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ABSTRACT 

The advent of highly efficient and superior digital devices and 

fast microprocessors for control application has opened the 

field of discrete time controller design. This paper presents an 

exciting application of magnetic levitation system using 

discrete sliding mode control. There is a limited volume of 

literature available for discrete sliding mode control as applied 

to magnetic levitation system. This paper presents an 

application of magnetic levitation system using discrete 

sliding mode control. In this work, a discrete first order 

sliding mode control (1-DSMC) and second order sliding 

mode control (2-DSMC) is investigated in order to show the 

difference between the both strategies. A comparative study 

of both the approaches is presented. 
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1. INTRODUCTION 
A Magnetic Levitation System (Maglev) is considered as a 

good benchmark problem for the design and analysis of 

control systems. It has many engineering applications such as 

high speed maglev trains, frictionless bearings, and levitation 

of wind tunnel models. Magnetic levitation systems are 

usually open loop unstable and highly nonlinear. Therefore, it 

is necessary and important to design a robust feedback 

controller for regulating the position of the levitated object. 

Several authors have proposed several control strategies to 

stabilize the position of the levitated object. The PID 

controller is a simple method for the operation point 

linearization in nonlinear system. It is suitable in the small 

region of operating point and sensitive to the parameter 

variations and external disturbances. Authors [1-3] discussed 

the feedback linearization controller which utilizes a complete 

nonlinear description and yields consistent performance which 

is largely independent of the operating point. But the feedback 

linearization control does not guarantee robustness when the 

modeling errors are present. There are several other methods 

for nonlinear system control like H∞ control, H2 control, 

Fuzzy control [4-7]. But the sliding mode control (SMC) is 

one of the popular methods in robust control for nonlinear 

systems due to its robustness and invariance property. 

However, SMC has a drawback of high frequency oscillations 

which is due to discontinuous dynamic system. These 

oscillations which are known as chattering are very serious 

phenomenon from practical implementation point of view and 

it becomes necessary to reduce their magnitude and 

frequency.  

Generally the SMC controllers are designed for a magnetic 

levitation system [8]-[9] are in continuous time. The 

advantages of digital control over analog counterpart are high 

accuracy, cheap, better noise rejection, and higher reliability. 

Not only these advantages but also the advent of digital 

computers, samplers and the availability of cheap 

microprocessors for implementation of controllers with fast 

sampling rates, motivates for the use of a discrete-time sliding 

mode controller for the control of a magnetic levitation 

system. 

In this paper first a single order discrete-time sliding mode 

controller (1-DSMC) for a magnetic levitation system is 

designed by using Gao’s discrete time reaching law [10]. In 1-

DSMC [10- 11], the control effort is calculated once in every 

sampling interval which remain constant during this period. 

Due to the finite sampling frequency, the system state 

trajectory moves in a zigzag manner along the surface, which 

is termed as quasi-sliding motion (QSM). In the eighties a 

new control technique, called high order sliding mode control, 

has been proposed. The main idea is to reduce the sliding 

function, along with its high order derivatives to zero. In the 

case of the n-order sliding mode control, the discontinuity is 

applied on the (n − 1) derivative of the control. The effective 

control is obtained by (n−1) integrations and can, then, be 

considered as a continuous signal. In other words, the 

oscillations generated by the discontinuous control are 

transferred to the higher derivatives of the sliding function 

[13-14]. This approach shows the promising result by 

reducing the oscillations amplitude and keeping the 

robustness of the sliding mode system intact [12]. Here we 

have used the second order discrete sliding mode control (2-

DSMC) to justify this property. This strategy is more practical 

for a magnetic levitation system in comparison to state 

feedback based methods, in which separate observers are 

required to estimate the velocity of the ferromagnetic ball and 

other state variables. Our simulation results show the 

effectiveness of the 2-DSMC over 1-DSMC for the control of 

a magnetic levitation system. 

This paper has been organized as follows: Section II describes 

the mathematical model of the magnetic levitation system. 

Section III gives the design of a single order discrete time 

sliding mode controller for the maglev. Section IV describes 

the second order discrete time sliding mode controller. 

Section V demonstrate the application of both the 

methodologies on the Maglev model with the help of 

MATLAB software and compare the results. Conclusion is 

given in section VI.   
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2. SYSTEM MODEL 
 

 

Fig 1. Magnetic Levitation System [9] 

The diagram in Fig.(1) shows a popular gravity-based one 

degree-of freedom magnetic levitation system, in which an 

electromagnet exerts attractive force to levitate a steel ball (in 

some references a steel plate is levitated).This attractive force 

counteract the gravitational force which is needed to keep the 

ball at a desired height. The dynamic model for the system is 

as follows:- 
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Where, p = x1 =position of ball, v = x2 =velocity of ball, i = x3 

= current in the electromagnet coil, e= applied voltage, R = 

coil resistance, L = coil inductance, gc = gravitational 

constant, Q = magnetic force constant, and m = mass of the 

levitated ball.  

Assuming that the inductance L is a nonlinear function of the 

position of the ball p, we approximate as follows: 

1
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               (2) 

Here, L1 is a parameter of the system which is determined by 

the electromagnetic coil inductance. 

Considering the states of the system and the control input as 

follows:  

x1 =  p, x2 = v, x3 = i and voltage e(t) as an control input u(t), 

the state vector is represented as  X=(x1, x2, x3)
T. 

Now the non linear state space model of the magnetic 

levitation system can be written as follows:- 
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The objective of the control scheme is to drive the states x1, 

x2,   x3 to their desired steady state values x1d, x2d, and x3d 

respectively. The equilibrium point for the system is xd=(x1d, 

0, x3d) 
T, in which x3d satisfies 

3 1

( )( )c
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m g
x x

Q
                                   (4) 

Now, considering the following non linear change of 

coordinates – 
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 The objective has been changed to drive the z1, z2, z3 to zero 

as time t  . Hence the dynamic model of the magnetic 

levitation system in the new coordinates system can be re-

written as- 

1 2

2 3

3 1 1

z z

z z

z f g u





 

                   (6) 
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Let the output of the system be 

1 1 dy z x x                     (8) 

Now using model (5), (6), (7), (8), the design of discrete time 

SMC system schemes for the magnetic levitation system will 

be considered in the following sections. 

To verify the performance of the 1-DSMC and 2-DSMC 

based controller, the system was simulated using MATLAB 

software, with the parameters given in the Table 1. MATLAB 

has a function Real Time Workshop Target (RTWT) which 

helps in the real time implementation of the controller. 

3. SINGLE ORDER DISCRETE      

SLIDING MODE (1-DSMC) 
A discrete-time sliding mode control is important when the 

control is implemented by computers with a relatively slow 

sampling period [10]. The Non linear Maglev model (6) is 

first converted into the following discrete time system form:-  

( 1) ( ) ( )z k z k w k                     (9) 

where, z(k) is the state vector, w(k) is the control input and 

   are system and input matrices of appropriate 

dimensions, respectively. 

Using the model of the magnetic levitation system (5)-(8), and 

the state feedback concept, the control input will be in form:- 
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       control input   =  
1

1
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We obtain the transformed state representation as follows: 

 
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Here, ‘w’ represents the control input after the linearization of 

the system.  

This linear model is subsequently discretized with sampling 

time to get the best system response and minimum chattering. 

Thus, the continuous-time system as given in (11) is 

converted to a discrete time system of the form (9) with the 

sampling time of   = 0.1 sec.  

After linearization and discretization of the system, the system 

states are restricted to a hyper plane of the state space termed 

as the switching surface s(k) which is designed as follows: 
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 Here, the coefficients are tuned to have closed loop poles at 

the desired position in the left hand side of the s-plane. 

After designing the switching surface, the next step is to 

design the discrete sliding mode controller to restrict the states 

on the desired switching surface, and this controller in our 

case is based on the Gao’s discrete time reaching law [27] 

which is given as follows. 

( 1) ( ) ( ) ( ( ))s k s k q s k sign s k     

0, 0,1 0q q                      (13) 

Where ,q  are non zero constants and  is the sampling 

time. 

Using this reaching law, the control law obtained for our case 

is described by-  
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Where, (
Tc  ) 0 

4. SECOND ORDER DISCRETE 

SLIDING MODE (2-DMC) 
A sliding mode is said to be “r th order sliding mode” if and 

Only if 

1( , ) ( , ) ......... ( , ) 0rS t x S t x S t x               (15) 

In high order sliding mode control, the state are forced to 

move on the switching surface S(t, x) = 0 and to keep its (r − 

1) successive derivatives null.   

There are few contributions in higher order discrete sliding 

mode domain. Bartolini proposes the approach [16] which is 

the direct discretization of his proposition in continuous-time 

[15]. In this approach the calculation of the control law does 

not require the knowledge of the system’s model. The other 

approach which is based on the equivalent control method for 

second order sliding mode control requires the use of a 

system’s model and allows an asymptotic convergence of the 

sliding function to zero. M. Mihoub et al. [17] proposes the 

second order sliding mode control with asymptotic sliding 

function convergence which is investigated here for maglev 

system. Let us consider the system defined as 

x (k + 1) = Ax(k) + Bu(k)                (16) 

y(k) = Hx(k) 

The sliding function designed for this system is in this linear 

form: 

s(k) = CT (x(k) − xd(k))                (17) 

Where xd (k) is a desired state vector. 

Now let us consider a new sliding function μ(k) such that 

μ (k) = s(k+1) + β s(k)                (18) 

Here s (k+1) is defined as – 

s (k + 1) = CT (x (k + 1) − xd (k + 1)) 

     = CT (A x(k) + B u(k) − xd (k + 1)) 

In order to ensure the convergence of μ(k), β is chosen in 

between the interval of  [0,1]. 

Following the equivalent control analogy, the control force 

needed to force the states to the sliding surface is evaluated 

from the condition 

μ  (k + 1) = μ (k) = 0                (19) 

Hence (17), (18) and (19) will give  

S(k + 1) + βS(k) = 0 

And,   s (k + 1) = CT (A x(k) + B ueq(k) − xd (k + 1)) 

Hence, 

ueq(k) = (CTB)−1[−β S(k)−CTA x(k) + CT (xd(k+1)]            (20) 

The condition of robustness is ensured by adding the 

discontinuous term which depends on the sign of the new 

sliding function μ (k). As in the continuous-time case, the 

integral of the discontinuous term which will be approximated 

by a first order transformation is applied to the system (16). 

udis (k) = udis (k − 1) – τ M sign (μ (k))                (21) 

The control at the instant k is then: 

u(k) = ueq(k) + udis(k)                 (22) 

The integration of the discontinuous term of the control will 

provide the benefit to many applications where actuators can 

be damaged by the discontinuity of the 1-DSMC like 

actuators, gates etc. 
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Table 1. SIMULATION PARAMETER FOR MAGLEV 

SYSTEM 

Simulation 

Parameter 

Symbol Value Units 

Coil Resistance R 25.6 Ohm 

Coil Inductance Lc 0.68 H 

Gravitational 

Constant 

gc 9.81 m/s2 

Magnetic Force 

Constant 

Q 0.000121 - 

Levitated Object 

Mass 

m 0.01387 Kg 

Plant Initial 

Condition 

x1 0.0255 m 

x2 0 m/s 

x3 1.1 A 

Desired Steady 

State Value 

x1d 0.02 m 

x2d 0 m/s 

x3d 0.6707 A 

 

5. SIMULATION RESULTS 
The discrete time sliding mode controller schemes discussed 

previously are applied to the non linear magnetic levitation 

model discussed in section II. It is a 3rd order system where 

the position of ball is taken as the output.  

After using the state feedback concept, the continuous model 

of this system is represented by the (11) is given by following 

equation-   

 
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Here,  A = 
0 1 0

0 0 1

0 0 0

 
 
 
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,   B = 

0

0

1

 
 
 
  

, C =  [ 1  0   0 ] 

This model (23) is converted into the discrete form with the 

sampling time of   = 0.1 sec which is represented in the 

form (9) 

)()()1( kwkzkz  
 

Where,  
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The simulation parameter for the 1-DSMC control law are (є, 

q, CT) which is chosen as є = 0.3, q= 0.4. The matrix CT is 

arbitrarily chosen to obtain the desired poles location. The 

control action w(k) is computed by (14).These parameters are 

tuned to get the best performance of the system.  

For the 2-DSMC controller, whose control law is computed 

by (22), the tuning parameters are (β, M). The synthesis 

parameter β determine the sliding function dynamics, while M 

ensure the sliding mode existence. The values for the tuning 

of 2-DSMC is taken as β = 0.9 and M = 0.1. Fig.2 and Fig.3 

show the comparison of the plots for position x1 , velocity x2, 

current x3, control effort v/s time for a 1-DSMC and 2-DSMC 

when the desired position of levitated object is 0.02 m and 

0.03 m. The response show the effectiveness of the 2-DSMC 

in terms of the fast convergence and better control action than 

1-DSMC. The ferromagnetic ball attains its desired steady 

state position in lesser time when 2-DSMC is applied. 

Now in order to compare the robustness of 1-DSMC and 2-

DSMC, both the controllers are applied to the maglev where 

the desired position is kept at 0.025 and a disturbance is 

injected at k = 30. The Fig. 4 shows that 2-DSMC 

demonstrated the better result than 1-DSMC in terms of 

reduced frequency of the oscillations and robustness. Fig. 5 

shows the switching surface v/s time plot. It has been shown 

that chattering in sliding mode function and the control action 

can be reduced when 2-DSMC controller is implemented. 
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Fig. 2  : State Response for desired position on x1d=0.02 

m. 

 

 

         

 

 

 

 

 
 

 

 

 

 

Fig.3  :  State Response for desired position on x1d=0.03 m 
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Fig.4: State Response for desired position on x1d=0.025 m 
with disturbance at k =30. 

 

 

 

 

 

 

 

 

Fig 5 :.Plot for Switching Function v/s time for x1d= 

0.02m, 0.03m , 0.025m with disturbance. 

6. CONCLUSION 
Simulation results of 1-DSMC and 2-DSMC control 

algorithms for non-linearized magnetic levitation system were 

presented. Although no  experimental result has been given  in  

this paper, the  numerical  results  show  that second order 

discrete  time  sliding mode control  law performs well  in the 

presence of nonlinearity and better method for the reduction 

of chattering and is an promising method for  application  to  

Levitation  system.  
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