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ABSTRACT 

The sequential pattern mining on progressive databases is 

comparatively very new, in which progressively find out the 

sequential patterns in time of interest. Time of interest is a 

sliding window which is continuously move forwards as the 

time goes by. As the focus of sliding window changes, the 

new items are added to the dataset of interest and obsolete 

items are removed from it and become up to date. In previous 

pattern mining techniques sequential patterns are generated, 

the newly arriving patterns may not be identified as frequent 

sequential patterns due to the existence of old data and 

sequences. Progressive databases have posed new challenges 

because of the following innate characteristics such as it 

should not only add new items to the existing database but 

also removes the obsolete items from the database. The 

proposed tree based approach efficiently overcomes the 

inconsistencies in the existing methodologies and the 

execution time also prominent good for huge databases. 
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1. INTRODUCTION 
Data mining is the process of extracting exciting information 

or patterns from large information repositories such as 

relational database, data warehouses, XML repository, etc. 

Also data mining is known as one of the core processes of 

Knowledge Discovery in Database (KDD). Many people take 

data mining as a synonym for another popular term, 

Knowledge Discovery in Database (KDD). Otherwise other 

people treat Data Mining as the core process of KDD.  

Commonly there are three processes. One is called 

preprocessing, which is executed before data mining 

techniques are applied to the correct data. The pre processing 

includes data cleaning, integration, selection and 

transformation. The main process of KDD is the data mining 

process, in this process different algorithm are applied to 

produce hidden knowledge. After that another process called 

post processing, this evaluates the mining result according to 

users’ requirements. 

First clean and integrate the databases. Ever since the data 

source may come from different databases, which may have 

some inconsistencies and duplications, clean the data source 

by removing those noises or make some compromises.    

Suppose it have two different databases, different words are 

used to refer the similar thing in their schema. When 

incorporate the two sources only choose one of them, if they 

denote the same thing. And also real world data tend to be 

incomplete and noisy due to the manual input mistakes. The 

incorporated data sources can be stored in a database, data 

warehouse or other repositories. 

 

            

 

 

 

 

 

 

 

 

 

  

 

 

  

 

Figure 1: Knowledge Discovery Process 

A variety of data mining techniques are applied to the data 

source, different knowledge comes out as the mining result. 

That knowledge is evaluated by certain rules, such as the 

domain knowledge or concepts. After the evaluation, as 

shown in Figure 1, if the result does not satisfy the 

requirements or contradicts with the domain knowledge, redo 

some processes until getting the right results. Depending on 

the evaluation result we may have to redo the mining or the 

user may modify his requirements. After the knowledge, the 

final step is to visualize the results. They can be displayed as 

raw data, tables, decision trees, rules, charts, data cubs or 3D 

graphics. This process is try to make the data mining results 

easier to be used and more understandable. 

2. SEQUENTIAL PATTERN MINING 
Sequential pattern is a sequence of item sets that frequently 

occurred in a specific order, all items in the same item sets are 

supposed to have the same transaction time value or within a 

time gap. Usually all the transactions of a customer are 

together viewed as a sequence, usually called customer-
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sequence, where each transaction is represented as an item 

sets in that sequence, all the transactions are list in a certain 

order with regard to the transaction time. 

Support is defined as follows if s is contained in the 

corresponding customer sequence; the support of sequence s 

is defined as the fraction of customers who support this 

sequence.  

                                     Number of support customers 

  Support(S) =     

                                      Total number of customers 

Sequential pattern mining is the process of extracting certain 

sequential patterns whose support exceed a predefined 

minimal support threshold. Since the number of sequences 

can be very large, and users have different interests and 

requirements, to get the most interesting sequential patterns, 

usually a minimum support is predefined by users. By using 

the minimum support we can prune out those sequential 

patterns of no interest, consequently make the mining process 

more efficient. Obviously a higher support of sequential 

pattern is desired for more useful and interesting sequential 

patterns. However some sequential patterns that do not satisfy 

the support threshold are still interesting. The Table 1 is the 

example for sequential database. 

Table 1. Sequential Database 

Customer id Transaction 

time 

Purchased 

items 

1 Jan 03’2012 30 

1 Jan 05’2012 90 

2 Dec 27’2011 10,20 

2 Dec 21’2011 40,50,80 

3 Jan 04’2012 30,50,10 

                 

2.1 Sequential Pattern Mining in Static 

Database 
There are many researches about mining sequential patterns in 

a static database. It was first addressed by Agarwal and 

Srikant [1]. In general sequential pattern mining algorithms 

can be classically categorized into three classes. (i) Apriori 

based horizontal partitioning methods such as Generalized 

Sequential Pattern mining [4], which adopts multiple-pass 

candidate generation and test approach in sequential pattern 

mining. (ii) Apriori based vertical partitioning methods such 

as Sequential Pattern Discovery using Equivalent classes [5], 

utilizes combinatorial properties to decompose the original 

problem into smaller sub-problems that can be independently 

solved in main memory using efficient lattice search and 

simple join operations.(iii) Projection based pattern growth 

algorithms such as prefix-projected sequential pattern mining 

algorithms [2], which represents the pattern growth 

methodology and finds the frequent items after scanning 

database once. In addition to the traditional algorithms there 

are many which include closed sequential pattern mining [4], 

maximal sequential pattern mining [5] and constraint 

sequential pattern mining [3]. 

 

 

2.2 Sequential Pattern Mining in 

Incremental Database 
The incremental sequential pattern mining algorithms resolve 

major drawback of the sequential pattern mining algorithms 

such as mining the patterns from up-to-date database without 

deleting the obsolete. The key algorithms of incremental 

sequential pattern mining are: Parthasarathy et al. [1], 

developed an incremental mining algorithm ISM by 

maintaining a sequence lattice of an old database. Sequence 

lattice includes all the frequent sequences and all the 

sequences in the negative border. Later Masseglia et al. [6], 

proposed another incremental algorithm ISE for incremental 

mining of sequential patterns when new transactions are 

added to the database. This algorithm adopts candidate 

generation and test approach. Hang Cheng et al. [3], presented 

Incspan algorithm which mines sequential pattern over an 

incremental databases. The limitation of these algorithms is its 

inability to delete the obsolete data. 

2.3 Sequential Pattern Mining in 

Progressive Database 
Progressive sequential pattern mining is a generalized pattern 

mining methodology that brings out the most recent frequent 

sequential patterns. This algorithm works both static as well 

as dynamic changing databases and is unaffected by the 

presence of obsolete data. The patterns are not affected by the 

old data. This algorithm uses the sliding window to 

progressively update sequences in the database and 

accumulate the frequencies of candidate sequential patterns as 

time progresses. The sliding window called time of interest 

determines the time stamp over which the algorithm is 

currently working. 

3. EXISTING SEQUENTIAL PATTERN 

MINING APPROACHES 
Sequential pattern mining has been intensively studied during 

recent years, there exists a great diversity of algorithms for 

sequential pattern mining. In this Section  first introduce some 

general and basic algorithms for sequential pattern mining, 

extensions of those algorithms for special purposes, such as 

multi-dimensional sequential pattern mining and incremental 

mining are covered later on. Also periodical pattern mining is 

elaborated as an extension of sequential pattern mining. 

 The sequential pattern mining with a static database and with 

an incremental database are two special cases of the 

progressive sequential pattern mining. In the following, we 

introduce the previous works on the static sequential pattern 

mining, the incremental sequential pattern mining, and the 

progressive sequential pattern mining. Previous researchers 

have developed various methods to find frequent sequential 

patterns with a static database. AprioriAll and GSP are the 

milestones of sequential pattern mining algorithms based on 

traditional association rule mining technique, Apriori. 

SPADE, illustrated by Zaki, systematically searched the 

sequence lattice spanned by the subsequence relation. Han et 

al. and Pei et al. brought up FreeSpan and PrefixSpan, which 

found sequential patterns by constructing subdatabases of the 

entire database. Ayres et al. then proposed SPAM to search a 

lexicographic sequence tree in depth-first manner and use a 

vertical bitmap data layout to support simple and efficient 

counting process. Aseervatham et al. presented bitSPADE 

using a lattice-based bitmap representation for sequential 

pattern mining. In addition, there are also several works on 

adding constraints to find sequential patterns, closed 

sequential patterns, maximal sequential pattern mining, 
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spatiotemporal sequential pattern mining, sequential pattern 

mining on specific data domain, sequential pattern mining on 

stream data, frequent episode mining, and path traversal 

pattern mining. The assumption of having a static database 

may not hold in many applications. The data in real world 

usually change on the fly. When we deal with an incremental 

database, it is not feasible to refine the whole sequential 

patterns every time when the database increases because the 

refining process is costly. To handle the incremental database, 

Parthasarathy et al. presented the algorithm ISM using a 

lattice framework to incrementally update the support of each 

sequential pattern in equivalent classes. Masseglia et al. 

derived the algorithm ISE to join candidate sequential patterns 

in original database with the newly increasing database. 

Cheng et al. introduced algorithm IncSpan, which utilized a 

special data structure named sequential pattern tree to store 

the projection of database. Then, the improvements of 

IncSpan were made in .The incremental update technique of 

implicit merging and efficient counting methods. 

Additionally, Chen et al. utilized prior knowledge of the data 

distribution into the mining process in algorithm MILE. 

However, the incremental mining algorithms can only handle 

the incremental parts of the database. Because of the 

limitation of data structures maintained in their algorithms, 

they can only create new candidates but cannot delete the 

obsolete data in a progressive database. The deletion of an 

item from the database results in the reconstruction of all 

candidate item sets, which induces incredible amount of 

computing. 

3.1 AprioriAll  
AprioriAll is based on the Apriori algorithm in association 

rule mining, similarly there are two sub process. The first is to 

generate those sequences that may be frequent, which is also 

called candidate sequences. Then the sequential database is 

scanned to check the support of each candidate to determine 

frequent sequential patterns according to minimal support. 

Since the time cost of the second process is determined by the 

number of passes over the database and number of candidates, 

most researchers mainly concern about the candidate 

generation process and the passes over the database.  

AprioriAll was the first algorithm for sequential pattern 

mining, it is based on the naive approach of Apriori 

association rule mining. The main drawback of AprioriAll is 

that too many passes over the database is required and too 

many candidates are generated. 

3.2 MEMISP   
All those aforementioned sequential pattern mining 

algorithms either require many passes over the databases as in 

GSP, or generate many intermediate projected databases as in 

Prefix Span. Another approach called MEMory Indexing for 

Sequential Pattern mining (MEMISP) requires one pass over 

the database, at most two passes for very large database, and it 

avoids generation of candidates and projection of intermediate 

database as well. In this approach, MEMISP uses a recursive 

searching and indexing strategy to generate all the sequential 

patterns from the data sequences stored in memory. Some 

terms are defined in this algorithm. Given a pattern p and a 

frequent item x in the sequence database, p ' is a type-1 pattern 

if it can be formed by appending the item sets(x ) as a new 

element to p, p ' is a type-2 pattern if it can be formed by 

extending the last element of p with item sets(x ). The 

frequent item set x is called a stem, while the sequential 

pattern p is the Prefix pattern (P-pat) of p '. The MEMISP 

algorithm works as follows. The first phase is to scan the 

database and write it into memory to form the MDB (Memory 

Database). During this process the support counts of those 

length 1 sequences are recorded to get the frequent 1-

sequences. Those frequent 1-sequences will be used as stem 

of type-1 pattern with respect to P-pat=< >. The second phase 

is to output the sequential pattern ½ formed by current P-pat 

and stem x and construct the index set p -idx. Index set p -idx 

is the collection of these(ptr ds, pos) pairs. A (ptr ds, pos) pair 

for each data sequence ds in MDB is allocated, if ds contains 

x, where prt ds is a pointer to ds and pos is the first occurring 

position of x in ds. The third phase is using index set p -idx 

and MDB to find stems with respect to P-pat= p. To find any 

sequential patterns that having current pattern p as its P-pat, 

first they find those p -idx pairs whose ptr ps points to the data 

sequences that contain p, those items that occur after the 

corresponding pos positions are taken as potential stem. The 

count of these items increase by one every time when they 

appear after the pos position, with the support count the stem 

can be determined frequent or not. Then we turn to the second 

phase. The second and third phases are executed recursively 

until no further stem can be found. During the whole process 

no further scan of the database is needed, the index is 

recursively updated. This consequently makes MEMISP more 

efficient than others. With more and more memory installed in 

the computer, most databases can be easily fitted into the 

main memory. However some very large databases still can 

not resident in the main memory. For those databases, they are 

partitioned into small ones that can be stored in memory and 

apply MEMISP to each of them to get the sequential patterns, 

the candidate sequential patterns of the whole database are the 

collection of patterns outputted from each partitions. To 

determine final frequent sequential patterns another scanning 

of the whole database is needed to check the actual support, 

only two passes over the whole database is needed for those 

large databases. Experiment results showed that MEMISP is 

more efficient than GSP and PrefixSpan, it also has a good 

linear scalability to the size of database and the number of 

data sequences. 

3.3 SPIRIT (Sequential Pattern mIning 

with Regular expressIon consTraints) 
Many different algorithms for sequential pattern mining in 

time series database have been designed and implemented, 

most of those algorithms aims to improve the efficiency of the 

ad-hoc algorithms. In reality, users are interested in different 

sequential patterns even for the same database, users are 

interested in some specific patterns rather than the whole 

possible sequential patterns. SPIRIT is a method of mining 

user-specified sequential patterns by using regular expression 

constraints. This method avoid wastage of computing effort 

for mining patterns that users are not interested in, it also 

avoids overwhelming users with potentially useless patterns. 

In this approach, user's specific requirements are stated in 

regular expression, denoted by C, four algorithms of SPIRIT 

are introduced. They proposed a regular expression and a 

series of operators that can read and interpret the regular 

expression of constraints. SPIRIT (N) is the most naive 

approach with regular expression constraints, it uses only the 

including constraints to pruning the candidate sequences, 

other processes is the same as in GSP. However in SPIRIT (L) 

and SPIRIT (V), every candidate k-sequence are checked 

according to the regular expression by using different operator 

such as legal and valid. With those operators the pruning 

techniques become more efficient. SPIRIT(R) is totally 

different in the candidate generation process, rather than join 

the sequences of less lengths  the candidate are generated by 

enumerate the possible combination of path traverse of the 

regular expression. Detail and example of the four algorithms 
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are available in the original paper. The difference between 

those four algorithms is the extent to which the constraints are 

pushed into the candidate generation and pruning processes. 

Experiments have been conducted with synthetic and real-life 

data sets, the results showed that when the constraints are 

highly selective SPIRIT(R) outperforms the other three 

algorithms, while in most cases SPIRIT (V) is the overall 

winner over the entire range of regular expression constraints. 

SPIRIT (N) is the most straightforward and heuristic method 

since it enforces only limited constraint to the mining process. 

However, the existing algorithms cannot cope with sequential 

pattern mining with a progressive database efficiently. To 

remedy this problem, in this paper an efficient algorithm Fast 

Pisa, this stands for Fast Progressive mIning of Sequential 

pAtterns, corresponding to the mining in a progressive 

database. Fast Pisa takes the concept of Time of interest (TOI) 

into consideration. 

4. PROPOSED WORK 

4.1 Progressive sequential pattern mining 

problem 
 Given a user-specified length of TOI and a user defined 

minimum support threshold, find the complete set of frequent 

sub sequences whose occurrence frequencies are greater than 

or equal to the minimum support times the number of 

sequences in the recent TOI of a progressive 

database.

 

                       Figure 2: Progressive Database 

Figure 2 is the example for progressive database. S01, S02 . . . 

Sn represents different sequence IDs.  A, B, C, and D are 

different items in the database and t1, t2 . . . tk represent 

timestamps. 

4.2 Time of Interest 
TOI is a sliding window, whose length is a user specified time 

interval, continuously advancing as the time goes by. The 

sequences having elements whose timestamps fall into this 

period, TOI, contribute to the |Db| for current sequential 

patterns. On the other hand, the sequences having only 

elements with timestamps older than TOI should be pruned 

away from the sequence database immediately and will not 

contribute to the |Db| thereafter. 

To solve the progressive sequential pattern mining algorithm, 

a progressive mining algorithm Fast Pisa is proposed. Fast 

Pisa maintains a PS-tree to keep the information of the 

progressive database and up-to-date sequential patterns in 

each TOI. 

 

4.3 PS-Tree 
The algorithm Fast Pisa is PS-tree. PS-tree not only contains 

the information of all sequences in a progressive database but 

also helps Fast Pisa to produce frequent sequential patterns in 

each TOI. The nodes in PS-tree can be separated into two 

different types. They are root node and common nodes. Root 

node is the root of PS-tree containing nothing but a list of 

common nodes as its children. Each common node stores two 

information, say node label and a sequence list. The label is 

the same as the element in a sequence. The sequence list 

stores a list of sequence IDs to represent the sequences 

containing this element. Each sequence ID in the sequence list 

is marked by a corresponding timestamp. It is worth to 

mention that only the nodes in the first and the second levels 

have to preserve the corresponding timestamps for the 

sequence IDs. The timestamps for the sequence IDs in the 

nodes below the third level are the same as the timestamps for 

the same sequence IDs in the second level. Therefore, it is not 

necessary to store duplicate information. Whenever there are a 

series of elements appearing in the same sequence, there will 

be a series of nodes labeled by each element, respectively, 

with the same sequence IDs in their sequence lists. Then, the 

first node will be connected to the root node and the second 

node representing the following element will be connected to 

the first node. The other nodes will be connected analogously. 

Note that, in such a way, the path from root node to any other 

node will represent the candidate sequential pattern appearing 

in this sequence. The appearing timestamp for each candidate 

sequential pattern will be marked in the node labeled by the 

last element. If there is another sequence having the same 

pattern, the sequence ID will be inserted into the sequence 

lists of the same nodes labeled by these elements on the path. 

On the other hand, if an element appearing in a sequence is 

obsolete, the corresponding sequence ID will be removed 

from the sequence list of the node. In addition, if a node has 

no sequence in the sequence list, it will be pruned away from 

PS-tree.  

 

              Figure 3: PS-tree of the example database (t0-t2) 

Figure 3 gives the sample structure for PS-tree and it explains 

what would happen in the timestamps t0, t1, t2. 

4.4 Fast Pisa Algorithm 
The main concept of Fast Pisa is to progressively update the 

information of each sequence and each candidate sequential 

pattern in the database. To achieve this goal, Fast Pisa utilizes 

PS-tree to store all sequences from one TOI to another. When 

receiving the elements at the arriving timestamp, say t +1, 

Fast Pisa traverses the original PS-tree of timestamp t in post 

order (children first, then the node itself) and updates the PS-

tree of timestamp t. While traversing PS-tree, Fast Pisa 1) 

deletes the obsolete elements from, 2) updates current 
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sequences in, and 3) inserts newly arriving elements into the 

PS-tree of timestamp t. From line 4 to line 7, Fast Pisa gets 

the elements of all sequences at current timestamp and 

traverses the PS-tree. Then, Fast Pisa moves forward to the 

next timestamp until there is no newly arriving element in a 

progressive database. The main procedure, traverse, is used to 

traverse the PS-tree of timestamp t and transform it to the new 

PS-tree of timestamp t+1. 

Algorithm Fast Pisa(Support,TOI) 

{ 

1. Var PS;// PS-Tree 

2. Var curtime;// timestamp now 

3. Var eleSet;//used to store elements ele 

4. while(there is still new transaction) 

5. elset=read all ele at curtime; 

6. navigate(currentTime,PS); 

7. curtime++; 

8. End 

} 

In this way, Fast Pisa can easily generate all frequent 

sequential patterns of timestamp t+1. After the traverse, the 

original PS-tree of timestamp t becomes a new PS-tree of 

timestamp t+1 and all information needed for the following 

timestamps is updated. It is noted that Fast Pisa can simply 

view repeated items as different items so that Fast Pisa is able 

to output sequential patterns containing repeated elements. In 

addition, since all sequential patterns are stored in PS-tree, 

Fast Pisa is capable of reporting sequential patterns with only 

a single element or maximal sequential patterns. To output 

sequential patterns with only a single element, Fast Pisa needs 

only to traverse first level nodes connected to root node. To 

output maximal sequential patterns, Fast Pisa reports those 

paths which are from root node to leaf nodes. 

5. EXPERIMENTAL DESIGN 
The previous works about incremental sequential pattern 

mining append the newly arriving elements of all sequences 

directly to the end of the original sequence database. They, in 

essence, do not concern themselves with the TOI, but instead, 

take the whole database of all elements into consideration. In 

our work, the obsolete elements which exceed the TOI will be 

deleted from the sequence database. For this reason, each 

element should be designated an arriving timestamp. Note that 

each timestamp can be viewed as an arbitrarily small time 

interval in real world such as an hour, a day, a month, and so 

on. Then, the items in this interval are combined as an 

element at a timestamp. We, thus, transform the format of the 

generated data sets. First, we divide the target data set into n 

timestamps. According to the input parameter TOI, the first m 

timestamps (m=TOI and m < n) are viewed as the original 

database and the rest of elements in the data set are received 

by the system incrementally. The length of TOI is inevitably 

smaller than n, and the overall timestamps must be longer 

than the maximal number of elements that one sequence 

produces. The first run of the experiments mines the first TOI 

from the beginning m timestamps of the data set (m=TOI). 

After that, we shift the TOI one timestamp forward for the 

following runs. In this way, the elements in the up-to-date 

timestamp stand for the incremental part of the sequence 

database, and the obsolete elements are deleted. 

 

 

6. EXPECTED RESULTS 
The execution time of Fast Pisa is about 10 to 100 times of 

original Pisa over different data sets. This is because the 

number of nodes stored in PS-tree can be reduced 

significantly with the slight modification of the procedure 

traverse of Fast Pisa. Therefore, Fast Pisa consumes less 

memory than Pisa by 20 to 250 times. Calculate the total 

number of sequential patterns generated by Pisa and Fast Pisa 

in every timestamp. Then, the information loss rate is defined 

by the {[1- (Number of patterns by Fast Pisa / Number of 

patterns by Pisa) ]*100}percent.  The information loss rate is 

less than 12 percent no matter which support value is chosen. 

In real data sets, there are many candidate sequential patterns 

containing elements with more than one item. However, these 

candidate sequential patterns are seldom recognized as 

frequent sequential patterns, because there are few sequences 

having exactly the same elements with more than one items. 

Therefore, the information loss is marginal. 

7. CONCLUSION 
The proposed system that have to improve the time efficiency 

factor better than the existing approach. Using that Fast Pisa 

approach the efficiency is much improved compared to the 

existing methodologies. Thus with this idea, an enhanced 

sequential pattern technique is proposed in this paper. In 

general the proposed approach Fast Pisa reduces the 

processing time. Thus the time efficiency is improved much 

effectively. In future the work proposed in this thesis would 

be extended by jointly memory utilization. Fast Pisa is more 

advantageous when the minimum support threshold is small. 

Furthermore, Fast Pisa possesses good scalability and 

outperforms competitive algorithms significantly on real data 

sets. 
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