm works both static as well

as dynamic changing databases and is unaffected by the

presence of obsolete data. The patterns are not affected by the

old data. This algorithm uses the sliding window to

progressively update sequences in the database and

accumulate the frequencies of candidate sequential patterns as

time progresses. The sliding window called time of interest

determines the time stamp over which the algorithm is

currently working.

3. EXISTING SEQUENTIAL PATTERN

MINING APPROACHES
Sequential pattern mining has been intensively studied during

recent years, there exists a great diversity of algorithms for

sequential pattern mining. In this Section first introduce some

general and basic algorithms for sequential pattern mining,

extensions of those algorithms for special purposes, such as

multi-dimensional sequential pattern mining and incremental

mining are covered later on. Also periodical pattern mining is

elaborated as an extension of sequential pattern mining.

 The sequential pattern mining with a static database and with

an incremental database are two special cases of the

progressive sequential pattern mining. In the following, we

introduce the previous works on the static sequential pattern

mining, the incremental sequential pattern mining, and the

progressive sequential pattern mining. Previous researchers

have developed various methods to find frequent sequential

patterns with a static database. AprioriAll and GSP are the

milestones of sequential pattern mining algorithms based on

traditional association rule mining technique, Apriori.

SPADE, illustrated by Zaki, systematically searched the

sequence lattice spanned by the subsequence relation. Han et

al. and Pei et al. brought up FreeSpan and PrefixSpan, which

found sequential patterns by constructing subdatabases of the

entire database. Ayres et al. then proposed SPAM to search a

lexicographic sequence tree in depth-first manner and use a

vertical bitmap data layout to support simple and efficient

counting process. Aseervatham et al. presented bitSPADE

using a lattice-based bitmap representation for sequential

pattern mining. In addition, there are also several works on

adding constraints to find sequential patterns, closed

sequential patterns, maximal sequential pattern mining,

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

3

spatiotemporal sequential pattern mining, sequential pattern

mining on specific data domain, sequential pattern mining on

stream data, frequent episode mining, and path traversal

pattern mining. The assumption of having a static database

may not hold in many applications. The data in real world

usually change on the fly. When we deal with an incremental

database, it is not feasible to refine the whole sequential

patterns every time when the database increases because the

refining process is costly. To handle the incremental database,

Parthasarathy et al. presented the algorithm ISM using a

lattice framework to incrementally update the support of each

sequential pattern in equivalent classes. Masseglia et al.

derived the algorithm ISE to join candidate sequential patterns

in original database with the newly increasing database.

Cheng et al. introduced algorithm IncSpan, which utilized a

special data structure named sequential pattern tree to store

the projection of database. Then, the improvements of

IncSpan were made in .The incremental update technique of

implicit merging and efficient counting methods.

Additionally, Chen et al. utilized prior knowledge of the data

distribution into the mining process in algorithm MILE.

However, the incremental mining algorithms can only handle

the incremental parts of the database. Because of the

limitation of data structures maintained in their algorithms,

they can only create new candidates but cannot delete the

obsolete data in a progressive database. The deletion of an

item from the database results in the reconstruction of all

candidate item sets, which induces incredible amount of

computing.

3.1 AprioriAll
AprioriAll is based on the Apriori algorithm in association

rule mining, similarly there are two sub process. The first is to

generate those sequences that may be frequent, which is also

called candidate sequences. Then the sequential database is

scanned to check the support of each candidate to determine

frequent sequential patterns according to minimal support.

Since the time cost of the second process is determined by the

number of passes over the database and number of candidates,

most researchers mainly concern about the candidate

generation process and the passes over the database.

AprioriAll was the first algorithm for sequential pattern

mining, it is based on the naive approach of Apriori

association rule mining. The main drawback of AprioriAll is

that too many passes over the database is required and too

many candidates are generated.

3.2 MEMISP
All those aforementioned sequential pattern mining

algorithms either require many passes over the databases as in

GSP, or generate many intermediate projected databases as in

Prefix Span. Another approach called MEMory Indexing for

Sequential Pattern mining (MEMISP) requires one pass over

the database, at most two passes for very large database, and it

avoids generation of candidates and projection of intermediate

database as well. In this approach, MEMISP uses a recursive

searching and indexing strategy to generate all the sequential

patterns from the data sequences stored in memory. Some

terms are defined in this algorithm. Given a pattern p and a

frequent item x in the sequence database, p ' is a type-1 pattern

if it can be formed by appending the item sets(x) as a new

element to p, p ' is a type-2 pattern if it can be formed by

extending the last element of p with item sets(x). The

frequent item set x is called a stem, while the sequential

pattern p is the Prefix pattern (P-pat) of p '. The MEMISP

algorithm works as follows. The first phase is to scan the

database and write it into memory to form the MDB (Memory

Database). During this process the support counts of those

length 1 sequences are recorded to get the frequent 1-

sequences. Those frequent 1-sequences will be used as stem

of type-1 pattern with respect to P-pat=< >. The second phase

is to output the sequential pattern ½ formed by current P-pat

and stem x and construct the index set p -idx. Index set p -idx

is the collection of these(ptr ds, pos) pairs. A (ptr ds, pos) pair

for each data sequence ds in MDB is allocated, if ds contains

x, where prt ds is a pointer to ds and pos is the first occurring

position of x in ds. The third phase is using index set p -idx

and MDB to find stems with respect to P-pat= p. To find any

sequential patterns that having current pattern p as its P-pat,

first they find those p -idx pairs whose ptr ps points to the data

sequences that contain p, those items that occur after the

corresponding pos positions are taken as potential stem. The

count of these items increase by one every time when they

appear after the pos position, with the support count the stem

can be determined frequent or not. Then we turn to the second

phase. The second and third phases are executed recursively

until no further stem can be found. During the whole process

no further scan of the database is needed, the index is

recursively updated. This consequently makes MEMISP more

efficient than others. With more and more memory installed in

the computer, most databases can be easily fitted into the

main memory. However some very large databases still can

not resident in the main memory. For those databases, they are

partitioned into small ones that can be stored in memory and

apply MEMISP to each of them to get the sequential patterns,

the candidate sequential patterns of the whole database are the

collection of patterns outputted from each partitions. To

determine final frequent sequential patterns another scanning

of the whole database is needed to check the actual support,

only two passes over the whole database is needed for those

large databases. Experiment results showed that MEMISP is

more efficient than GSP and PrefixSpan, it also has a good

linear scalability to the size of database and the number of

data sequences.

3.3 SPIRIT (Sequential Pattern mIning

with Regular expressIon consTraints)
Many different algorithms for sequential pattern mining in

time series database have been designed and implemented,

most of those algorithms aims to improve the efficiency of the

ad-hoc algorithms. In reality, users are interested in different

sequential patterns even for the same database, users are

interested in some specific patterns rather than the whole

possible sequential patterns. SPIRIT is a method of mining

user-specified sequential patterns by using regular expression

constraints. This method avoid wastage of computing effort

for mining patterns that users are not interested in, it also

avoids overwhelming users with potentially useless patterns.

In this approach, user's specific requirements are stated in

regular expression, denoted by C, four algorithms of SPIRIT

are introduced. They proposed a regular expression and a

series of operators that can read and interpret the regular

expression of constraints. SPIRIT (N) is the most naive

approach with regular expression constraints, it uses only the

including constraints to pruning the candidate sequences,

other processes is the same as in GSP. However in SPIRIT (L)

and SPIRIT (V), every candidate k-sequence are checked

according to the regular expression by using different operator

such as legal and valid. With those operators the pruning

techniques become more efficient. SPIRIT(R) is totally

different in the candidate generation process, rather than join

the sequences of less lengths the candidate are generated by

enumerate the possible combination of path traverse of the

regular expression. Detail and example of the four algorithms

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

4

are available in the original paper. The difference between

those four algorithms is the extent to which the constraints are

pushed into the candidate generation and pruning processes.

Experiments have been conducted with synthetic and real-life

data sets, the results showed that when the constraints are

highly selective SPIRIT(R) outperforms the other three

algorithms, while in most cases SPIRIT (V) is the overall

winner over the entire range of regular expression constraints.

SPIRIT (N) is the most straightforward and heuristic method

since it enforces only limited constraint to the mining process.

However, the existing algorithms cannot cope with sequential

pattern mining with a progressive database efficiently. To

remedy this problem, in this paper an efficient algorithm Fast

Pisa, this stands for Fast Progressive mIning of Sequential

pAtterns, corresponding to the mining in a progressive

database. Fast Pisa takes the concept of Time of interest (TOI)

into consideration.

4. PROPOSED WORK

4.1 Progressive sequential pattern mining

problem
 Given a user-specified length of TOI and a user defined

minimum support threshold, find the complete set of frequent

sub sequences whose occurrence frequencies are greater than

or equal to the minimum support times the number of

sequences in the recent TOI of a progressive

database.

 Figure 2: Progressive Database

Figure 2 is the example for progressive database. S01, S02 . . .

Sn represents different sequence IDs. A, B, C, and D are

different items in the database and t1, t2 . . . tk represent

timestamps.

4.2 Time of Interest
TOI is a sliding window, whose length is a user specified time

interval, continuously advancing as the time goes by. The

sequences having elements whose timestamps fall into this

period, TOI, contribute to the |Db| for current sequential

patterns. On the other hand, the sequences having only

elements with timestamps older than TOI should be pruned

away from the sequence database immediately and will not

contribute to the |Db| thereafter.

To solve the progressive sequential pattern mining algorithm,

a progressive mining algorithm Fast Pisa is proposed. Fast

Pisa maintains a PS-tree to keep the information of the

progressive database and up-to-date sequential patterns in

each TOI.

4.3 PS-Tree
The algorithm Fast Pisa is PS-tree. PS-tree not only contains

the information of all sequences in a progressive database but

also helps Fast Pisa to produce frequent sequential patterns in

each TOI. The nodes in PS-tree can be separated into two

different types. They are root node and common nodes. Root

node is the root of PS-tree containing nothing but a list of

common nodes as its children. Each common node stores two

information, say node label and a sequence list. The label is

the same as the element in a sequence. The sequence list

stores a list of sequence IDs to represent the sequences

containing this element. Each sequence ID in the sequence list

is marked by a corresponding timestamp. It is worth to

mention that only the nodes in the first and the second levels

have to preserve the corresponding timestamps for the

sequence IDs. The timestamps for the sequence IDs in the

nodes below the third level are the same as the timestamps for

the same sequence IDs in the second level. Therefore, it is not

necessary to store duplicate information. Whenever there are a

series of elements appearing in the same sequence, there will

be a series of nodes labeled by each element, respectively,

with the same sequence IDs in their sequence lists. Then, the

first node will be connected to the root node and the second

node representing the following element will be connected to

the first node. The other nodes will be connected analogously.

Note that, in such a way, the path from root node to any other

node will represent the candidate sequential pattern appearing

in this sequence. The appearing timestamp for each candidate

sequential pattern will be marked in the node labeled by the

last element. If there is another sequence having the same

pattern, the sequence ID will be inserted into the sequence

lists of the same nodes labeled by these elements on the path.

On the other hand, if an element appearing in a sequence is

obsolete, the corresponding sequence ID will be removed

from the sequence list of the node. In addition, if a node has

no sequence in the sequence list, it will be pruned away from

PS-tree.

 Figure 3: PS-tree of the example database (t0-t2)

Figure 3 gives the sample structure for PS-tree and it explains

what would happen in the timestamps t0, t1, t2.

4.4 Fast Pisa Algorithm
The main concept of Fast Pisa is to progressively update the

information of each sequence and each candidate sequential

pattern in the database. To achieve this goal, Fast Pisa utilizes

PS-tree to store all sequences from one TOI to another. When

receiving the elements at the arriving timestamp, say t +1,

Fast Pisa traverses the original PS-tree of timestamp t in post

order (children first, then the node itself) and updates the PS-

tree of timestamp t. While traversing PS-tree, Fast Pisa 1)

deletes the obsolete elements from, 2) updates current

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

5

sequences in, and 3) inserts newly arriving elements into the

PS-tree of timestamp t. From line 4 to line 7, Fast Pisa gets

the elements of all sequences at current timestamp and

traverses the PS-tree. Then, Fast Pisa moves forward to the

next timestamp until there is no newly arriving element in a

progressive database. The main procedure, traverse, is used to

traverse the PS-tree of timestamp t and transform it to the new

PS-tree of timestamp t+1.

Algorithm Fast Pisa(Support,TOI)

{

1. Var PS;// PS-Tree

2. Var curtime;// timestamp now

3. Var eleSet;//used to store elements ele

4. while(there is still new transaction)

5. elset=read all ele at curtime;

6. navigate(currentTime,PS);

7. curtime++;

8. End

}

In this way, Fast Pisa can easily generate all frequent

sequential patterns of timestamp t+1. After the traverse, the

original PS-tree of timestamp t becomes a new PS-tree of

timestamp t+1 and all information needed for the following

timestamps is updated. It is noted that Fast Pisa can simply

view repeated items as different items so that Fast Pisa is able

to output sequential patterns containing repeated elements. In

addition, since all sequential patterns are stored in PS-tree,

Fast Pisa is capable of reporting sequential patterns with only

a single element or maximal sequential patterns. To output

sequential patterns with only a single element, Fast Pisa needs

only to traverse first level nodes connected to root node. To

output maximal sequential patterns, Fast Pisa reports those

paths which are from root node to leaf nodes.

5. EXPERIMENTAL DESIGN
The previous works about incremental sequential pattern

mining append the newly arriving elements of all sequences

directly to the end of the original sequence database. They, in

essence, do not concern themselves with the TOI, but instead,

take the whole database of all elements into consideration. In

our work, the obsolete elements which exceed the TOI will be

deleted from the sequence database. For this reason, each

element should be designated an arriving timestamp. Note that

each timestamp can be viewed as an arbitrarily small time

interval in real world such as an hour, a day, a month, and so

on. Then, the items in this interval are combined as an

element at a timestamp. We, thus, transform the format of the

generated data sets. First, we divide the target data set into n

timestamps. According to the input parameter TOI, the first m

timestamps (m=TOI and m < n) are viewed as the original

database and the rest of elements in the data set are received

by the system incrementally. The length of TOI is inevitably

smaller than n, and the overall timestamps must be longer

than the maximal number of elements that one sequence

produces. The first run of the experiments mines the first TOI

from the beginning m timestamps of the data set (m=TOI).

After that, we shift the TOI one timestamp forward for the

following runs. In this way, the elements in the up-to-date

timestamp stand for the incremental part of the sequence

database, and the obsolete elements are deleted.

6. EXPECTED RESULTS
The execution time of Fast Pisa is about 10 to 100 times of

original Pisa over different data sets. This is because the

number of nodes stored in PS-tree can be reduced

significantly with the slight modification of the procedure

traverse of Fast Pisa. Therefore, Fast Pisa consumes less

memory than Pisa by 20 to 250 times. Calculate the total

number of sequential patterns generated by Pisa and Fast Pisa

in every timestamp. Then, the information loss rate is defined

by the {[1- (Number of patterns by Fast Pisa / Number of

patterns by Pisa)]*100}percent. The information loss rate is

less than 12 percent no matter which support value is chosen.

In real data sets, there are many candidate sequential patterns

containing elements with more than one item. However, these

candidate sequential patterns are seldom recognized as

frequent sequential patterns, because there are few sequences

having exactly the same elements with more than one items.

Therefore, the information loss is marginal.

7. CONCLUSION
The proposed system that have to improve the time efficiency

factor better than the existing approach. Using that Fast Pisa

approach the efficiency is much improved compared to the

existing methodologies. Thus with this idea, an enhanced

sequential pattern technique is proposed in this paper. In

general the proposed approach Fast Pisa reduces the

processing time. Thus the time efficiency is improved much

effectively. In future the work proposed in this thesis would

be extended by jointly memory utilization. Fast Pisa is more

advantageous when the minimum support threshold is small.

Furthermore, Fast Pisa possesses good scalability and

outperforms competitive algorithms significantly on real data

sets.

8. ACKNOWLEDGMENTS
Thanks to all Faculty members of Computer Science and

Engineering Department for their support to complete this

work.

9. REFERENCES

[1] J. Han and M. Kamber, Data Mining: Concepts and

Techniques.Morgan Kaufmann, 2000.

[2] F. Masseglia, P. Poncelet, and M. Teisseire, “Incremental

Mining of Sequential Patterns in Large Databases,” Data

and Knowledge Eng., vol. 46, pp. 97-121, July 2003.

[3] Jen-Wei Huang, Chi-Yao Tseng, Jian Chih Ou, and Ming

Syan Chen, ”A General Model for Sequential Pattern

Mining with a Progressive Database” March 2011

[4] A.Mhatre,M.Verma,D.Toshniwal”Extracting Sequential

Patterns from Progressive Databases: A Weighted

Approach” 2009

[5] Jiawei Han, Jian Pei. PrefixSpan: Mining Sequential

Patterns Efficiently by Prefix-Projected Pattern

Growth[J]. IEEE Transactions on Knowledge and Data

Engineering, 2004.1~17.

[6] J.Han, J.Pei, Y.Yin and R.Mao: Mining frequent patterns

without candidate generation: A Frequent pattern tree

approach. Data Mining and knowledge Discovery 8

(2004), 53~87.

[7] M. Zhang, B. Kao, D.W.-L. Cheung, and C.L. Yip,

“Efficient Algorithms for Incremental Update of

Frequent Sequences,” Proc. Sixth Pacific-Asia Conf.

Knowledge Discovery and Data Mining, 2002.

International Conference on Recent Trends in Computational Methods, Communication and Controls (ICON3C 2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

6

[8] C. Romero, S. Ventura, J.A. Delgado, and P.D. Bra,

“Personalized Links Recommendation Based on Data

Mining. In Adaptive Educational Hypermedia Systems,”

Proc. Second European Conf.Technology Enhanced

Learning (EC-TEL ’07), Sept. 2007.

[9] S. Nguyen, X. Sun, and M. Orlowska, “Improvements of

INCSPAN: Incremental Mining of Sequential Patterns in

Large Database,” Proc. Ninth Pacific-Asia Conf.

Knowledge Discovery and Data Mining (PAKDD),

2005.

[10] J.Z. Ouh, P. Wu, and M.-S. Chen, “Constrained Based

Sequential Pattern Mining,” Proc. Int’l Workshop Web

Technology, Dec. 2001.

[11] A.B. Pandey, J. Srivastava, and S. Shekhar, “Web Proxy

Server with Intelligent Prefetcher for Dynamic Pages

Using Association Rules,” Technical Report 01-004,

Univ. of Minnesota, Jan. 2001.

[12] A.B. Pandey, R.R. Vatsavai, X. Ma, J. Srivastava, and S.

Shekhar, “Data Mining for Intelligent Web Prefetching,”

Proc. Workshop Mining Data Across Multiple Customer

Touchpoints for CRM (MDCRM ’02), May 2002.

[13] S. Parthasarathy, M.J. Zaki, M. Ogihara, and S.

Dwarkadas, “Incremental and Interactive Sequence

Mining,” Proc. Eighth ACM Int’1999.

