
International Journal of Computer Applications (0975 – 8887)

International Conference on Cognitive Knowledge Engineering 2016

46

A Survey on Floating Point Arithmetic Logic Unit

Shaikh Shoaib Arif
Research Scholar

Dr.B.A.M.U. Aurangabad
Maharashtra, India

Godbole B. B., PhD

Associate Professor of KBPCEP
Satara Shivaji University Kolhapur

ABSTRACT
Floating-point operations are of great use for many computing

applications involving large dynamic range, but importantly it

needs more resources as compared to integer operations. The

progressive demand in FPGA innovation makes such gadgets

progressively alluring for designing FP units. With the

expanding limitations on delay, more attention is being given

to configuration of quicker FP units. To improve speed a wide

range of mechanisms/methods are being utilized for the

designing of FPU (Floating point math unit) with the aim of

reducing latency, area, power consumption and increasing the

throughput. Some of the algorithms are presented in this

paper, which enlightens the above-mentioned aim.

Keywords

Floating Point Adder, Floating Point Subtraction, Floating

Point Multiplier, Floating Point Square, Vedic Sutras

1. INTRODUCTION
The floating-point unit (FPU) was developed for complex and

precise point operations. Floating point arithmetic unit (FPU)

has a key importance in various computational and scientific

applications such as 3D graphics, High performance

computing, Digital signal processing etc. The FP operations

have discovered numerous applications in different fields for

the needs of highly valuable operations because of its

incredible dynamic range, highly precise nature and simple

working rules. The designing and exploration of the FPUs has

been highly focused. The fast progress of very large scale

integration (VLSI) technique drove the gadgets like Field

Programmable Gate Arrays (FPGAs) to be the best

alternatives to execute and implement FPU operations.

FPGAs offer decreased time and costs than some particular IC

applications.

1.1 Vedic Mathematics
Vedic arithmetic is a piece of 4 Veda [1]. "Vedic" is gotten

from "veda" which implies the storage facility of all

information. It is a subpart of Veda which holds clarification

of a few scientific computations like integration, algebra,

quadratics, geometry etc. Vedic science is fundamentally in

light of 16 formulas (sutras) managing different branches of

maths. These algorithms (formulas) with their brief meaning

are given as below [2]:

1. Anurupye Shunyamanyat– If one is in ratio, the other is

zero.

2. Chalana-Kalanabyham– Differences and Similarities.

3. Ekadhikina Purvena– By one more than the previous one.

4. Ekanyunena Purvena– By one less than the previous one.

5.Gunakasamuchyah– The factors of the sum is equal to the

sum of the factors.

6.Gunitasamuchyah– The product of the sum is equal to the

sum of the product.

7.Nikhilam Navatashcaramam Dashatah– All from 9 and the

last from 10.

8. Paraavartya Yojayet– Transpose and adjust.

9.Puranapuranabyham– By the completion or non completion.

10.Sankalana-vyavakalanabhyam– By addition and by

subtraction.

11.Shesanyankena Charamena– The remainders by the last

digit.

12.Shunyam Saamyasamuccaye– When the sum is the same

that sum is zero.

13.Sopaantyadvayamantyam– The ultimate and twice the

penultimate.

14. Urdhva Tiryakbyham– Vertically and crosswise.

15. Vyashtisamanstih– Part and Whole.

16. Yaavadunam– Whatever the extent to fits deficiency.

1.2 FPU operations
In digital technology, FP is the mathematic representation that

is close to a real number in order to make an exchange

amongst range and accuracy. The vast majority of the FP

numbers are shown to as

(-1)s2e (1+f)

Where, sign bit is denoted by s

 exponent is denoted by e

 mantissa is denoted by f

The sign bit is a very basic logic. 0 means a positive number,

and 1 signifies a negative number. Flipping the estimation of

this bit changes the sign of the number. The exponent must

exhibit both positive and negative values. In order to actualize

this, a bias is added to the real exponent with a specific end

goal to get the stored exponent. An exponent can be negative

as well as positive, thus it needs some technique for

representing negative exponents using unsigned integers. This

strategy is called "biasing": a positive number is added to the

exponent before it is stored into the FP number. Due to this,

the stored exponent is now known as "biased-exponent". For

single precision, the exponent is of 8 bits, and a bias is of 127

bits and for double precision, exponent is of 11 bits, and a bias

is of 1023 bits. The mantissa, also known as the significant,

depicts the precision bits. It comprises an implicit leading bit

to the LSB and the fraction bits to the MSB. The IEEE format

for single and double precision is shown in fig.1. According to

the IEEE standards

Fig.1. Illustration of single and double precision format [1]

The below table depicts the format for single (32-bit) and

double (64-bit) precision FP values. The no. of bits for each

International Journal of Computer Applications (0975 – 8887)

International Conference on Cognitive Knowledge Engineering 2016

47

field is shown (square brackets represent the range of bits, 00

= LSB):

Table 1. IEEE 754 Format for Single and Double precision

Precision

Sign Exponent Fraction

Single

Precision

1[31] 8[30-23] 23[22-00]

Double

Precision

1[63] 11[62-52] 52[51-00]

The FPU arithmetic operations consist of addition,

subtraction, multiplication and division. The essential

approach for addition process:

1. First, convert the two notations into scientific

expressions. So that, it can denote the hidden 1.

2. For the addition of two numbers, the exponent of those

no’s needs to be the same, by aligning the decimal points. The

result of this is that the Y is not normalized, but its value is

equal to the normalized Y. Add x-y to Y's exponent. Adjust

the radix point of the Y to compensate for the change in

exponent. Shifting the mantissa left by 1 bit decreases the

exponent by 1 and it’s vice versa increases the exponent by 1.

3. Add X’s two significant fused with modified Y.

4. If the preceding stage of addition do not contain single

bit of value 1, then the exponent and radix point needs to be

shifted until it achieves the value.

5. Now normalize the result if hidden bit is “1” and de

normalize if the hidden bit is “0”. Change it again into the 1

byte FP expression.

Similar is the steps (i.e. aligning, normalization, shifting and

rounding) for subtraction, multiplication and division.

Aligning: In order make the exponents of the two numbers to

be same, the proper alignment of decimal point is mandatory.

Normalization: If traditional8 bit scheme is used. For example

as shown in fig.2, i.e. 1 sign bit, 3 integer bits, 3 exponent bits

then a single fractional bit is left and hence it can be represent

largest value of integer and exponent up to 111 and largest

fraction value 0.5 because any other fractional value is not

possible since it is left with only 1 fraction bit. Thus, this

scheme is not suitable concerning precision. Thus if it is swap

this scheme a little and have three fractional bits and 1 integer

bit, it can represent various fractional parts. The technique of

permitting a single bit for the integer part is called

“Normalization”. This approach results in precision on the

loss of a few bits.

Shifting: Shifting (moving) the mantissa is an important task

in order to compensate the change in exponent. Moving the

significant 1 bit towards left, reduces the exponent value by 1

and moving the significant 1 bit towards right, increases the

exponent value by 1.

Fig.2. Normalized 8-bit scheme

Rounding: With the allotted amount of precision, the FPU

results can't be processed. Hence, the rounding comes into

picture. These results need to be rounded off. There are 3

strategies for rounding:

1. Round towards 0: In this approach need to discover what

number of bits are accessible. Take that number of bits as the

outcome and discard the remaining. The impact of this is

similar to making the value more like 0.

2. Round towards +∞: Without considering the value, round

towards +∞.

3. Round towards –∞: Without considering the value, round

towards –∞.

But these steps affect various parameters such as area, latency,

power consumption, throughput etc. As to implement these

functions extra circuitry i.e comparator, data extractor, SWAP

circuitry, shifter [3] etc. would be required which increase the

requirement of area on FPGA chip. Increase in the circuit will

definitely demand more power which in turn increase the

power consumption. The differences in exponent comparison

and mantissa alignment, the control logic creates delay which

in turn leads to the latency in system. As latency decides the

throughput, because of the latches and control signals in

pipeline architecture, the area and power utilization are rises

higher than the non-pipelined model.

2. APPROACHES FOR HIGH SPEED

ARITHMETIC OPERATIONS
ADDITION/SUBTRACTION

The maximum used computation in FPUs is addition.

Thoughtfully, it is the most basic computation i.e. computing

either the addition or subtraction of given FP numbers. But

practically, alignment, normalization, shifting and rounding

which might be a necessity can make the floating point adders

quite slow. A quick FP adder is essential to the execution of a

FPU, and in this way methods to higher the rate of FP addition

is presented in many surveys which is discussed below. Fig.3

demonstrates the general sum/difference process.

Many individual operations are involved in FP

addition/subtraction process. Higher performance can be reach

by decreasing the no. of executions. Further, discuss the

related work done by the experts as follows:

International Journal of Computer Applications (0975 – 8887)

International Conference on Cognitive Knowledge Engineering 2016

48

Fig.3. Floating Point Addition/ Subtraction [4]

The survey reveals different algorithms/ techniques used for

the implementation of adder/subtractor with reduced latency

on FPGA. Optimization procedures empowers inventor to

show how these techniques can be assembled to accomplish a

general quick FP adder layout. Generally, impressive decrease

in latency through simultaneous ways needs the delay to be

adjusted. The FP adder layout given in [5] accomplished a low

latency by combining different enhancement procedures.

To maximize the adder's throughput, a standard method is to

pipeline the unit such that every pipeline stage contains the

small atomic operation. Whereas, the FP summation may need

many cycles to give the result, another operation can start

every cycle, giving high throughput [6]. The benefit of the

pipeline design process is that, in spite of having a high input

and output successive length, it gives an unmatched

throughput [7]. A double precision FPU is presented in this

paper [7] which when compared with single precision FPU

provides rapidness and more preciseness. Even a pipelined

algorithm with a packet forwarding approach is also used to

implement the adder in [8]. In this new approach addition and

rounding is responsible for a 4-stage pipeline execution with a

minimum clock period.

The paper [9] presents a combined FP 3-term-adder which

executes 2 summations in one unit to accomplish more

satisfactory execution and more satisfactory precision

contrasted with a system of conventional FP 2-term adders.

With the objective of enhancing the execution of the 3-term

adder, a few improvement methods are utilized including

another exponent compare and mantissa alignment and

normalization, 3 input driving zero anticipation, compound

expansion and pipelining. This adder decreases the area and

power utilization by around 20% and latency by around 35%.

Architecture of a double precision (DP) adder is proposed in

[3], which bolster a dual SP feature. As to implement these

functions extra circuitry i.e. comparator, data extractor, LOD,

SWAP circuitry, shifter etc. would be required. LOD

algorithm is implemented in this adder/subtractor design.LOD

approach is described by its clarity and decreased area. To

accomplish high frequency, the layout was profoundly

pipelined. After the sum/difference process is executed, the

consequent mantissa is normalized through LOD technique.

The leading-one-detector identifies the MSB '1' from the

quantity of no. of zeros (nz) prior to MSB '1'. The mantissa is

then moved left "nz" times [10].

International Journal of Computer Applications (0975 – 8887)

International Conference on Cognitive Knowledge Engineering 2016

49

3. MULTIPLICATION AND SQUARE:
The second most used FP operation is multiplication. Thus,

quick multiplication is additionally crucial task for fast FPUs.

The summation of a many partial products is included in a

multiplication process, each of which is a result of the

multiplicand and 1 bit of the multiplier. Partial product

generation (carried out by AND logic operation and Booth’s

algorithm), partial product reduction (carried out by adders

which are connected in different topologies), and final carry-

propagate-addition (this is an integer addition so it doesn’t

involve FP operation) are the main steps that are involved in

multiplication process [6]. Fig.4 shows the general execution

of FP multiplication process.

The multiplication algorithm used in Vedic Mathematics is

known as “Urdhva Triyagbhyam” (introduced earlier in

section II, sutra 14).The same thought is utilized for FPU

arithmetic’s to make it suitable for computer hardware. This is

the general rule applied for all multiplication calculations.

Urdhva implies Vertical and Triyagbhyam implies Crosswise.

Different methodologies are proposed for rapid vedic

multiplier.

Some methodologies are mentioned in [2], one of these is

Vedic Multiplier With

Ripple Carry Adder. In this methodology, three 4-bit ripple

carry adders are utilized.

While the execution, the carry originating prior to the adder

requires some time to travel which makes the carry ripples and

full adders wait for its arrival.

Fig.4. Floating Point Multiplication [4]

This, thus causes decrease in operating time. Second is the

Low Power and High Speed Vedic Multiplier. It is a 16-bit

multiplier layout which substitutes the with the ripple carry

adder with the carry Look ahead Adder. As a result, use of

International Journal of Computer Applications (0975 – 8887)

International Conference on Cognitive Knowledge Engineering 2016

50

Look ahead adder increases speed and reduces power

dissipation. Third is Fast Vedic Multiplier Using Carry Save

Adder. In this Carry Save Adder takes little move include and

enhances speed because in Carry Save Adder, summation is

done simultaneously without sitting tight for the outcome.

Fourth is Speed Efficient Design for Vedic Multiplier. It uses

another tree structure for addition of partial products. This

layout produced better results in contrast to other architecture.

It has brought about a less delay time. Fifth is a methodology

utilizing 7:2 Compressor Adders as a part of which 4:2

compressors and 7:2 Compressors are utilized for 4-bit

and 8-bit multiplication. A 7:2 Compressor is composed with

the assistance of changed 4:2 Compressor which has been

utilized to implement 8X8 multiplier. Such a layout requires

just 12 parallel stages while traditional Vedic multiplier

requires 15 stages.

This paper[11] presents 2x2 High-Speed matrix multiplier.

Here every matrix element is exhibited by 16-bit. Hierarchical

structuring concept is used for designing matrix multiplier. It

uses the structural modelling which permits the less

calculation time for computing the multiplication outcome.

This in turn provides an opportunity for modular layout where

bigger blocks can be made from smaller one.

Fig.5. Floating Point Division [4]

A Vedic mathematic squarer is proposed in [12]. The

proposed squarer works on the basis of Ekadhikena Purvena

algorithm(introduced with its meaning earlier in section II,

sutra 3). This algorithm is applicable only to find the squares

International Journal of Computer Applications (0975 – 8887)

International Conference on Cognitive Knowledge Engineering 2016

51

of decimal numbers ending with “5”. Following example

depicts this algorithm in depth.

Such as. : 352=1225

1. The right part of answer is 25 as it is the square of ‘5’.

2. According to the formula the 3 is the precedent of ‘5’ and

one more than that is ‘4’. Hence, using formula n(n+1)=n2+n

(i.e. 3×4=12) it is the left part of the answer.

When the proposed squarer was compared with the duplex

squarer, it showed better performance than the duplex one. It

saved 50% area and also reduced delay by 50%.

4. DIVISION AND SQUARE ROOT
Division and Square Root are very least frequently occurring

operations in FPU. A slow divider in FPU can degrade the

performance of FPU. The sq. root operation is quite alike to

division and therefore many division rules are applicable for

sq. root computation. Division calculations can be separated

into five classes: digit repetition, functional cycle, high radix,

table look-up, and flexible latency [6]. Fig.5 shows the general

execution of FP division process.

Division is constantly thought to be massive process and a one

amongst the most troublesome computation in number system

and thus every application of division calculations in VLSI

engineering have high time and space complexities. On the

basis of Vedic maths, all work on division strategies, is

created for number system with base of 10.The logic which

may suit base 10 (decimal) is not feasible for base 2 (binary)

number system. Here an another methodology is proposed in

this paper [13] for a new division for base 2 number system.

Optimized binary division architecture is presented which

uses Vedic Mathematics sutras i.e. Nikhilamalgorithm,

Dhwajankalgorithm and Paravartyaalgorithm (introduced

earlier in section II, sutra 7 and 8 resp.). After the analysis of

these sutras individually, Tadas proposed the division

algorithm which involves these sutras combine. This results in

an efficient division process.

Reciprocal approximations and division assumes a vital part

for many applications like DSP and image processing and so

on. This technique [14] is particularly prudent when distinct

dividend is to be partitioned by the same divisor. These

‘reciprocal approximation’ strategies are based on Newton-

Raphson iteration strategy [6]. The reciprocal algorithm's

flowchart is presented in [14]. Last digit of the denominator

has been computed through mod-10 operation. If last digits

are 2, 4, 6 then it is multiplied by 5 and if the last digit is 5

then it is multiplied by 2. On the off chance that, the last digit

is 3 then it is multiplied by 3. On the off chance that the last

digit is 0 now it can execute the right move operation

directly. On the off chance that last digit is 1 or 7,8,9 then it

can execute the immediate appliance of the approach. The

multiplication procedure will proceed until the digit lessens in

the denominator stage. The calculation will proceed until 16

FP numbers [14].

5. APPLICATIONS
Many practical control applications in the industrial fields

advantage from the dynamic extent and accuracy of FP

offered by the floating point arithmetic unit (FPU). Due to its

vector processing capability, it offers an extraordinary interest

for FPU in Image processing, for example, scaling, textual

printing, 3D transforms, 3D Graphics, Laser printers, digital

cameras, digital video cameras and filtering in graphics. It has

a wide demand in digital processing as well such as

automotive control applications, digital set-top boxes, gaming

consoles and motion controls etc.

Multipliers/Squares are the most widely used functions in

DSP applications which are used to perform different

calculations. The throughput of the framework significantly

relies upon the execution of these operations. Henceforth

these functions should work in a streamlined way devouring

less area and power, and working at higher pace. With the

development of innovation, a fast executing processor is a

necessity. Multiplication is a basic computation of DSP

applications(like DFT, FFT, convolution and so forth),

Arithmetic and logic unit (ALU), and Multiply and

Accumulate(MAC) unit. The convolution is an essential part

in DSP and Image Processing. Convolution is vital idea for

outlining the finite IR filter, DFT and FFT. Different DSP

operations on basis of vedic science are executed in [15].

These are linear and circular convolution, correlation, cross-

correlation, autocorrelation etc.

6. RESULTS STUDIED
The simulation results as shown in Fig. 6 from [1] shows that

when two inputs ‘A’ (unsigned FP number) and ‘B’ (signed

FP number) are taken with values 134.0625 and -2.25

respectively, then its individual conversion to hexadecimal

format gives 0x43061000 and 0xC0100000 respectively. The

result of multiplication of these two hexadecimal numbers

yields the outcome 0xC396D200 which when converted into

integer format is valued equal to -301.640625. In [2], a 8X8

bit multiplier shown in Fig. 7 has been designed using 7:2

compressor which is a modified version of 4:2 compressor.

The vedic multiplier works on fifteen stages on the other

hand, the compressor based multiplier requires only 12 stages

which improves the speed by the factor of 1.12 as compared to

vedic multipliers, 2.112 as compared to Booth and 1.509 as

compared to modified Booth multiplier.

Fig.6.Simulation Result of vedic multiplier

International Journal of Computer Applications (0975 – 8887)

International Conference on Cognitive Knowledge Engineering 2016

52

Fig.7. 8X8 bit compressor based multiplier

In [3], it is seen DPdSP adder which can work in both double

and single precision mode. The Double precision or dual

Single precision (DPdSP) can operate in Double precision

mode and can also operate parallel in dual Single precision

mode. It can perform almost all computations such as

rounding-off etc. The multiplexing circuit required for tuning

is minimum. As a result when compared to other multi

precision techniques, DPdSP architecture gives 37% reduced

area and 40% to 50% lessened area-delay product but to

achieve this it requires 15% extra resources as compared to

double precision. The comparison results are shown in the

table below. This architecture provides better computation.

Table 2. Comparison Results with other techniques

 0.25µm 0.11 µm 0.18 µm

Latency

3 5 3 1 4

Area OH

Period

OH

24%

9%

26%

9.6%

33%

13.3%

15%

7%

17%

3.5%

Scaled

Area

Gate

Count

-

13224

0.370

-

0.433

-

0.164

10288

0.172

10794

Period

Total

Delay

49

140

18

65

24.7

55

87

28.4

87

Area X

Delay

Area X

Delay

-

1851360

24.05

-

23.815

-

14.268

895056

Table 3 shows the results of fused floating point 3-term adder

from [9]. Traditional fused FP adder gives accuracy with

reduction in area, power consumption (5–8%) and latency (3–

14%). Proposed fused FP 3-term adder gives reduction in area

and power consumption by15–20% and reduction in latency

by about 35%.

Table 4. Pipeline fused FP 3-term adder

Single Precision

 Stage 1 Stage 2 Stage3

Area(µm
2)

5,800

(37%)

6,400

(41%)

3,5000

(22%)

Latency

(ns)

0.52

(33%)

0.54

(34%)

0.52

(33%)

Power

(mW)

2.89

(35%)

3.35

(41%)

2.01

(24%)

Double Precision

 Stage 1 Stage 2 Stage3

Area
12,500

(36%)

14,600

(42%)

7,600

(22%)

Latency

(ns)

0.62

(32%)

0.64

(34%)

0.62

(32%)

Power

(mW)

6.43

(35%)

7.59

(42%)

4.26

(23%)

Table 3. Traditional fused FP 3-term adder

Table 4 [9] shows the results of pipelined fused FP 3-term

adder into three pipeline stages. For control management

between stages latches are necessarily needed. The latency

among the 3 stages is maintained such that the throughput is

increased by the factor of 2.7.

In [11], a 2X2 High speed multiplier has been designed on the

basis of “UrdhavaTrigyagbhyam” logic. The coding has been

done in VHDL software and synthesized using Xilinx. The

simulation of 2X2 High speed multiplier is shown in Fig. 8.

Single Precision

 Discrete
Traditional

Fused 1

Traditional

Fused 2

Improve

Fused

Improved

+ Pipeline

Area (µm2)
18,200

(100%)

17,300

(95%)

17,000

(93%)

14,900

(82%)

15,700

(86%)

Latency

(ns)

2.24

(100%)

2.20

(98%)

1.98

(88%)

1.46

(65%)

1.62

(72%)

Throughpu

t (1/ns)

0.45

(100%)

0.46

(102%)

0.51

(113%)
0.68

(153%)
1.85

(415%)

Power

(mW)

9.46

(100%)

9.17

(97%)

8.90

(94%)
7.91

(84%)

8.25

(87%)

Double Precision

 Discrete
Traditional

Fused 1

Traditional

Fused 2

Improve

Fused

Improved

+ Pipeline

Area (µm2)
41,200

(100%)

38,200

(93%)

37,900

(92%)

33,000

(80%)

34,700

(84%)

Latency

(ns)

2.80

(100%)

2.72

(97%)

2.40

(86%)

1.76

(63%)

1.92

(69%)

Throughpu

t (1/ns)

0.36

(100%)

0.37

(103%)

0.42

(117%)

0.57

(159%)

1.56

(438%)

Power

(mW)
21.46

(100%)

20.30

(95%)

19.95

(95%)
17.52

(82%)
18.28

(85%)

International Journal of Computer Applications (0975 – 8887)

International Conference on Cognitive Knowledge Engineering 2016

53

Fig.8.Simulation Result for 2X2 High speed multiplier

The FPGA implementation of this design gives an improved

structure with reduced area (shown in Fig. 9), less

computation time, less area to speed ratio (shown in Fig. 10)

and operating at higher running frequency 373.692MHz

(shown in Fig. 11) with the requirement of a single global

clock cycle.

Fig.9.Comparison Result for Area

Fig.10.Comparison Result for maximum Frequency (MHz)

Fig.11.Comparison Result for Area to Speed Ratio

7. CONCLUSION AND FUTURE
In this survey paper various floating-point arithmetic

techniques to reduce the area, power consumption by and

reduces the latency, delay optimization based on different

vedic sutras, Pipeline packet forwarding, fused floating point

International Journal of Computer Applications (0975 – 8887)

International Conference on Cognitive Knowledge Engineering 2016

54

three term adder, high speed multiplier divider, squarer. Out

of which Urdhva Tiryakbhyamalgorithm proved to be an

encouraging strategy concerning speed and area.

EkadhikinaPurvena, Nikhilam Dashatah, Paraavartya and

Dwanjaka sutras are also very helpful for implementing other

FPU operations. In this survey it is seen that multiple FPU

configurations i.e. single-precision, double precision, dual-

precision adders, multipliers and dividers. For the execution of

a combined multiplication-addition operation, the output of

FP multiplier should fetched as input to FP adder which will

give the required outcome.

Future work includes implementation of these techniques to

real time DSP operations like voice morphing to make an IP

of voice morphing. It contains the floating point ALU for

addition, subtraction, multiplication & divide operations part

with minimum power consumption by using techniques

discussed in paper and FFT operations for trigonometric part

take samples of source and destination voice and converted

both to the frequency domain using FFT and extracted

features of both. Then the difference between both is

calculated, it gives info that how the source is different from

the target. Then the full source voice is varied by that

difference thus morphed voice to target and work can be

validated by using MATLAB tool.

8. REFERENCES
[1] Pratiksha Rai et al, “Design of Floating Point Multiplier

Using Vedic Aphorisms”, International Journal of

Engineering Trends and Technology (IJETT) – Volume

11 Number 3,May 2014.

[2] Yogita Bansal et al, “HIGH SPEED VEDIC

MULTIPLIER DESIGNS-A REVIEW”, IEEE

Proceedings of 2014 RAECS UIET Panjab University

Chandigarh, 06 – 08 March, 2014.

[3] M. Jaiswal, “Unified Architecture for Double/Two-

Parallel Single Precision Floating Point Adder”, IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS—

II: EXPRESS BRIEFS 521, 2014.

[4] N. Grover and M.K. Soni, “Design of FPGA based 32-bit

Floating Point Arithmetic Unit and verification of its

VHDL code using MATLAB”, I.J. Information

Engineering and Electronic Business, 2014.

[5] Peter-Michael Seidel, Guy Even, "Delay-Optimized

Implementation of IEEE Floating-Point Addition", IEEE

Trans. on Computers, vol. 53, no. 2, pp. 97-113, Feb.

2004.

[6] Stuart Franklin Oberman, DESIGN ISSUES IN HIGH

PERFORMANCE FLOATING POINT ARITHMETIC

UNITS, Technical Report, Stanford University

California, 1996.

[7] Adarsha KM et al, “Double Precision IEEE-754

Floating-Point Adder Design Based on FPGA”,

International Journal of Advanced Research in Electrical,

Electronics and Instrumentation. Engineering, Vol. 3,

Issue 4, April 2014.

[8] A. Nielsen, D. Matula, e.N. Lyu, G. Even, "IEEE

Compliant Floating-Point Adder that Conforms with the

Pipelined Packet-Forwarding Paradigm," IEEE Trans. on

Computers, vol. 49, no. 1, pp. 33-47, Jan. 2000.

[9] J. Sohn, “A Fused Floating-Point Three-Term Adder”,

IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS—I: REGULAR PAPERS, VOL. 61, NO. 10,

OCTOBER 2014.

[10] Hamid et al,“Design of Generic Floating Point Multiplier

and Adder/Subtractor Units”, 12th International

Conference on Computer Modelling and Simulation,

2010.

[11] S.V. Mogre, “Implementation of High Speed Matrix

Multiplier using Vedic Mathematics on FPGA”,

International Conference on Computing Communication

Control and Automation, 2015.

[12] Sriraman, “DESIGN AND FPGA IMPLEMENTATION

OF BINARY SQUARER USING VEDIC

MATHEMATICS”, IEEE 4th ICCCNT, July 2013.

[13] Aditi Tadas, “64 Bit Divider using Vedic Mathematics”,

2015 International Conference on Smart Technologies

and Management for Computing, Communication,

Controls, Energy and Materials (ICSTM), May 2015.

[14] Saha, “Reciprocal unit based on Vedic mathematics for

signal processing applications”, International Symposium

on Electronic System Design, 2013.

[15] A. Itwadiya, “Design a DSP operations using Vedic

Mathematics”, International conference on

Communication and Signal Processing, April 3-5, 2013.

IJCATM : www.ijcaonline.org

