
Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

6

Non-Redundant Dynamic Data Allocation in Distributed

Database Systems

Raju Kumar
 Department of Computer Applications,

Krishna Institute of Engineering & Technology,
 Ghaziabad, India

Neena Gupta
Department of Computer Science,

Kanya Gurukul Mahavidyalaya, Dehradun
(Second Campus of Gurukul Kangri
Vishwavidyalaya, Haridwar), India.

ABSTRACT
In the past few decades, the significant developments in

database and networking technologies contributed to advances

in distributed database systems (DDS). The data allocation is a

prominent issue in distributed database systems and is

performed on data access static and dynamic patterns. This

paper proposes a new strategy named Extended Threshold

Algorithm (ETA) for non-redundant dynamic data allocation in

distributed database. The proposed algorithm is an extension of

Threshold and Time Constraint Algorithm (TTCA) which was

based on Optimal and Threshold algorithms. ETA performs

relocation of data fragments with respect to changing access

patterns to data fragments. It also reduces the space

requirement and significantly improves the system

performance.

Keywords
Distributed Database System, Static Data Allocation, Dynamic

Data Allocation, Non-redundant Database, Redundant

Database.

1. INTRODUCTION
The advances in database and communication technologies

enhanced the popularity of distributed databases, as it provides

high availability, autonomy, and affordability for managing

large databases [1]. A distributed database can be considered as

a collection of data which are distributed over different sites of

a computer network. Each site of the network is capable to

perform local applications autonomously. Each site also must

participate in the execution of at least one global application,

by accessing data at several sites using a communication

subsystem [2]. Distributed database systems are used in

applications which require access to an integrated database

from geographically dispersed locations. The location of data

items and the degree of autonomy of individual sites play a

prominent role in all aspects of the system.

Data allocation describes the process of deciding where to

locate the data. The task of allocating data in a distributed

database system is a prominent activity, as it has a critical

impact upon the reliability and performance of the system as a

whole [4], [5]. The main motivation for developing a

distributed database is to decrease the cost of communication

by allocating data as close as possible to the applications which

use them [1]. Thus in a well-designed distributed database only

10 percent of the overall data should be accessed from remote

sites, and the remaining 90 percent of the data should be stored

at the local sites [1]. A data allocation which is poorly designed

can result to high network loads, and high access cost [6].

Therefore selecting an efficient data allocation method is

desirable.

Fig 1: Distributed Database System [3]

A variety of data allocation approaches in distributed databases

have already evolved. In most of these approaches, data

allocation has been proposed before the design of a database on

the basis of some static query/data access patterns. In an

environment, where the access probabilities of nodes to

fragments never change static data allocation techniques

provide the best solution. However, in a dynamic environment

where access probabilities of nodes to fragments change over

time, the dynamic data allocation techniques provide better

solution.

Further more, data allocation can be divided into two different

categories: redundant and non-redundant [2],[6],[9]. On the

basis of static, dynamic, redundant and non-redundant

allocation we have four allocation strategies:

1.1 Static and Non-redundant Allocation

In this strategy, each fragment is allocated on a single site. The

location of the fragments never changed, even if the access

probability of nodes to fragments is changed.

1.2 Static and Redundant Allocation

In this strategy, same fragments may be allocated on multiple

sites. The location of the fragments never changed, even if the

access probability of nodes to fragments is changed.

1.3 Dynamic and Non-redundant Allocation

In this strategy, each fragment is allocated on a single site. The

location of the fragments is changed, if the access probability

of nodes to fragments is changed.

1.4 Dynamic and Redundant Allocation

In this strategy, same fragments may be allocated on multiple

sites. The location of the fragments is changed, if the access

probability of nodes to fragments is changed.

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

7

In this paper a new dynamic data allocation algorithm for

non-redundant distributed database systems have been

introduced which is an extension of [8]. The aim of this work is

to design an efficient algorithm that can generate minimum

total data transfer cost allocation schemes in changing load in

non-redundant environment.

The rest of the paper is organized as follows: In section 2 the

overview of the related work done so far is described. Section 3

provides the proposed new algorithm for non-redundant data

allocation. In section 4 comparison of proposed new algorithm

with algorithms proposed by [8], [30], [35] is performed.

Section 5 concludes the contribution of the study.

2. RELATED WORK

Data allocation in a distributed database is one of the important

and critical issues of the distributed database design. It directly

affects the performance of the system. Several reports have

been published on the problem of data allocation to the nodes.

Firstly in [5] file allocation problem was investigated and a

global optimization model was introduced to minimize overall

operating costs under the constraints of storage capacity with

fixed number of copies each file and response time. In [10] the

assumption of fixed number of copies is relaxed and stressed

the difference between retrieval and updates. In [11] it is

proved that [10]’s formulation was NP-Complete and

suggested heuristic approaches be investigated rather than

deterministic approaches. In [12] a file allocation problem in

distributed database environment is analysed for optimization

of query processing.

By introducing replicated file, [13] showed how minimization

of communication cost attributed to joins can be performed. In

[14] the problem of file allocation for complex distributed

database applications is considered with a simple model of

transaction execution. In [13], [15] it is observed that the

fragment allocation problem differs from the well-studied file
allocation problem. In [15] the allocation of the distributed

database to the sites is considered to minimize total data

transfer cost and devised a comprehensive approach to allocate

fragments. In [16] issues like queuing costs and concurrency

are considered, while [17] presents a max-flow approach. In

[18] an integrated approach for data fragmentation and

allocation is provided, and seven criteria that a system designer

can use to determine the data fragmentation, replication and

allocation are identified.

The approach for allocating fragments by adapting a machine

learning approach is provided by [19]. In [20] a concurrency

mechanism is introduced and [21] presents a replication

algorithm that adaptively adjusts to changes in read-write

patterns. In [22] an approach based on Lagrangian relaxation is

considered and [23] explained heuristic approaches. Besides

allocating data, [24] and [25] presented a mathematical

modelling approach and a genetic algorithm based approach to

allocate operations to nodes. In [26] an integer programming

formulation for the non-redundant version of the fragment

allocation problem is described. Moreover [27] has given a

high-performance computing method for data allocation in

distributed database system. In [28] the problem of distributing

fragments of virtual XML repositories over the web is

described. The problem of distributing the documents of a web

site among the server nodes of a geographically distributed

web server is considered by [29].

Several works have been introduced for dynamic data

allocation in database systems over past few years. A model for

dynamic data allocation is introduced by [21]. An algorithm

which reallocates data with respect to changing data access

pattern is proposed by [30]. In [19] an approach based on

machine learning is presented. In [31] incremental allocation

and reallocation based on changes in workload is considered.

In [32] a dynamic algorithm with centralized control for object

allocation and replication is presented. In [33] security

considerations into the dynamic file allocation process are

considered. An optimal algorithm for non-replicated database

systems is proposed by [34]. In [35] a threshold algorithm for

non-replicated distributed databases is introduced. In the

threshold algorithm, the fragments are continuously reallocated

according to the changing data access patterns. In [8] an

algorithm namely TTCA (an extension of work carried out by

[30] and [35], [36]) is described, which reallocates non-

replicated data with respect to the changing data access

patterns with time constraint in distributed database systems. In

this paper, a new dynamic data allocation algorithm for non-

redundant distributed database system has been proposed

which is an extension of work carried out by [8]. This new

proposed algorithm dynamically reallocates data for non-

redundant allocation in distributed database systems.

3. NEW PROPOSED DYNAMIC DATA

ALLOCATION ALGORITHM

In distributed database system the cost of executing queries is

heavily depend on the data transfer cost which occurred in

transferring fragments accessed by a query from different sites

to the site where the query is initiated [2], [6]. The key

objective of any data allocation algorithm in distributed

environment is to place fragments at different sites in a way so

that the total cost of data transfer during the execution of a

query can be minimized.

The Optimal Algorithm [30] begins with the distribution of

fragments in non-replicated manner over the different sites

using a static data allocation method. Thereafter for each locally

stored fragment the algorithm maintains access counters matrix

at each site. Whenever a node made an access request for the

stored fragment then access counter of the accessing node for

the stored fragment is incremented by one. No movement of

fragment is required if the accessing node is the current owner.

In a case if the counter of a remote node is greater than the

counter of the current owner, then fragment has to move to the

accessing node. The main drawback of this algorithm is that if

the changing frequency of access pattern for each fragment is

high, then it will spend more time for fragment transferring to

different sites.

Threshold Algorithm [35] overcomes the problem of optimal

algorithm. In threshold algorithm initially the fragments are

distributed in non-replicated manner over the different sites

using a static data allocation method. In this algorithm only one

counter per fragment is maintained and initial value of the

counter is zero. The counter value is increased by one for each

remote access to the fragment. It is reset to zero for a local

access. In other words, the counter always shows the number of

successive remote accesses. Whenever the counter exceeds a

predetermined threshold value, the ownership of the fragment

is transferred to another node. This algorithm delays the

migration of the fragment from any node for at least (t+1)

accesses, where t is the value of the threshold. Migration of

fragments depends on the value of the threshold. If the

threshold value decreases then migration of the fragment will

be more. In case the threshold value increases then there will

be less migration of the fragments. The main drawback of this

algorithm is that whenever the counter exceeds the threshold

value, the ownership of the fragment is transferred to another

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

8

node. But, it does not specify which node will be the

fragment’s new owner.

The Threshold and Time Constraint Algorithm (TTCA) [8]

solved the problems of threshold algorithm. In TTCA initially

all the fragments are distributed over different nodes using any

static allocation method in non-replicated manner. After the

initial allocation, TTCA maintains access counters matrix for

each locally stored fragment at each node with initial value set

to 0. Every time an access request is made for the stored

fragment then the access counter of the accessing node is

incremented by one. If the counter of the remote node is greater

than the threshold value “t” and all the last “t+1” accesses are

made in a specified time “T” then reset the corresponding

fragments counter to zero for all the node and transfer the

fragment to the node who’s counter value was greater than

threshold value. But TTCA has following problems with its

approach:

 If owner site counter is increasing as a consequence

of several local accesses and its value becomes

greater than the threshold value “t” and all other

remote nodes counter values are less than the

threshold value, then fragment is not migrated and

corresponding fragment’s counter value is not reset

to zero for all the nodes. If there is further several

local accesses are made then its counter value is

continuously increasing, this may result in scaling

problem. For example, if one byte is chosen to store

the counter values, then a value greater than 255

cannot be stored in this data type.

 If all the “t+1” accesses by the remote node is not

made in a specified time “T”, then the fragment will

not be migrated and corresponding fragment’s counter

value is not reset to zero for all the nodes. If there is

further several remote accesses are made then its

counter value is continuously increasing, this may

again result in scaling problem.

 The time constraint of TTCA says that if all the “t+1”

accesses by the remote node is not made in a specified

time “T” (say 01 day / 01 week / 01 month…), then

the fragment will not be migrated to the remote node

who’s counter value is greater than the threshold

value “t”. It shows that over same time span fragment

is more required by the remote node as compared to

local node. Even then fragment is not migrated to

remote site, as a consequence more remote references

has to be performed, that is against the main aim of

dynamic data allocation.

The new proposed algorithm named as Extended Threshold

Algorithm (ETA) will remove all the above problems of

threshold and time constrained algorithm. The ETA is illustrated

as follow:

Initially all the fragments are distributed over different nodes

using any static allocation method in non-redundant manner.

ETA maintains an m×n counter matrix M, where m denotes

the total number of fragments and n denotes the total number

of nodes or sites. Mij is the number of accesses to fragment i by

node j.

The matrix M is decomposed into rows and each row is stored

together with its associated fragment in the same node. In this

way, whenever the fragment migrates, its associated counters

migrate as well. Fig. 2 shows fragment ‘i’ with its associated

counters, M0 through Mn.

Fragmenti M0 M1 M2 … Mn

Fig 2: Any fragment ‘i’ in extended threshold algorithm

Step 1: For each fragment, initialize the counter values equal to

zero (i.e. set Mij = 0, where i = 1,2,---,m and j = 1,2,---,n)

Step 2: Process an access request for the stored fragment.

Step 3: Increase the corresponding access counter of the

accessing node by one for the stored fragment.

Step 4: If the accessing node is the current owner, go to Step 2.

(i.e. Local access, otherwise it is remote access).

Step 5: If the counter of owner node is greater than the

threshold value “t”, then reset the corresponding fragment’s

counter to zero for all the node, and go to Step 2.

Step 6: If the counter of remote node is greater than the

threshold value “t”, then reset the corresponding fragment’s

counter to zero for all the node and transfer the fragment to the

node whose counter value was greater than the threshold value

“t”.

Step 7: Go to step 2.

The ETA will further decrease the space requirement as time

constraint is not stored. It well suits the main aim of dynamic

data allocation in distributed database.

4. COMPARISON

Comparison of proposed algorithm - ETA with algorithms

Optimal, Threshold and TTCA has been made on the following

four different parameters:

• Storage Cost

• Migration Condition

• Network Overhead

• Scaling Problem

4.1 Storage Cost

Optimal algorithm and ETA use extra storage cost for access

counter matrix. Threshold algorithm required less storage cost

as compared to ETA and Optimal algorithms, because it stores

only one counter for each fragment. TTCA requires more

storage as compare to optimal, ETA and threshold algorithms,

as it stores not only access counter matrix but respective time

of particular access also.

4.2 Migration Condition

Optimal algorithm migrate the fragment when the counter

value of the remote node in the access matrix is greater than the

counter value of the owning node. TTCA migrates the

fragment when the counter of the remote node is greater than

the threshold value “t” and all last “t+1” accesses are made in a

specified time “T”. Threshold algorithm and ETA migrates the

fragment when the counter value of the remote node is greater

than the threshold value.

4.3 Network Overhead

Optimal algorithm increases the traffic on the network when

changing frequency of access pattern for each fragment is high.

Threshold algorithm, TTCA and ETA decrease the network

overhead as compared to optimal algorithm by limiting the

migration of fragments.

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

9

4.4 Scaling Problem

Optimal and TTCA algorithms may suffer from scaling

problem (data type range overflow for the counter). But

Threshold algorithm and ETA are not suffered from scaling

problem.

5. CONCLUSION
In the age of globalization, distributed databases are used by

almost all the organizations across the globe. Deciding the

technique by which organizational database is distributed in a

distributed environment is an important issue, as it affects both

cost and system performance.

The allocation of data is traditionally static and determined off-

line, using estimates of access frequencies. The static data

allocation techniques provide only limited response to

changing workload. The proposed new dynamic data allocation

algorithm- ETA for non-redundant distributed database

systems theoretically shows an edge over Optimal, Threshold

and TTCA and improves the overall performance of the system.

In future, we can practically implement ETA for non-redundant

distributed database and further enhanced it for redundant

distributed databases.

REFERENCES

[1] S. Ceri, B. Pernici and G. Wiederhold, “Distributed

Database Methodologies”, Proceedings of IEEE, Vol. 75,

No. 7, May 1987.

[2] S. Ceri and G. Pelagatti, “Distributed Databases:

Principles & Systems”, McGraw-Hill International

Editions, 1985.

[3] http://www.vocw.edu.vn

[4] S. Agrawal, V. Narasayya, and B. Yang, “Integrating

Vertical and Horizontal Partitioning into Automated

Physical Database Design,” Proc. 2004 ACM SIGMOD

International Conf. Management of Data, pp. 359-370,

2004.

[5] W.W. Chu, “Optimal File Allocation in Multiple

Computer Systems” IEEE Transaction on Computers, Vol.

C-18, No.10, 1969.

[6] M. Ozsu and P. Valduriez, “Principles of Distributed

Database Systems”, Prentice Hall, second ed. 1999.

[7] http://el.mdu.edu.tw/datacos//0941231101A/Lecture

03.doc

[8] Arjan Singh and K.S. Kahlon, “Non-replicated Dynamic

Data Allocation in Distributed Database Systems”,

IJCSNS International Journal of Computer Science and

Network Security, VOL.9 No.9, September 2009

[9] http://courses.washington.edu/tcss545/tcss545A_ 14.ppt

[10] R. G. Casey, “Allocation of Copies of a File in an

Information Network”, in Proc. AFIPC 1972 SJCC, Vol

40, 1972, pp. 617-625.

[11] K.P. Eswaran, “Placement of Records in a File and File

Allocation in a Computer Network”, on Proc. IFIP Congr.

North-Holland, 1974.

[12] C.V. Ramamoorthy and B.W. Wah, “The Placement of

Relations on a Distributed Relational Database”, in Proc.

1st Conf. On Distributed Computing System 1979.

[13] R. Sarathy, B. Shetty, and A. Sen, “A Constrained

Nonlinear 0-1 Program for Data Allocation,” European J.

Operational Research, vol. 102, pp. 626-647, 1997.

[14] S. Ceri, G. Martella, and G. Pelagatti, “Optimal file

Allocation for a Distributed Database on a Network of

Minicomputers”, in Proc. International Conference on

Database, Aberdeen, July 1980, British Computer Society

Hayden.

[15] P. Apers, “Data Allocation in Distributed Databases,”

ACM Trans. Database Systems, vol. 13, no. 3, pp. 263-

304, Sept. 1988.

[16] S. Ram and S. Narasimhan, “Database Allocation in a

Distributed Environment: Incorporating a Concurrency

Control Mechanism and Queuing Costs,” Management

Science, vol. 40, no. 8, pp. 969- 983, 1994.

[17] K. Karlaplem and N. Pun, “Query-Driven Data Allocation

Algorithms for Distributed Database Systems,” Proc.

Eighth International Conf. Database and Expert Systems

Applications (DEXA ’97), pp. 347- 356, Sept. 1997.

[18] A. Tamhankar and S. Ram, “Database Fragmentation and

Allocation: An Integrated Methodology and Case Study,”

IEEE Trans. Systems, Man and Cybernetics—Part A, vol.

28, no. 3, May 1998.

[19] Chaturvedi, A. Choubey, and J. Roan, “Scheduling the

Allocation of Data Fragments in a Distributed Database

Environment: A Machine Learning Approach,” IEEE

Trans. Eng. Management, vol. 41, no. 2, pp. 194-207,

1994.

[20] S. Ram and R. Marsten, “A Model for Database

Allocation Incorporating a Concurrency Control

Mechanism,” IEEE Trans. Knowledge and Data Eng., vol.

3, no. 3, pp. 389-395, 1991.

[21] O. Wolfson, S. Jajodia, and Y. Huang, “An Adaptive Data

Replication Algorithm,” ACM Trans. Database Systems,

vol. 22, no. 2, pp. 255-314, 1997.

[22] G. Chiu and C. Raghavendra, “A Model for Optimal

Database Allocation in Distributed Computing Systems,”

Proc. IEEE INFOCOM 1990, vol. 3, pp. 827-833, June

1990.

[23] Y. Huang and J. Chen, “Fragment Allocation in

Distributed Database Design,” J. Information Science and

Eng., vol. 17, pp. 491- 506, 2001.

[24] A. Corcoran and J. Hale, “A Genetic Algorithm for

Fragment Allocation in a Distributed Database System,”

Proc. 1994 ACM Symp. Applied Computing, pp. 247-250,

1994.

[25] S. March and S. Rho, “Allocating Data and Operations to

Nodes in Distributed Database Design,” IEEE Trans.

Knowledge and Data Eng., vol. 7, no. 2, pp. 305-317,

1995.

[26] S. Menon, “Allocating Fragments in Distributed

Databases”, IEEE Transactions on Parallel and

Distributed Systems, Vol. 16, No. 7, July 2005.

[27] I.O. Hababeh, M. Ramachandran and N. Bowring, “A

high-performance computing method for data allocation in

distributed database systems”, Springer, J Supercomput

(2007) 39:3-18.

http://courses.washington.edu/tcss545/tcss545A_%2014.ppt

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

10

[28] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T.

Milo, “Dynamic XML Documents with Distribution and

Replication,” Proc. 2003 ACM SIGMOD Int’l Conf.

Management of Data, pp.527-538, 2003.

[29] L. Zhuo, C. Wang, and F. Lau, “Document Replication

and Distribution in Extensible Geographically Distributed

Web Server,” J. Parallel and Distributed Computing, vol.

63, no. 10, pp. 927-944, 2003.

[30] A. Brunstroml, S.T. Leutenegger and R. Simhal,

“Experimental Evaluation of Dynamic Data Allocation

Strategies in a Distributed Database with changing

Workload”, ACM Trans. Database Systems, 1995.

[31] Chin, “Incremental Data Allocation and Reallocation in

Distributed Database Systems,” Journal of Database

Management, Vol. 12, No. 1, pp. 35-45, 2001.

[32] W.J. Lin and B. Veeravalli, “A Dynamic Object

Allocation and Replication Algorithm for Distributed

System with Centralized Control,” International Journal of

Computer and Application, Vol. 28, no. 1, pp. 26-34, 2006.

[33] A. Mei, L. Mancini, and S. Jajodia, “Secure Dynamic

Fragment and Replica Allocation in Large-Scale

Distributed File Systems,” IEEE Trans. Parallel and

Distributed Systems, vol. 14, no. 9, pp. 885-896, Sept.

2003.

[34] L.S. John, “A Generic Algorithm for Fragment Allocation

in Distributed Database System”, ACM 1994.

[35] T. Ulus and M. Uysal, “Heuristic Approach to Dynamic

Data Allocation in Distributed Database Systems”,

Pakistan Journal of Information and Technology, 2(3): pp.

231-239, 2003.

[36] T. Ulus and M. Uysal, “A Threshold Based Dynamic Data

Allocation Algorithm- A Markove Chain Model

