
Special Issue of International Journal of Computer Applications (0975 – 8887) 

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012 

12 

FTM- A Middle Layer Architecture for Fault Tolerance in 

Cloud Computing 

L. Arockiam 
Department of Computer Science, St. Joseph’s 

College, Thiruchirappalli 

 

Geo Francis E 
Christ Academy, Bengaluru 

 

 

ABSTRACT 

Due to cloud computing, many of the traditional issues 

such as scale have been eliminated to some extent, but 

the stability, availability and reliability of cloud 

computing has received relatively limited attention. As 

cloud computing envisages “computing as a service” it 

presumes 99.99% reliability as Electricity Grid has 

achieved. Reliability of a cloud computing system 

depends on the probability of the failure occurring in 

different layers of the architecture. Virtualization 

technique is common in cloud computing, i.e., many 

virtual machines even with different operating systems 

may be running in a single physical machine. In order to 

achieve optimum fault tolerance to these virtual 

machines, in this paper, a middle layer is proposed and it 

can be placed between application layer and 

virtualization layer in cloud system architecture. Purpose 

of this middle layer is to tolerate node failure. This layer 

can be seen as an assemblage of various components, 

each with a specific functionality and it makes use of 

combinations of various fault tolerant strategies to 

achieve optimum result. Performance of this middle 

layer is automatic and it is user transparent too, i.e., 

considering economic factors, dependability factors and 

user’s interest, it makes use of different permutations.  

1. INTRODUCTION 

Nowadays many of the applications in the field of 

research and development deals with tera-byte or even 

peta-byte scale of data. With the increasing scale of data 

sets, rolls up the problem of how to process them. 

Keeping infrastructures such as OS, application 

software, their installation, configuration, updating, huge 

servers and large network of nodes inside client’s 

campus requires a significant amount of intervention of 

space, cost, time and personnel. Due to the difficulty to 

maintain such an internal infrastructure and associated 

cost, companies have started to outsource their hardware 

resources. In this context, cloud computing changed the 

face of computing architecture, where a web browser 

operate as an interface between clients and the cloud, 

and cloud provides the entire infrastructure. Due to high 

computation capabilities cloud computing is getting 

common in commercial purposes, research applications 

and day to day regular activities in which resources are 

shared among the cloud service consumers, partners, 

providers and vendors in the cloud value chain. Since 

cloud computing is taken up by leading industrial giants 

such as Microsoft, IBM, Amazon etc. cloud computing 

become increasingly popular.  

Cloud architecture is very complex and heterogeneous 

system and the resources are distributed globally and 

there exist high level of abstraction in different layers of 

cloud architecture. Therefore, the end user of a cloud 

application usually has no idea where the data is stored, 

which processor is executing the computing task and 

how the entire process is done. They just sign up to an 

application request for various services. Although 

infinite computing resources are available on demand 

from the perspective of an end-user, “pay as you go” 

service model is adapted in cloud computing. The 

volume of the data to be processed, the complexity of the 

computing task, the time taken and all these items are 

considered to calculate the amount to be paid to the 

cloud service provider. Additionally, in cloud computing 

environment the customers outsource their data to the 

cloud which perform the computing operations and 

storing. Reliability, therefore, is an important issue in 

cloud computing. 

Traditionally, one of the backbones of software 

reliability is avoiding the faults. Since cloud architecture 

is very complex and built on data centres comprising 

thousands of interconnected servers with capability of 

hosting a large number of applications and distributed 

globally, fault prevention techniques in developing stage 

is very tedious. Fault avoidance techniques or fault 

removal techniques such as testing to detect and remove 

fault, therefore, won’t be enough in the case of cloud 

computing. In this context to achieve reliability to a 

greater extent, the system must be fault tolerant. 

According to Avi˘zienis [1], “The function of fault 

tolerance is to preserve the delivery of expected services 

despite the presence of fault-caused errors within the 

system itself. Errors are detected and corrected, and 

permanent faults are located and removed while the 

system continues to deliver acceptable service. This goal 

is accomplished by the use of error detection algorithms, 

fault diagnosis, recovery algorithms and spare 

resources.” 

Cloud computing architecture consists of various layers, 

e.g., customer applications, virtual machines, physical 

resources etc. A fault in cloud could be in any of the 

physical resources such as RAM, CPU, Hard Disk, or in 

the OS of the VM, or with the networking parts such as 

switches, routers etc. or in the application side such as 

compiler error,  a programming error etc. Therefore it is 



Special Issue of International Journal of Computer Applications (0975 – 8887) 

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012 

13 

a Herculean task to achieve fault tolerance in all these 

layers in run time. The scope of this paper is limited to 

the failure of a computational node i.e., a Virtual 

Machine (VM). VM technology is widely adopted as an 

enabler of cloud computing and it provides a higher 

degree of efficiency and agility to cloud computing. A 

VM is a software implementation of a computing 

environment in which an operating system or program 

can be installed and run. Virtualization helps to make 

more efficient use of hardware resources. In 

Virtualization, resources of a single physical computer 

are shared among several different virtual computing 

environments effectively, i.e., one computer pretending 

to be several computers.  

Fault Tolerance Manager (FTM) is a middle layer 

proposed in this paper to tolerate the failure of a VM. 

Failure of a VM is detected with the help of Fault 

Detector (FD), and preventive measures are taken by 

recovery overseer (RO) with the help of Replication 

Manager (RM) and Checkpoint Manager (CM). If 

permanent faults occur or some nodes are not performing 

according to the reliability criteria, those nodes are 

removed.  

The rest of the paper is organized as follows: Section II 

presents the related work on fault tolerance in cloud 

computing. Section III proposes FTM, a dedicated 

middle layer for optimum fault tolerance with a detailed 

description of its various components. In section IV 

future works are proposed and paper is concluded.  

2. RELATED WORKS 

No fault tolerance technology is available with 

Euclyptus and CLEVER. OpenNebula implements VM 

Fault Tolerance. In order to overcome VM failure, a 

Virtual Machine hook can be set to “resubmit” the failed 

VM [2]. VM Crash is recovered by “onevm restart” 

functionality. Windows Azure [3] offers Fault Tolerance 

management with the replicas of each VM and this 

solution is limited to the applications developed in the 

Windows Azure platform. VM failure of Amazon EC2 is 

take care by Simple Que Service (SQS) and Amazon 

Machine Image (AMI) [4]. Service requests are queued 

up till they are executed properly, or deleted by the user 

with the help of SQS. In EC2 we can publish many 

Amazon Machine Images (AMI), on the failure of an 

AMI, we can easily replace it with the help of an API 

invocation. 

Wenbing Zhao et. al. [5] proposes a FT middleware 

which implement a synchronized server replication 

strategy, where a failed server is repaired with a 

consistent state.  Alain Tchana et al. [6] suggest a fault 

tolerance method collaborating cloud provider and cloud 

customer. Their integrated approach makes fault 

tolerance available in all levels of the cloud. However, 

they are not making use of VM checkpoint solutions to 

achieve optimum fault tolerance. Slawinska, Magdalena 

et al. [7] suggest transparent check pointing at the user’s 

level provided by Distributed Multithreaded Check 

Pointing. By considering economic and dependability 

factors check points with various parameters are fixed. If 

these parameters are not satisfied, the thread is restarted. 

3. FTM: THE PROPOSED MIDDLE 

LAYER ARCHITECTURE 

FTM is a dedicated service layer placed between 

application layer and virtualization layer of Cloud 

Architecture. It comprises of Fault Detector, Replica 

Manager, Check Point Manager, Recovery Overseer and 

Communication Manager. A small description on each 

element of FTM and their functionality is given further 

in the section. 

A. Fault Detector 

There are two types of fault detection strategies, they are 

push model and pull model. In push model, Fault 

Detector (FD) sends signals to various nodes to check 

the health status. Whereas, in pull model method, each 

component in the system send signals to FD telling their 

health status. If no signal is obtained, FD considers that 

particular node is unhealthy and it reports to the master, 

so that, no more tasks are given to that particular node. 

FD of the proposed middle layer makes use of pull 

model method.  

There are many methods to detect failure based on 

heartbeats and timeouts with a virtual machine such as 

Red Pill (a technique to detect the presence of a virtual 

machine developed by Joanna Rutkowska), principle 

canonical correlation analysis [8], decision trees [9], 

system performance method [10], machine learning 

approach [11] etc. The FD proposed in this system 

adapts a similar methodology mentioned in the above 

cases. It detects the failed VM by comparing machines 

performing the same task at the same time. VMs which 

deviate from the normal behaviour are marked as 

dubious. FD also identifies wrong and unexpected output 

from a particular node and communicates with recovery 

manager for appropriate action. 

Apart from periodic health check up, a minimum 

reliability level is fixed in general. To set up a minimum 

reliability level, method suggested by Malik Sheheryar et 

al [12] is used by FD. According to this method each 

node is assigned a reliability weights. Nodes are added 

and removed from the list on the basis of their reliability. 

If a particular node is not reaching the minimum 

reliability weight, that node won’t be used anymore. 

Once FD detects such a node in the system it 

communicates with the schedular with the help of CS 

(Communication System) of FTM.    



Special Issue of International Journal of Computer Applications (0975 – 8887) 

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012 

14 

B. Replication Manager 

To ensure the job is finished in time, replication scheme 

is a good choice for providing high reliability. In the 

system, RM decide how many replicas to be made and of 

what type. In order to tolerate n failures, have to 

schedule n + 1 replicas for each task in the workflow.  

There are two types of replication methods: active and 

passive. Active replicas will be run along with the main 

instance concurrently in other virtual machines. Once a 

node fails, or comes up with a wrong output, result from 

one of the active replicas could be used. And therefore, 

active replicas provide high degree of reliability. But the 

system won’t go for active replicas always, because in 

active replication all copies of a task need to run 

concurrently and input data needs to be transferred to 

each of these copies, which incurs high communication 

costs, computation cost and power consumption. In the 

case of passive replication, a back up is only executed 

when its corresponding task fails. It does not always lead 

to a higher reliability with more replicas. Besides, the 

more replicas imply more resource consumption and 

higher economic burden. RM goes for dynamic number 

and types of replicas for each task. Various criterions are 

taken care: user’s reliability requirement, probability of 

failure of particular kinds of tasks and Service Level 

Agreements (SLA). RM makes use of MaxRe algorithm 

[13], to decide on the number of replicas. MaxRe’s 

design is based on user’s availability requirement and 

probability of the node failure; and MaxRe wont exceed 

the system capacity also. 

RM is transparent to client too. Cloud computing adapt a 

service model, “pay as you go”. According to this model, 

the amount to be paid depends on the volume of the data 

to be processed, to be stored, time of the computation 

etc. For some of the cloud providers such as Amazon, 

Google etc. the price varies depending on the time and 

date specifications. According to Amazon EC2 Instance 

Purchasing Options [14], in the case of Spot Instances, 

there is greater savings if your applications have flexible 

start and end times. In such cases, number of active 

replicas won’t cost you more. Therefore, user has a role 

to decide on the number of replicas and types of replicas. 

RM ensure that the replicas of a VM fail independently. 

A VM may fail even due to various security related 

issues. Unexpected intrusion to the instance by an 

unsecured third party may lead to unexpected wrong 

output. Same bugs can be triggered in all the instances. 

In that case, replication becomes ineffective. Therefore, 

RM goes for Independent replica. To achieve more 

independence of replica failures, the address of other 

replicas must be unknown to a potentially compromised 

replica. If it is known to the compromised replica, there 

is a chance for the same failure to be happen with the 

replica to be replaced. Therefore, a respectful level of 

isolation is made among different execution domains.  

C. Checkpoint Manager 

Checkpoint Manager (CM) functions as the traditional 

checkpointing-restart method. CM saves recovery 

information periodically during failure-free execution. 

When a failure occurs, the previously saved recovery 

information can be used to restart the computation from 

an intermediate state, thereby reducing the amount of 

lost computation. But in the case of FTM, whether to use 

checkpoints or not is to be decided by Recovery 

Overseer. 

Checkpointing consumes relatively less resources in 

comparison with replication. The optimal number of 

checkpoints minimizes the expected total execution time. 

Some of the issues handled by CM are: The number of 

check points, the points during the execution of a 

program should use checkpoint, Reduction of 

checkpointing overhead, ckeckpointing storage type and 

location, and checkpointing frequency.  

There are three checkpointing strategies. They are 

coordinated checkpointing, uncoordinated 

Figure 1: FTM: Fault Tolerance 

Manager 

Fault Detector 

Replication Manager Recovery Overseer Checkpoint Manager 

Virtual Machine 

Local Disk 

Virtual Machine 

Local Disk 

Checkpoint Repository 
Compute Node Compute Node 



Special Issue of International Journal of Computer Applications (0975 – 8887) 

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012 

15 

checkpointing, and communication-induced 

checkpointing. In coordinated checkpointing, processes 

synchronize checkpoints to ensure their saved states are 

consistent with each other, so that the overall combined, 

saved state is also consistent. In contrast, in 

uncoordinated checkpointing, processes schedule 

checkpoints independently at different times and do not 

account for messages. Communication-induced 

checkpointing attempts to coordinate only selected 

critical checkpoints [15]. FTM go for coordinated check 

points.  

Check Pointer (CP) will record the state of the job 

periodically at run time. Check pointing threads will be 

stored in the head node/Master node. Since all these 

checkpoints are kept in a particular log file, even if the 

master node fails, we need not restart the slaves. If the 

job in a particular node fails, with the help of 

Communication System, Recovery Overseer will take 

appropriate action. If it decides to use the checkpointing, 

then the recorded state of the job is moved to another 

computational node and resumes the execution from the 

last checkpoint. 

In order to provide persistent storage, a dedicated 

repository is separately deployed as a distributed storage 

service. In cloud computing environment, many hard 

disks attached to computer nodes are not effectively 

used, i.e., although several hundreds of GB sizes are 

available with these hard disks, the VMs make use of 

only a fraction of it. These unfilled and unused hard disk 

spaces are used to store the recovery information for 

checkpointing. Since checkpoint repository is different 

from main cloud repository, the complexity is reduced. 

Even if, the checkpoint repository increases in size, it 

won’t affect the central could repository, which has to 

take care of more complex functionalities.  

One of the other features of the proposed system is the 

replicated checkpoints and dynamic nature of checkpoint 

interval. The number of VM snapshot checkpoint is 

going to be decided by the complexity of the application 

and the interest of the user. For certain level of complex 

applications, a minimum time interval for checkpointing 

is fixed. Apart from that, user can provide the interval 

between two consecutive checkpoints. As mentioned 

earlier, cost of various cloud resources may vary 

depending upon time and date. Since replicated 

checkpoints consume some resources, it may cause some 

economic burden to the client. But, according to the 

proposed system, the client has also right to decide upon 

the degree of checkpoints. 

The proposed system goes for checkpoint optimization. 

Proper optimization of checkpoints reduces the resource 

consumption. When we take a snapshot for 

checkpointing from a correctly running instance, only a 

small part varies from the snapshot taken previously. If 

we are not optimizing the checkpoint, enormous 

redundant data transfer and use of high bandwidth would 

be necessary to store each snapshot. shadowing and 

cloning [16] system proposed by Bogdan is implemented 

with CM to achieve optimization. In this method, an 

object is duplicated in such a way that it looks like a 

snapshot, but it changes only the differences and 

manipulated metadata of previous image taken. These 

differences are not stored in a separate file; therefore, in 

the case of an error, it is easy to migrate to another VM. 

D. Recovery Overseer 

Once a node fails due to any reason, it is the task of 

Recovery Overseer (RO) to recover from the failure 

without much damage, taking less response time and 

waiting time. If we could reduce the additional 

computation time requirement after the occurrence of the 

fault, we can bring down the degree of damage. In the 

case where we resort to re-execution of the task, the 

system needs the same amount of execution time upon a 

fault. In this context RO looks for an active replica first. 

If an active replica is available, the replica is run on 

another VM and the output is obtained. If no active 

replica is available, it looks for a passive replica and the 

replica is run on another available VM. If no replica is 

Initialization Phase 
1. The number of active replicas NAR 
2. The number of passive replicas NPR  
3. The number of checkpoints NCP  
4. The number of checkpoint replicas NCR 

 
5. The address of active replicas AAR={AR1, AR2,….ARp} 
6. The address of passive replicas APR = {PR1, PR2,… 

PRq} 
7. The address of checkpoints ACP={CP1, CP2,…. CPr}  
8. The address of checkpoint replicas ACR={CR1, CR2,… 

CRs} 
 

Test Phase 
Begin 

If NAR ≠ 0 then 
  use the output of AAR[0] 

else  
if NPR ≠ 0 then 

make APR[0] active and run on another VM 
  end 

else 
 if NCP ≠ 0 then 

get the latest and usable checkpoint values 
from ACP[i], where i=1,2,3…r;  and execute 
the process from the checkpoint 

  end 
else  

if NCR ≠ 0 then 
do the above step for ACR[i],  
where i=1,2,3…s 

  end 
else 

Migrate the job to another VM and execute from 
the beginning 

end 
end 

 

Algorithm 1: Function of Recovery Overseer 



Special Issue of International Journal of Computer Applications (0975 – 8887) 

on Issues and Challenges in Networking, Intelligence and Computing Technologies – ICNICT 2012, November 2012 

16 

available for a particular process it looks at CM. If 

checkpoint is available, then the values are taken from 

the last checked point and the process is continued from 

the point. If a checkpoint is failed, then it looks for 

replica of a checkpoint stored in checkpoint repository. 

If checkpoint replica is also not available, then the job is 

migrated to another computational node and re-executes 

the job from the beginning. 

In the case of long time running jobs, the fault occurs 

after a significant amount of time, the overall time will 

be very high. Since we have employed mechanisms such 

as replication and checkpointing we need to execute the 

task only after the last checkpoint or continue the task 

with a replica which considerably reduces the additional 

computation requirement upon fault occurrence. Also 

this does not cause any deterioration in the service 

quality as is the case with exception handlers. 

E. Communication System 

Communication System (CS) is an intra messaging 

system of FTM. CS extends to all other components of 

the architecture and takes care of inter component 

communication among various elements of FTM. CS has 

connection with the database, in which user preferences, 

with respect to replication management and checkpoint 

management, are stored.  

There are two types of messaging models available: 

Public-Subscribe and Point to point. CS adapts Point to 

Point messaging model. Any message send by a 

particular component in the system can be read only by 

the particular message reader. E.g., a request message is 

passed from the RO to RM to cheque the availability of 

active replicas; only RM can read the message. This 

model avoids unauthorized intruders to the system.  

Message sender makes sure that the message is received 

only by the message receiver intended. This task is 

coordinated by CS.  

4. FUTURE WORKS AND CONCLUSION 

In this paper, a middle layer is proposed, to ensure fault 

tolerance with VM failure, in cloud computing 

environment. Although FTM is user transparent, it is 

automatic, flexible and agile. The system is designed 

bearing in mind various services offered by present 

cloud providers.  

Functionality of each component in FTM can be refined 

taking various algorithms proposed by scholars into 

consideration. After the refinement, the system has to be 

implemented on cloud testbed. Research has to be done 

to amalgamate or to integrate the proposed middle layer 

with one of the existing layers of the cloud architecture.  

5. REFERENCES 

[1] Avi˘zienis. “The N-Version Approach to Fault-Tolerant 

Software.” IEEE Transactions on Software Engineering, 

SE-11(12) (December 1985) :1491–1501. 

[2] http://opennebula.org/documentation:archives:rel2.2:ftgui

de 

[3] http://www.davidchappell.com/writing/white_papers/intro

ducing _windows_azure_v1-chappell.pdf 

[4] http://aws.amazon.com/ec2/ 

[5] Webbing Zhao et. al. “Fault Tolerance Middleware for 

cloud computing.” Third International Conference on 

Cloud Computing (2010): 67-74. 

[6] Tchana Alain et. al. “Fault Tolerant Approaches in Cloud 

Computing Infrastructures.” The Eight International 

Conference on Autonomic and Autonomous Systems 

(2012): 42-48.  

[7] Slawinska, Magdalena, Jaroslaw Slawinski, and Vaidy 

Sunderam. “Unibus: Aspects of heterogeneity and fault 

tolerance in cloud computing.” 2010 IEEE International 

Symposium on Parallel Distributed Processing Workshops 

and Phd Forum IPDPSW 2 (2010): 1-10. 

[8] H. Chen, G. Jiang, and K. Yoshihira. “Failure detection in 

large-scale internet services by principal subspace 

mapping.” IEEE Trans. on Knowledge and Data 

Engineering, (2007). 

[9] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. 

Brewer. Failure diagnosis using decision trees. Autonomic 

Computing, International Conference on Autonomic 

Computing (ICAC), (2004). 

[10] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. 

Andersen. Fingerprinting the datacenter: Automated 

classifcation of performance crises. Proc. of the 5th 

European Conference on Computer Systems, (2010):111-

124. 

[11] I. Cohen, M. Goldszmidt, T. Kelly, and J. Symons. 

Correlating instrumentation data to system states: A 

building block for automated diagnosis and control. in 6th 

Symposium on Operating Systems Design and 

Implementation (OSDI), San Francisco, CA, (2004). 

[12] Malik, Sheheryar, and Fabrice Huet. “Adaptive Fault 

Tolerance in Real Time Cloud Computing.” 2011 IEEE 

World Congress on Services (2011): 280-287. 

[13] Zhao, Laiping et al. “Fault-Tolerant Scheduling with 

Dynamic Number of Replicas in Heterogeneous 

Systems.” 2010 IEEE 12th International Conference on 

High Performance Computing and Communications 

HPCC (2010): 434-441. 

[14] http://aws.amazon.com/ec2/purchasing-options/ 

[15] Roman. A Survey of Checkpoint/Restart Implementations. 

Technical Report LBNL-54942, Lawrence Berkeley 

National Laboratory, (2002). 

[16] Bogdan Nicolae, Franck Cappello, "BlobCR: efficient 

checkpoint-restart for HPC applications on IaaS clouds 

using virtual disk image snapshots," Proceedings of 2011 

International Conference for High Performance 

Computing, Networking, Storage and Analysis (2011): 1-

12. 

[17] Zheng, Zibin et al. “FTCloud: A Component Ranking 

Framework for Fault-Tolerant Cloud Applications.” 2010 

IEEE 21st International Symposium on Software 

Reliability Engineering (2010): 398-407. 

 

http://opennebula.org/documentation:archives:rel2.2:ftguide
http://opennebula.org/documentation:archives:rel2.2:ftguide
http://www.davidchappell.com/writing/white_papers/introducing_windows_azure_v1-chappell.pdf
http://www.davidchappell.com/writing/white_papers/introducing_windows_azure_v1-chappell.pdf
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/purchasing-options/

