
International Conference on Intuitive Systems & Solutions(ICISS) 2012
Proceedings published by International Journal of Computer Applications® (IJCA)

38

USB to USB Bridge for Computer Independent Data
Transfer

Bhushan Kamble
Student of E&TC

Sinhgad College of
Engg, Pune

Amey Priolkar
Student of E&TC

Sinhgad College of
Engg, Pune

Ashitosh Kamble
Student of E&TC

Sinhgad College of
Engg, Pune

Prof.S.O.Rajankr
Dept. of E&TC

Sinhgad College of
Engg, Pune

ABSTRACT

Today, the need and the importance of the data in human life
are well known. It has become an inevitable part of day to day
life. This paper discusses a modern approach towards the way

the data is transferred to and fro in the USB mass storage
devices using a computer. The aim of the proposed system is
to remove the every time need of the computer for the data
transfer. To do so, the system uses an independent solution for
the problem – USB to USB Bridge. The concept of the bridge
will make it possible to carry out the mass data transfer
anywhere, anytime. The bridge is built around the ARM9
processor to accommodate all the requirements that the end

users may want. The portability and small foot print are the
major advantages of the bridge. It is an embedded solution to
a practical problem.

General Terms

ARM Based Embedded Systems, Portability.

Keywords: USB, Data Transfer, ARM9, Bridge.

1. INTRODUCTION
In general terms, the bridge is an architecture that carries the
things across some gap. The USB to USB Bridge is also based
on the same concept-only thing is that it carries the data

between the devices. The current scenario is that you need to
have a USB enabled computer to do the task of data transfer.
It is difficult to take the computer always with you wherever
you go for the sole purpose of data transfer. Rather it is
inconvenient to do so.
So a solution is provided by means of implementation of the
bridge. The small footprint and ease of portability makes it a
choice for the data transfer. This bridge will help the user to

select a particular data file from the mass storage device
connected to one of the ports and transfers it to the other mass
storage device using some controls like explore, list, copy
provided on the front panel. The data onto the USB mass
storage device will be explored using the USB host. The LCD
displays the list of explored files from the mass storage device
and the keypad does the selection of the operations to be
performed.
The linux environment provides the basis of all functions for

the embedded design. The USB host controller embedded into
the ARM architecture does all of the major tasks. The
interfaces provided for ease of access give the feasibility of
selecting the operation to be performed. The DMA is
activated when the data transfer is initiated. Bidirectional data
transfer is possible by means of half duplex communication.
Objectives of the design:

 To enable the USB to USB data transfer by using an

embedded system.

 To make speedy data transfers through the use of

the DMA controller.

 Making the product more user-friendly.

 To develop the system as a product.

2. REQUIREMENTS OF SYSTEM
The motivation of the conceptual design of USB to USB
Bridge was an answer to a question; what can be the solution
to make the computer independent data transfer using USB?
This question is of most importance for engineering design.
After making a lot of explorations in search of answer to this
question and by questioning to ourselves, the only available

answer resulted is that develop a system that will perform the
same task as that of the computer.
This answer satisfies the common reader but the real
challenge begins here. Making a system that will do the tasks
of a computer – made us to think a little because the answer
directly suggests implementing a system that will handle USB
protocol along with the other processes.
Thus, it has been the primary objective of this study to present

as an answer - a realistic and practical concept of USB to USB
Bridge.
As majority of the tasks are for completion of the operation of
data transfer, some basic guidelines were formed. The
requirements are based on the needs and prerequisite those are
needed for the proposed system. This frame of guidelines is
forming the basis for the design and implementation of the
bridge. These are nothing the building pillars of the whole

idea. The whole system has been build around these
requirements.
Requirement 1: The first and very basic need was to have a
look over the USB protocol. The protocol is easy to use but is
somewhat difficult to implement in high and full speed
modes. This requirement is to give realistic background of the
study. [3]

Requirement 2: Commercially versatile technologies are

needed for bridge. The present technology is the one that end
users don‟t afford. One cannot use expensive technology in
the development. More design efforts are required for
application at lower end than using top end hardware.
Requirement 3: The data transfer speeds of the bridge should
be commercially competitive. It is acceptable that cost of USB
to USB Bridge can be lower than existing systems.
Requirement 4: The USB to USB Bridge will be placed on a
low end of user systems by commercial launch. The product

needs to survive the market demands.
Requirement 5: The customers for the USB to USB Bridge
may be from the particular zone of the society. Adoption by
all zones makes it possible to survive in the market. People
using the bridge will take advantage of the low power

International Conference on Intuitive Systems & Solutions(ICISS) 2012
Proceedings published by International Journal of Computer Applications® (IJCA)

39

consumption of the system, even if it would be too small for
industrialized zone. It is important for the design to know
practical demand for this type of varied use.
Requirement 6: Design a basic model with minimum power
allowing for system growth in the future. Once the USB to

USB Bridge demonstrates technical and economic feasibility
of implementation, larger and more stable systems such as the
High Speed System will be expected to follow. In this respect,
the design of the bridge should consider evolution to make a
larger system from the first operating model.
Depending on the requirements it is very important to choose
the suitable interfaces, hardware, and software from the many
options available. Let‟s look forward to the same.

 Interface
Why USB when there are lot many interfaces available

in the industry? The answer lies within the advantages that
USB provides over the other interfaces and the number of
USB devices in the digital world. More than 6 billion USB
devices are sold in total. [9]

USB is an easy to use interface. From the developers as
well as users point of view, it is has the advantages like ease
of use and ease of accessibility. Also the speed, hot
pluggability and low power consumption makes it a choice to
be used in the portable embedded system like the bridge itself.

The simplicity that USB specifications implements in the
hardware and software is of most importance when compared
to the hardware complexity of the IEEE1394-Firewire bus.
Thus it became an obvious choice for the use in the bridge as
the main interface.

 Processor/ Microcontroller
In the proposed system, data transfer is the main task.

Thus, the system needs a processor that will handle the data
transfer and related processes speedily. The processor should
have a USB host with drivers available for it.

Also the processor should be low power consuming, and
should provide compatibility with the software and or
firmware. The operating system used by the processor plays a
major in the development of the system. The processors from
ARM were standing above all considering the demands of the
embedded product. Here, the processor that provides all above

requirements is the ARM9. Its controller version is

EP9302. The ARM processors are made for embedded

design. The flexibility and choices in interfaces as well as
robustness provided by the ARM is very high as compared to
others. This makes it an appropriate selection for the design
and building of the product.

3. IMPLEMENTATION
3.1 Hardware
As the proposed system is a specific application of a large
system, the hardware selection and implementation is very
important. The main hardware of the system is the processor.
As the system will be used by different users, so along with
the processor the other user interfaces will be needed. Here, in
the system, LCD and the keypad are used to provide menu

driven system that will put the options on LCD screen and the
options will be selected with the help of a keypad.

 USB2.0

USB is a master-slave bus with one master and multiple
slaves. The master is called a host and the slaves are the
peripherals. Only the host has the ability to initiate the data
transfers; the slaves only respond to the host‟s instructions-
they never initiate transfers. A PC is a common host. But the
proposed systems embedded host does not involve a PC,
instead uses the hosts in the microcontroller.

The USB protocol is quite different from the other
interfaces. Figure 1 shows the format of an USB Frame. It is
based on the single host and multiple of downstream USB
port. The USB devices are connected to it in a tiered star
topology. The hubs make it possible to connect many devices

in series. The root hub is in the host controller which acts as
data controller.

Figure 1. USB frame format

The communication made by USB is based on logical
channels - known as „pipes‟. It connects the host controller to
the device endpoint. The endpoint is a logical entity which
resides onto the device. The connections established are 1 to 1
for the endpoints in pipes. A USB device can have 32
endpoints- two of which are reserved. So a total of 30 are
present for normal use.

The data transfer is having four types:

1. Interrupt transfers: for the devices needing
quick but guaranteed response(e.g. pointing
device)

2. Isochronous transfers: For some fixed data rate
but data loss may take place(e.g. audio, video)

3. Control transfers: used for simple status check.
4. Bulk transfers: uses available bandwidth with

no fixed data rate (e.g. file transfer).

Depending on the type of data transfer, there are two
types of pipes: stream and message. The stream pipe is
connected to a unidirectional endpoint for the interrupt,
isochronous and bulk data transfer modes. The message pipe
is connected to bidirectional endpoint for control data transfer.
The frame format of the USB communication is shown in the
figure 2.

The speeds offered by the USB are defined in the

USB2.0 specification:
1. Low speed: 1.5 Mbps
2. Full speed: 12 Mbps
3. High speed: 480 Mbps

 ARM9

Data transfer is the main task in the system. Thus, a
processor that will handle the data transfer processes speedily
is needed. The processor should have a USB host with USB
device drivers installed in it for plugging in a mass storage
device which will be used to transfer data from one device to
other. Here, the processor that provides all above

requirements is the ARM9.

 EP9302 Development Board
In the implementation of this system, the development

platform used is the ARM9 development board- SBC9302. It
is based on Cirrus Logic EP9302 processor. It has ARM920T
at its
core. The EP9302 is an ARM920T based system-on-a-chip
design with a large peripheral set targeted to a variety of
applications. Various interfaces along with the connections in
the ARM architecture are shown in figure 3.

The EP9302 features an advanced ARM920T processor

design with an MMU that supports Linux, Windows CE and
many other embedded operating systems.

The EP9302 has a dual port USB host which is very
important for the system. The USB host Controller Interface
provides full speed serial communication ports at a baud rate
of 12 Mbits/sec. Figure 2 shows the detailed block diagram of
EP9302

International Conference on Intuitive Systems & Solutions(ICISS) 2012
Proceedings published by International Journal of Computer Applications® (IJCA)

40

Figure 2. Block diagram of EP9302

This can support both low speed and full speed USB

device connections. Root HUB is integrated with 2
downstream USB ports. It also supports power management.

The open HCI host controller initializes the master DMA
transfer with the AHB bus.

 LCD

To provide User interface, the bridge uses the LCD
(Liquid Crystal Display). The contents of the mass storage
device are displayed on the LCD. This helps the user to view
and select the files or folders of interest from the USB device.
Also the options like select, copy for data transfer are put on
to the LCD.

 Keypad

The keypad is one of the User interfaces which are
provided in the system. The main purpose of the keypad is for
navigation through options and files. The contents displayed

on the LCD can be selected by using this keypad. The user
will be able to select any option from the options that are
available on the LCD like COPY, PASTE, EXPLORE, etc.
just by pressing the corresponding key. The system uses a 4x4
keypad which is easy to interface and work with.

3.2 Software
The hardware used supports operating systems like

LINUX and WinCE. The OS is needed for the system as all
the initializations, drivers , data and flow control, error

handling, resource sharing as well as multitasking is possible
only with the help of a good operating system. For EP9302,
LINUX 2.4 operating system is employed.

A Linux system can actually be adapted to work
with as little as 256 KB ROM and 512 KB RAM. So it's a
lightweight operating system to bring to the embedded
market. Drivers and other features can be either compiled in
or added to the kernel at run-time as loadable modules. This

provides a highly modular building-block approach to
construct a custom embedded system. The Linux kernel
provides an extended support to the drivers for the
development boards.

The compiler used is „gcc‟ (arm-linux-gcc). The gcc
helps to develop the program as the system works with the
linux environment.

4. ARCHITECTURE OF THE SYSTEM
As shown in figure 3, the architecture of the system

mainly consists of a processor, a LCD and a keypad. The
processor and the USB host work in the LINUX environment.

Figure 3. Architecture of the system

All the initializations for USB host and processor are done
using the LINUX kernel. The USB host allows the processor
to gain the control of the USB devices. Various LINUX
commands [4] are used to access the information such as files,
folders, total size and other system related information of the

USB device. Once the USB mass storage device is connected,
the contents of the USB device are displayed on the LCD.

4.1 Implementation Algorithm
i. Select the suitable development board.

ii. Check whether the OS is ported or not.

iii. Port the OS and install the USB device driver.

iv. Connect the USB device to check functionality of
the USB device.

v. Interface the LCD and keypad as a User interfaces.

vi. Check the communication between the USB device
and the board. (This is done by plugging in the

mass storage device in the USB port and by
looking the response on the HyperTerminal.
We get all the information of the mass storage
device which is connected to the board as a
response.)

vii. Explore the device contents on LCD.

viii. Select a particular file, and by using the option
COPY, copy that file to destination device
using keypad.

ix. The selected file is then copied into destination USB
device that is connected in one of the two USB
ports.

x. If another copy operation is to be performed, go to
step vi.

xi. Terminate the process.

International Conference on Intuitive Systems & Solutions(ICISS) 2012
Proceedings published by International Journal of Computer Applications® (IJCA)

41

5. WORKING OF THE SYSTEM

5.1 Hardware Initialization
To get the system start functioning, some set up

controls like baud rate, flow control etc need to be done. As

soon as the board is powered up, the linux starts booting. All
the preliminary checks are done for check functionality of the
board.

The USB device should be connected to the
hardware after the system boots. When a USB device is
connected to the hardware, the initialization starts. Normally it
takes 1 or 2 seconds to initialize it. Consider a case when we
connect the USB device to the hardware in between the boot

process, then the error comes into picture as “USB device not
recognized”.

5.2 Execution of the task
Instead of showing the process in a descriptive

manner, we can represent the flow of execution in flowchart
format. The following flowchart shows the stepwise flow of
the execution of the task. First step show the initialization of
the system. Next step defines the initialization of the USB
peripheral and system components. The steps ahead define the
exploring and selecting the operation. The second last step
shows the operation completion whereas the last step shows

the termination of the process. The flowchart of operation is
as shown in the figure 4 below.

 Figure 4. Flowchart of task execution

5.3 Termination
When the USB device remains unaccessed for more

than 3msec, it (the USB device) goes into the sleep mode. It is
one of the features of the USB2.0 specification. Once the USB

device goes in to the sleep mode, the termination of the
process can be completed i.e. the USB can now be removed or
ejected.

6. TESTS AND RESULTS
The EP9302 hardware was tested to check whether

the USB drivers are installed or not. The boot process of the
embedded linux is shown in the figure 5. The next test
performed was to check whether the hardware can recognize
the USB device or not. This test shows the result by
displaying “USB device is recognized” when USB is

connected to the hardware.

Figure 5. Linux boot window in the HyperTerminal

After confirming the above tests, the test was

carried out to check whether a file can be copied from the PC
to the USB. This test ran successfully. Going further, the

proposed system was also tested to copy a file from one USB
device connected at one end to a device at the other port using
the linux commands like ls /media, cp. The “minicom” facility
in the Linux kernel acts in the same manner as the
“HyperTerminal” in the Windows.

The user interfaces (4x4keypad and 16x2 LCD)
were also worked out. One important test was also carried out
to check for the bidirectional data transfer in the half duplex

mode. To do so, a single file from mass storage was copied to
and fro using the HyperTerminal. The data transfer in half
duplex mode is also possible.

 Figure 6. USB mass storage device explored

 Figure 7. Keypad test output

7. ADVANTAGES

7.1 Battery operated
As the whole system operates on the 5 V supply and

the core operates on 3.3V and also is very low power
consuming so the system can be made to operate on the
battery.

7.2 Portable
The proposed system can be made portable by

means of making it a standalone platform. The processor
along with the peripherals makes it to work independent of

PC. One can carry out the data transfer anywhere, anytime.

International Conference on Intuitive Systems & Solutions(ICISS) 2012
Proceedings published by International Journal of Computer Applications® (IJCA)

42

7.3 Power Optimization
As both the processor and the USB2.0 specifications

are designed to keep the lowest possible power consumption,

the power optimization is done by using it only when it is

necessary.

8. CONCLUSION
The USB to USB Bridge gives a concept to study

the USB protocol as well as the working of the USB host
along with the processor in group. A set of basic requirements
were defined and used for design work of the USB bridge

concept based on practical tests and results. The system - if
mass produced will be costing very less as compared to the
costs incurred in the development. The ease of use and
portability makes it a powerful but unique tool to do the data
transfer. The problems regarding the embedded OS
independent solution can also be resolved using the linux
kernel.

As the system is going to work as an application of
the major system, the number of applications is limitless for

the bridge. For example, the CAN bus implemented in
automobiles can also be made to work with the USB protocol
for faster data access. The systems like vehicle scanner,
electronic testing platform for automobiles, CNC machines
are also capable of deploying the bridge for their sole purpose
of fulfilling the system specific goals. One more application to
which the bridge looks forward is as the detachable device
that will bridge many interfaces e.g. a tiny module that can be

connected to the handheld and mobile gadgets or units.
As a result, a more generalized but unique concept

of USB to USB Bridge will be developed. In this respect, this
study has given us a remarkable insight into the future of
development of high speed USB 3.0 Bridge.

9. REFERENCES
[1] ARM926EJ-S Datasheet.

[2] Datasheet of EP9302 from Cirrus Logic.

[3] Jan Axelson “USB Complete”-third edition.

[4] SPJ Embedded Technologies- “SBC9302 User's
Manual”.

[5] William Shotts, Jr., “Linux bash shell programming
tutorials”.

[6] Xiaoping, Shelei, “Study on System Verification of
USB2.0 Interface Protocol Control Chip Hardware

Design”, ICEE 2007.

[7] Jia Luo, YingQing Xia, AiSheng Li, Cheng Yang, “The
design and realization of DSRC logic analyzer based on
USB”, ICFCC 2010.

[8] Li Ying-lian, Hu Bing, “Design of transient recorder
based on USB2.0”, ICECE 2010.

[9] Gong Yun, Sun Li-hua, “Analysis and Implementation of
USB Driver Based on VxWorks”, ICECE 2010.

[10] "SuperSpeed USB 3.0: More Details Emerge". 6 Jan
2009.
http://www.pcworld.com/article/156494/superspeed_usb
_30_more_details_emerge.html.

[11] http://www.cirrus.com/en/products/ep9302.html

[12] http://www.linuxfordevices.com/c/a/Linux-For-Devices-
Articles/

