
Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

33

Implementation of Readers-Writers Problem using
Aspect Oriented Programming

Kamal Kant
Sharma

MTU,Noida
KIET Ghaziabad,

U.P. India.

Neha Garg
MTU,Noida

KIET Ghaziabad,
U.P. India.

Neha Yadav
MTU,Noida

KIET Ghaziabad,
U.P. India.

Sunita Kanaujiya
MTU,Noida

KIET Ghaziabad,
U.P. India

ABSTRACT

 Readers-Writers problem is a classical synchronization

problem in the field of computer science. It can easily be

implemented using any object oriented language. However, the

implementation of object oriented programming often leads

code to be tangled between functional codes and

synchronization codes, which are easy to lead code-scattering

and code-tangling. Aspect-oriented programming (AOP) is a

programming paradigm which isolates secondary or supporting

functions from the main program's business logic. It aims to

increase modularity by allowing the separation of cross-cutting

concerns. All AOP implementations have some crosscutting

expressions that encapsulate each concern in one place. With

this there is minimal or no code scattering and tangling. This

paper aims to resolve concrete aspect and implement the

synchronization of readers-writers problem based on AOP.

The execution time of AOP and OOP based solutions are

measured which shows that AOP can almost get the same

execution time as of object-oriented programming, but with

better modularization than OOP.

Keywords

 Readers-Writers Problem, Object Oriented

Programming(OOP), Aspect Oriented Programming(AOP),

Synchronization.

1. INTRODUCTION

In the field of computer science, the readers-writers problem is

a classical example of the multi-process synchronization

problem. Synchronization is an important and familiar problem

in the design and development of the software. When multiple

processes or threads access a common critical resource,

synchronization is required. Here we have to make sure that the

access to data is properly controlled so that no data loss

happens.

Using OOP for solution leads to code tangling and scattering.

Aspect-Oriented Programming (AOP) was first proposed in

[2] as a programming technique for modularizing concerns

that cross-cut the basic functionality of programs and hence

reduce the limitations with OOP solution technique. The

producer and consumer problem has been solved[8] using

AOP.

Though much work has been done over aspect oriented

methodology, there is less work on the readers-writers problem

using AOP. As the readers-writers problem is a representative

problem in synchronization, the solution will help in various

areas where synchronization is required.

This paper takes the classical readers-writers problem as an

example to provide the solution to the synchronization using

AOP. In section III, the implementation of readers-writers

problem is presented. In section IV, the comparison of

execution time is done between OOP and AOP. Section V

concludes the paper.

1.1 Object Oriented Programming

Solution

Many object-oriented programming languages have supported

the synchronization and can implement the readers-writers

problem. For example, Java programming language

implements the synchronization through the keyword

synchronized, as the prefix of the method, that allows only one

thread enters the synchronized code at the same time and avoid

abusing the critical resource. Java can also control the

communication among the thread by the methods: wait(),

notify() or notifyAll(). All three methods can be called only

from within a synchronized method. Although conceptually

advanced from a computer science perspective, the rules for

using these methods are actually quite simple: ---

 wait() : Tells the calling thread to give up the

monitor and go to sleep until some other thread

enters the same monitor and calls notify().

 notify() : Wakes up the first thread that called wait()

on the same object.

 Notify All() : Wakes up all the threads that called

wait() on the same object. The highest priority

thread will run first.

2. PROBLEMS WITH THE OOP

SOLUTION

The implementation of OOP leads the code to be tangled

between the function codes and non-functional codes, which

are easy to lead code-scattering and code-tangling.

Scattering is when similar code is distributed throughout many

program modules. This differs from a component being used

by many other components since it involves the risk of misuse

at each point and of inconsistencies across all points. Changes

to the implementation may require finding and editing all

affected code. Tangling is when two or more concerns are

implemented in the same body of code or component, making

it more difficult to understand. Changes to one implementation

may cause unintended changes to other tangled concerns. It is

not beneficial to the development and maintenance of the

software.

http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Business_logic
http://en.wikipedia.org/wiki/Modularity_%28programming%29
http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Cross-cutting_concern
http://en.wikipedia.org/wiki/Cross-cutting_concern

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

34

3. ASPECT ORIENTED

PROGRAMMING: A BETTER

SOLUTION

Aspect-Oriented Programming (AOP) was first proposed in as

a programming technique for modularizing concerns that cross-

cut the basic functionality of programs. The aim of AOP is to

resolve the code-scattering and code-tangling and modularize

the crosscutting concerns. The crosscutting concerns include

security, logging, exception handling and synchronization etc.

AOP support independent concerns like resource

sharing, synchronization, debugging or distribution in a

module[5].

Many distinguish work has been done to deal with the discrete

aspect. Aspects can contain several entities unavailable to

standard classes. These are Inter-type declaration , Pointcuts

and Advice.

3.1 Inter-type declaration

Allow to add methods, fields etc to existing classes from

within the aspect. This example adds an acceptVisitor method

to the Point class:---

 aspect VisitAspect

 {

 void Point.acceptVisitor(Visitor v)

 { v.visit(this); } }

3.2 Pointcuts
Pointcuts allow to specify join points which are well-defined

moments in the execution of a program, like method call,

object instantiation, variable access etc. For example, this

point-cut matches the execution of any instance method in an

object of type Table whose name begins with you:----

pointcut set() : execution(* you*(..)) &&

this(Table);

3.3 Advice

Advice allows to specify code to run at a join point. The

actions can be performed before, after, or around the specified

join point.Eg :--

 after () : set()

 {

 Display.refresh(); }

4. IMPLEMENTATION OF READERS-

WRITER PROBLEM

This section presents the implementation of readers-writers

problem.

4.1 Description Of The Reader-Writer’s

Problem

In computer science, the first and second readers-writers

problems are examples of a common computing problem in

concurrency. The two problems deal with situations in which

many threads must access the same shared memory at one

time, some reading and some writing, with the natural

constraint that no process may access the share for reading or

writing while another process is in the act of writing to it. (In

particular, it is allowed for two or more readers to access the

share at the same time.) A readers-writer lock is a data

structure that solves one or more of the readers-writers

problems.We have following two variants of the problem :---

4.1.1 First Reader-Writer’s Problem : Suppose we have a

shared memory area with the constraints detailed above. It is

possible to protect the shared data behind a mutex, in which

case clearly no thread can access the data at the same time as

another writer. However, this solution is suboptimal, because it

is possible that a reader R1 might have the lock, and then

another reader R2 request access. It would be foolish for R2 to

wait until R1 was done before starting its own read operation;

instead, R2 should start right away. This is the motivation for

the first readers-writers problem, in which the constraint is

added that no reader shall be kept waiting if the share is

currently opened for reading. This is also called readers-

preference.

4.1.2 Second Reader-Writer’s Problem : Suppose we have a

shared memory area protected by a mutex, as above. This

solution is suboptimal, because it is possible that a reader R1

might have the lock, a writer W be waiting for the lock, and

then a reader R2 request access. It would be foolish for R2 to

jump in immediately, ahead of W; if that happened often

enough, W would starve. Instead, W should start as soon as

possible. This is the motivation for the second readers-writers

problem, in which the constraint is added that no writer, once

added to the queue, shall be kept waiting longer than absolutely

necessary. This is also called writers-preference.

4.2 Implementation Of First Readers-

Writers Problem

In this mode, we allow multiple readers to read the shared data

if currently a read operation is in execution. In the

implementation we have a class readwriteAOP that allows user

to enter the number of Reader and Writer threads. After getting

the values we instantiate the readers with Reader class and

writers with Writer class. These classes have a run function

that is executed when the Reader or Writer thread is executed.

Next, we have an aspect named synreadwrite that defines

pointcuts before and after the execution of the run function in

Reader and Writer. Before executing the run function of either

class the synchronization constraints are checked i.e. for reader

we check weather a writer is accessing data if so we ask the

reader to wait or else it is given access, for writer we check

whether there is any other process accessing data if so we ask

writer to wait or else we give it access. If a writer has finished

executing it will notify other threads waiting, while when a

reader finishes executing it will notify to other waiting Writer

Threads[1]. The Coding used is as follows :---

THE SYNREADWRITE ASPECT

public aspect synreadwrite {

long starttime,endtime;

private int readers;

public synreadwrite()

{

 this.readers = 0;

}

pointcut syncRead():call (void Database.read());

before(): syncRead()

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

35

{

 synchronized(this)

 {

 this.readers++;

 starttime=System.currentTimeMillis();

 System.out.println("Reader " +

number + " starts reading.");

 }

}

after() returning:syncRead()

{

 synchronized(this)

 {

 endtime=System.currentTimeMillis();

System.out.println("Reader " + number + " stops

reading.");

 System.out.println("Time Taken By Reader

: " + (endtime-

 starttime));

this.readers--;

 if (this.readers == 0)

 {

 this.notifyAll();

 }

 }

}

pointcut syncwrite() : call (void Writer.run());

before() : syncwrite()

{ while (this.readers != 0)

 {

 try

 {

 this.wait();

 }

 catch (InterruptedException e) {}

 }

 starttime=System.currentTimeMillis();

}

after() returning : syncwrite()

{ endtime=System.currentTimeMillis();

 System.out.println("Writer " + number + "

stops writing.");

 System.out.println("Time Taken By Writer

: " + (endtime-starttime));

 this.notifyAll();

} }

The programming tools that we employed is Eclipse 3.6 and

AspectJ for executing the program. The AspectJ plugin

AJDT(Aspect J Development Tools) is used to collaborate

with Eclipse to get the result[3]. AspectJ is an extension to

Java, where the

form of an aspect is similar to the form of a class[6].

4.2.1 Implementation Of First Readers-Writers Problem Using

Object Oriented Programming

In the solution using OOP the classes used are the same as in

above section (section 2). Here we don’t have the aspect

functionality to capture the cross cutting synchronization

concern, so here we add the synchronization functionality to

the database class.

5. EXPERIMENTATION

The execution time is compared between AOP and OOP. In the

experiment we include four threads: two reader threads and

two writer threads. The hardware and software environment is

as following.

In the aspect of hardware, the frequency of CPU is Intel

Core™ 2 Duo T5600 2.00GHz and the capacity of memory is

4GB.

In the aspect of software, operating system is Windows 7, and

the software uses Eclipse 3.6 and AspectJ’s Eclipse plug-in

AJDT(Aspect J Development Tools). We separately test the

execution time according to the OOP and AOP

implementation. The result of a sample execution time of both

AOP and OOP implemented program is shown in TABLE I.

As shown in TABLE below, the execution time of AOP is

very close to that of OOP and almost bettering it. The

execution of OOP is zero(5000 is the base) sometimes while

the execution of AOP is not zero. Sometimes the execution

time of AOP is zero. We repeatedly executed the program with

different number of Readers and Writers, each time finding that

the AOP implemented program was bettering off as compared

to the OOP implemented program. In the aspect of software,

operating system is Windows 7, and the software uses Eclipse

3.6 and AspectJ’s Eclipse plug-in AJDT(Aspect J Development

Tools). We separately test the execution time according to the

OOP and AOP implementation.

The result of a sample execution time of both AOP and OOP

implemented program is shown in TABLE I.

6. CONCLUSION

The main contribution of this research is that the reader and

writer problem is implemented using AOP and the execution

time of AOP is comparison with that of OOP. Aspect-

Oriented Programming (AOP) is a paradigm proposal

that retains the advantages of OOP [4, 7] ..The result

shows that AOP is the supplement of OOP. AOP can obtain the

separation of concerns and make the function parts more

reusable and functional cohesion much better without losing

efficiency. Our work will benefit to the development and

maintenance of the software that related to the synchronization.

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012

36

7. REFERENCES

[1] Charles Zhang, “FlexSync: An aspect oriented approach to

Java synchronization”, 31st International Conference on

Software Engineering, Vancouver, Canada, May, 2009.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C.Lopes, J.-M.Loingtier, J. Irwin. “Aspect-Oriented

Programming”, in Proceedings of the 11th European

Conference on Object-Oriented Programming,

Finland,Springer-Verlag, 1997, pp. 220-242.

 [3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

W.G.Grisworld. “Getting started with AspectJ”.

Communications of the ACM, 2001, Vol.44, No.10, pp59-

65.

 [4] Kiczales G., J. Lamping, A. Mendhekar, C. Maeda, C.V.

Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented

Programming. In M. Aksit and S. Matsuoka, editors.

Proceedings of the 11th European Conference on Object-

Oriented Programming, number 1241 in Lecture Notes in

computer Science, pp.220-242, Finland, June 9-13

1997.ECCOP’97, Springer Verlag, Berlin.

[5] Kiczales, G., Lamping, J., Mendhekar, A., Maeda,

C.,Lopes, C., Loingtier, J.-M. and Irwin, J. (1997)

Aspectoriented programming. In ECOOP’97, Jyv¨askyl¨a,

Finland,June. Lecture Notes in Computer Science, 1241,

220–242.Springer, Berlin.

[6] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M.,

Palm,J. and Griswold, W. G. (2001) An overview of

AspectJ.In ECOOP 2001, Budapest, Hungary, June.

Lecture Notes in Computer Science, 2072, 327–353.

Springer, Berlin. http://aspectj.org.

 [7] Lopes C., B. Tekinerdogan, W. de Meuter, and G.

Kiczales. Aspect-Oriented Programming. In M. Aksit and

S.Matsuoka, editors, Proceedings of the 12th European

Conference on Object-Oriented Programming EC-

COP’98, Springer Verlag, 1998.

[8] Yang Zhang, Jingjun Zhang and Dongwen Zhang.

“Implementing and Testing Producer-Consumer Problem

Using Aspect-Oriented Programming.” 2009 Fifth

International Conference on Information Assurance and

Security.

With OOP

With AOP

Enter Number of Readers :2

Enter Number of Writers :2

Reader 0 starts reading.

Reader 1 starts reading.

Reader 1 stops reading.

Time Taken By Reader : 5000

Reader 0 stops reading.

Time Taken By Reader : 5002

Writer 0 starts writing.

Writer 0 stops writing.

Time Taken By Writer : 5001

Writer 1 starts writing.

Writer 1 stops writing.

Time Taken By Writer : 5002

Writer 0 starts writing.

Writer 0 stops writing.

Time Taken By Writer : 5001

Writer 1 starts writing.

Writer 1 stops writing.

Time Taken By Writer : 5000

Reader 0 starts reading.

Reader 1 starts reading.

Reader 0 stops reading.

Time Taken By Reader : 5002

Reader 1 stops reading.

Time Taken By Reader : 5000

Writer 1 starts writing.

Writer 1 stops writing.

Time Taken By Writer : 5000

Enter Number of Readers :2

Enter Number of Writers :2

Reader 0 starts reading.

Reader 1 starts reading.

Reader 0 stops reading.

Time Taken By Reader : 5000

Reader 1 stops reading.

Time Taken By Reader : 5000

Writer 0 starts writing.

Writer 0 stops writing.

Time Taken By Writer : 5000

Writer 1 starts writing.

Writer 1 stops writing.

Time Taken By Writer : 5001

Reader 1 starts reading.

Reader 0 starts reading.

Reader 1 stops reading.

Time Taken By Reader : 5000

Reader 0 stops reading.

Time Taken By Reader : 5000

Writer 1 starts writing.

Writer 1 stops writing.

Time Taken By Writer : 5000

Writer 0 starts writing.

Writer 0 stops writing.

Time Taken By Writer : 5001

Writer 1 starts writing.

Writer 1 stops writing.

Time Taken By Writer : 5000

