
International Journal of Computer Applications (0975 – 8887)

International Conference on “Internet of Things, Next Generation Networks and Cloud Computing 2017”

18

A Literature Review on Middleware solutions for
Industry 4.0

Suman Patro

Department of Computer
Engineering

K. J. Somaiya College of
Engineering

Mumbai, India

Rushikesh Nikam
Department of Computer

Engineering

K. J. Somaiya College of
Engineering

Mumbai, India

Manish Potey
Department of Computer

Engineering

K. J. Somaiya College of
Engineering

Mumbai, India

ABSTRACT

Communication systems work in synchronous or

asynchronous mode. Asynchronous working of a system is

based on event paradigm, wherein only the changed state of

the system is recorded. This benefits the system performance

drastically since redundant tracking of states or data is not

performed. Event-based architectures are modeled through a

Middleware component which, in a general sense connects

Business, Enterprise or Software in a distributed environment.

Middleware are essentially based on the publish-subscribe

(pub-sub) pattern. Modern software Platforms that fall under

Industry 4.0 employs a middleware for communication

between entities in the system. This additional layer reduces

the connection overhead of the system, which is not the case

with the conventional peer-to-peer model. Hence, Messaging

systems based on the Middleware approach, with event-driven

principle and pub-sub pattern provide added benefits, of

dynamic reception of data to all those entities in the system

that are interested in a specific data type and maintaining

communication links between entities and the Middleware,

and not with every other entity within the system. This paper

aims to review and evaluate Middleware solutions such as

RabbitMQ, ZeroMQ, Mosquitto, Apache Qpid and YAMI4

based on factors such as middleware paradigms, available

messaging patterns, middleware performance (message

throughput and latency), message priority and queuing,

message routing, etc. Based on optimal throughput and

latency measures, YAMI4-message oriented middleware

(Message Broker) proves feasible for Industry 4.0 platforms.

This paper also focuses on the Open issues and solutions with

respect to specific middleware types.

Keywords

Middleware, Industry 4.0, publish-subscribe, RabbitMQ,

ZeroMQ, Mosquitto, Apache Qpid, YAMI4, Message Broker

1. INTRODUCTION

1.1 Motivation
Traditionally, a software package such as Supervisory Control

and Data Acquisition Unit (SCADA) [4] employs polling-

based data fetch that lead to the tracking of redundant data,

this proved inefficient for systems where data influx and

outflux is huge. Therefore, Event-driven architecture [10] is

used in modern systems to track changed data. Event

mechanism is modeled after a pub-sub design pattern [19].

Pub-sub, unlike request response, is based on a principle

which serves information to only those components of the

system that have prior subscribed for a particular data type.

This leads to efficient data handling in the modern software

platforms.

In the past, system modules used to be tightly coupled in a

point-to-point manner. This induced connection overheads,

since every module used to be connected to every other in the

system. Modules also had to know each other semantically for

communication purpose; this posed an additional burden on

the system. Hence, a middleware approach (message broker)

in modern software platforms is used to facilitate data

dissemination between entities. This additional layer

communicates with all the other modules in the system, and

vice-versa, instead of all the other modules communicating

with each other.

1.2 Paper Organization
Section 2 deals with concepts related to Event mechanism.

Section 3 briefs about the existing middleware Paradigms.

Section 4 enlists the Master criteria set for middleware

evaluation. Section 5 focuses on the theoretical understanding

of the middleware solutions based on the criteria set. Section

6 gives a practical analysis of the middleware solutions based

on the existing studies. Section 7 gives a detailed comparison

report of YAMI4 & Apache Qpid based on their performance

parameters and chooses YAMI4 as the optimal solution.

Section 8 focuses on YAMI4's internal mechanism based on

experimental tests conducted. Section 9 enlists Open issues in

middleware and best available solutions based on specific

middleware types. Section 10 provides a summary of the

research conducted and highlights further work to enhance

YAMI4 message broker in Web and Application security

context.

2. BACKGROUND

2.1 The Middleware Approach
Middleware is software that connects software components or

enterprise applications. It allows application modules to be

distributed over heterogeneous platforms and reduces the

complexity of developing applications that span multiple

operating systems and network protocols. The middleware

creates a distributed communications layer that insulates the

application developer from the details of the various operating

systems and network interface.

2.2 Event-driven architecture
Event-driven architecture [10] is an architectural style that

builds on the fundamental aspects of event notifications to

facilitate immediate information dissemination and reactive

business process execution. It has producers, consumers

which are components in an event mechanism. Any change in

the state recorded is termed as an event. This event is fired by

emitters and handled by consumers. As event sources publish

these notifications, event receivers can choose to listen to or

filter out specific events, and make proactive decisions in real-

International Journal of Computer Applications (0975 – 8887)

International Conference on “Internet of Things, Next Generation Networks and Cloud Computing 2017”

19

time about how to react to the notifications. The Event

handlers are used to process the events and event listeners act

as interfaces on the consumers. These architectures are

fundamental blocks in asynchronous environments. Event

driven architectures have loose coupling within space, time

and synchronization, providing a scalable infrastructure for

information exchange and distributed workflows. The

architecture is extremely loosely coupled because the event

itself doesn’t know about the consequences of its cause.

2.3 The Pub-Sub model [19]
The design pattern followed in Middleware is known as pub-

sub since there are producers (publishers) who publish data

and subscribers (receivers) who subscribe to particular data of

their interest. Fig. 1 shows the process:

1. Publishers and subscribers find the broker address from

the broker discovery service.

2. Each of them registers to the broker over topics, using

which publishers publish messages and subscribers

receive those messages.

3. The publisher publishes messages and the topic of

publication to the broker.

4. Message broker matches the topic of publication with the

saved subscriptions and pushes data to the relevant

subscribers only.

Fig 1: Basic pub-sub communications

The benefit of this approach is, not all the consumers are

overloaded with all the data, and if there are consumers in the

system that are interested in similar data type then their

request can be processed all at once.

Hence the functionalities viz. message serialization, message

routing, message transfer in multiple supported patterns, etc.

are all handled at the broker level, and the other

communicating parties need to simply transfer data.

3. MIDDLEWARE PARADIGMS
Middleware paradigms involve Object, Service, Data and

Message. Middleware systems based on such paradigms are

Object-oriented, Service-oriented, Data-oriented and

Message-Oriented.

In Object-oriented approach [6], an object-oriented

middleware focuses on the receiver's identity to make the

application's name in an unambiguous manner, provides

location independency even for migrating applications and

provides interface and inheritance abilities. The physicality of

the code remains hidden from the programmer; hence the

distribution of the whole system becomes a deployment issue

and is not necessary to deal with in the coding stage. The code

is implemented in a similar manner to both local and remote

(distributed) invocations. Even the management issue is not

much critical since the cost of delivery is quite same to both

local and remote invocations. This is due to similar

implementation of remote and local invocations. But, due to

the isolation of the programmer from the physical aspects;

time to send and receive messages, total number of messages,

etc. are not known to the user code, and thus management

becomes difficult.

Examples of Object-oriented middleware systems are

CORBA (omniORB, JacORB, TAO, etc.) and ICE.

Limitations of Object-oriented middleware are:

 High memory footprint.

 C++ and Java implementations differ.

 Complex error-prone API.

 No direct support for pub-sub.

 Blocking issues

 Shrinking community.

 Lack of new releases and bug fixes.

The Service-oriented approach [6] is quite similar to the

object-oriented approach. In this middleware, there is less

focus on the target of invocation and more on the operation to

be performed; this puts most of the effort on defining the

operation and the data structure that is being sent or received,

and the user of such a system is not concerned much with the

receiver. It is simpler than Object-oriented because issues like

identity and lifetime of remote objects do not have to be

resolved. Thrift is an example of service-oriented middleware.

A Data-centric middleware [6] focuses on the purpose and

meaning of data that is subject to transmission and not on who

is sending the data, and most of the effort is spent on ensuring

effective routing of information to all interested parties, the

sender and receiver are not responsible for any data handling,

only data transfer is to be taken care of by the end users. The

decoupled components in this approach lead to resilient and

fault tolerant systems. The physicality of data is not hidden

from the programmer, hence management of data is easy, but

decoupling makes it difficult to set up communication in the

request-response manner (typical for client-server

interactions) which is common to a number of scenarios.

Examples of data-centric middleware systems are all DDS

implementations (OpenSpliceDDS, OpenDDS, RTI DDS,

etc).

In Message oriented middleware [6], the physicality of

messages is not hidden, hence management of messages is

possible within the user code, even the messages can be

processed in sequence and in parallel. In contrast to DATA-

CENTRIC, this approach supports both peer-to-peer

interactions in the request-response style, as well as with

decoupled publish-subscribe, for data transfer. Hence, the

message-oriented approach highlights the physicality of

communication without any loss of generality. It also focuses

on reliability, scalability, and fault tolerance with optimal

throughput and caters to Enterprise solutions as well. The

disadvantage of this middleware type is it has an overhead of

another layer - broker which requires an additional hop to

reach the consumer. Examples are Apache Qpid, YAMI4, etc.

International Journal of Computer Applications (0975 – 8887)

International Conference on “Internet of Things, Next Generation Networks and Cloud Computing 2017”

20

4. CRITERIA FOR MIDDLEWARE

EVALUATION
Middleware has feature set that complies with specific use-

cases. Fig. 2 shows categorization of such features into levels

of requirements of a system, viz. Fundamental, Mandatory or

Desirable.

 Fig 2: Categorizing features according to the system

requirements

Evaluation criteria based on feature set is as follows-

 Language used for middleware development

 Supported languages for client API

 Age of the solution

 Middleware domain subset-Data centric, message-

centric, object-centric, service-oriented

 Memory Footprint- the size of the application when

in-process or, in steady state. Lines of code are a

form of measure for analyzing both the complexity

level of the code and memory footprint.

 Application protocols supported- Middleware

support their own messaging frameworks based on

application -level protocols. For example,

Websockets for real-time web applications,

Advanced Message Queuing Protocol (AMQP)

for enterprise-level communication, Messaging

Queuing Telemetry Transport (MQTT) for

embedded systems, etc.

 Platform support- OS platforms supported by the

middleware.

 Messaging/Communication pattern support in the

middleware are categorized as, Pub-Sub (push

model), Request-Response or pull model (e.g.

HTTP model), Point-to-Point (or Peer-to-Peer),

ACTive (Availability for Concurrent Transactions),

Pipeline (for aggregation and load-balancing),

Survey (a single request for the state of multiple

applications).

 Message handling capacity (Throughput) - This is

nothing but the rate of transfer of messages per unit

time in the system.

 Latency- It is measured as the time required for a

single message to traverse from one end-point to

another.

 Persistence- It is the process of saving data real-time

so that if the middleware crashes, there is a backup.

Persistence mechanisms available are in-memory

persistence, resident memory persistence, and disk

drive persistence, for e.g., RAM, distributed caches

or database.

 Load Balancing- This means, if an application

system seems busy, the message could be forwarded

to a parallel process in an alternate location.

Federated cluster mechanism is used to achieve load

balancing.

 Scalability is the capability of a system to serve

multiple clients. This can be measured with respect

to client connections i.e. maximum number of

connections supported by the system keeping a

performance benchmark. Scalability is also used to

quantify queue volume of message queue servers.

 Routing: It is nothing but selecting a path to transfer

data from source to destination. Based on topology

and frequency of topology change, routing

mechanisms are included into the middleware. This

is a complex criterion when publishers or

subscribers are mobile, for example in IOT

applications.

 Queues are a part of messaging semantics. The

purpose of queuing is, when a receiver entity is

down, or when there is network congestion, the

messages sent by the sender application is buffered

at the queue, avoiding loss. Queue categories are,

the store and forward within the broker (point to

point), pub-sub (in broker) and store and forward

at the receiver, pub-sub with topic filtering

(exchange), pub-sub based on fan out, pub-sub with

content filtering and pub-sub based on headers.

Queue creation types are, durable or ephemeral, and

persistent or non-persistent. Middleware support for

task queues, for message queues, etc.

 Support for delayed jobs is a feature in the Message

queue and Task queue managers.

 Data interchange format available at the middleware

level, for example, XML, JSON, customized

solution such as message pack, etc.

 QoS-of messaging- Message Acknowledgement

schemes, support for error notification for message

acknowledgement using 'ACK' or 'NACK', Delivery

Policies of whether a message should be delivered

at least once, no more than once or at most once,

Purging Policies based on TTL, Message

Size/Format supported, Message Ordering, support

for message batching (Message Batch size), etc.

 Security at the middleware layer is categorized

based on authentication, confidentiality, integrity

and availability goals.

 Middleware Discovery is a feature that allows the

middleware to get discovered by the applications

even in geographically distant locations.

 High Availability (HA)/Failover- This is achieved

by employing multiple middleware nodes in the

system, so that even if a single node fails, there are

other backup nodes with the consistent state to take

over.

 Reliability- It is the measure with which the system

conforms to some specification.

 Event-Driven Services- Some services are used on

an as-and-when required, hence some are up all the

time and others are event based, set as and when

needed.

International Journal of Computer Applications (0975 – 8887)

International Conference on “Internet of Things, Next Generation Networks and Cloud Computing 2017”

21

 Independence in connection to applications means

coupling of the middleware with the supporting

applications is low.

 Support for dynamic subscribers/listeners- This

allows subscribers to join and leave the system

dynamically, difference in message receipt time of

new members with respect to old ones are observed

in such a scenario.

 Listeners re-querying for best sources even after

finding an acceptable publisher/feed.

 Open standards support- Middleware that supports

Open messaging formats, open protocols, and open

data formats.

 Management Console support- Availability of

management console to monitor message broker

status or message queue status, to avail visualized

statistics such as the number of messages per second

and the consumption of resources, such as memory,

sockets, and the crucial file descriptors.

 Management/maintenance of the middleware

 Ease of use/Deployment model

 Forum support- Community support for research

and development, bug fixes, etc.

 Licensing and Royalty structure - Middleware

licensing policies such as open source GPL, LGPL,

BSD, etc), proprietary or commercial.

 Self-hosted/remotely hosted- Middleware for

specific business models are self-hosted or remotely

hosted.

 Operational and financial cost- Financial or

operational burden of the solution.

 No Vendor lock-in - Systems that are based on open

standards are interoperable and hence support no

vendor lock-in.

 Application support- Real-time systems that employ

the middleware and its flexibility in use.

5. RELATED LITERATURE
Modern systems to meet the requirements of Industry 4.0 need

a middleware that connects all the software modules which

participate in data fetch from driver applications and display

those over the user interface. The Object and Service-oriented

middleware prove feasible for connecting Business and ERP

solutions. Hence, middleware requirements for Industry 4.0

platform comply with Data and Message paradigms.

This paper therefore reviews and evaluates solutions from

Message-Oriented Middleware as shown below.

5.1 Mosquitto
Mosquitto [2] is a message-centric broker, based on MQTT

wire protocol, developed in C language and designed

essentially for TCP/IP networks.

Licensing scheme supported is open source-BSD. The

protocol has no request /response support, but only pub-sub

style communication and designed for machine-to-machine

(M2M) at device level along high latency or constrained

networks, to a server or small message broker. Therefore,

being lightweight is beneficial.

MQTT-based publishers and subscribers are not interoperable

completely; it works for device data collection though.

Message unmarshalling between different MQTT pub-sub is

possible only if the format of the message body is agreed

between peers.

It provides device data collection solution, although only

partial interoperability between MQTT publishers and

subscribers can be guaranteed. Messages can be exchanged

between different MQTT implementations but unless the

format of the message body is agreed between peers, the

message cannot be unmarshaled. QoS is an attribute of an

individual MQTT message being published; the QoS of a

message forwarded to a subscriber might be different to the

QoS given to the message by the original publisher. The lower

of the two values is used to forward a message. The three QoS

settings provided by MQTT are: exactly once, at the most

once and at least once. There is no provision for queues at the

protocol level; hence sender and receiver must be up

simultaneously. But Mosquitto at the broker level supports

queuing. It also supports both persistent and non-persistent

messaging. MQTT has no flow control or selective

acknowledgment to prevent app-locks. There is even no

transactions support for the application server.

With respect to Security as of MQTT v3.1, the username-

password is used over the key-based system. This helps in

efficient key management, and also serves the purpose of

authenticating clients. SSL and TLS based encryption is

available at the protocol level. Active directory (Kerberos)

support is not available.

Mosquitto has Websocket support for real-time messaging for

web-based applications.

5.2 Apache Qpid
Apache Qpid [7, 11] is a message-oriented middleware

written in C++ that stores, routes, and forwards messages

using AMQP based on open source Apache 2.0 license. It

supports AMQP 1.0 and AMQP 0-10 at the application level

and works on both Linux and Windows platform. Pub-sub and

request/reply (slower transfer) are supported in Qpid.

Exchange-Bind-Queue is the principle used in Qpid.

Numbers of Queues are unlimited and its size can be set. After

queue overflow, overflow policies such as reject, flow to disk,

ring, ring strict are used. Queuing policies supported are,

FIFO and Last Value Queue (LVQ). Exchange types

supported are, Built in exchanges such as default (nameless)

exchange- never replicated, the AMQP standard exchanges

(amq.direct, amq.topic, amq.fanout and amq.match) and the

management exchanges (qpid.management, qmf.default.direct

and qmf.default.topic).

Pluggable persistence is supported in Qpid. It stores its queues

in memory or in the database. For the persistence of messages,

relational Apache Derby database and the Oracle Berkeley

DB are supported. Routing is not available but is done

through AMQP; supports Header-based routing. Qpid

replicates data and metadata across a cluster combined of

nodes, hence supports queue replication and transaction, and

the client should have the information about the node-cluster

relationship i.e. which node forms which cluster.

Message grouping in Qpid: the broker uses this group

identification to enforce policies to control how messages

from a given group are to be distributed to consumers; this is

done using Qpid config tool. For example, if both group A

and group B messages are in the same queue with B group

messages being lined after A group, this doesn't imply B

International Journal of Computer Applications (0975 – 8887)

International Conference on “Internet of Things, Next Generation Networks and Cloud Computing 2017”

22

messages will always be fetched after A group messages, the

current consumer up for receiving messages will receive A

group, by the time other consumers can access B group.

HA in Qpid is achieved by multiple brokers: Initially, Clients

connect to a primary broker, no backup brokers accept client

connections. If the primary fails, only then a new primary

broker is created from the backups and other backups are

connected to the new primary. The new primary selection is

done by the cluster resource manager-rgmanager. rgmanagers

support virtual IP (VIP). A VIP is an IP address that is

assigned to multiple domain names or servers that share an IP

address based on a single Network Interface Card. Even if the

servers relocate, routing and DNS service are not necessary to

be implemented.

Security in Qpid is achieved through authentication using

SASL framework, GSSAPI (provides Kerberos

authentication) CRAM-MD5, DIGEST-MD5 and plain SASL

with SSL supplement. Anonymous can also be used.

Authorization is done using ACL permissions and rules.

Encryption is carried out using SSL. Encryption and

certificate management for Qpid are provided by Mozilla's

Network Security Services Library (NSS).The certificate

database is created and managed by NSS.

Limitation: AMQP is still evolving and not yet stable; hence

the implementations have versions of AMQP that are non-

compliant with each other. Therefore, AMQP-based solutions

would need continuous improvements to meet changes in

AMQP [14]. Clients and Brokers need to be based on the

same AMQP version; only then data transfer is possible.

5.3 RabbitMQ
RabbitMQ [8, 11] was developed in the year 2007 and is

based on Mozilla Public license. It is a message-oriented

middleware based on Erlang language which is especially

suited for distributed applications, as concurrency and

availability are well-supported. It runs on almost all major

platforms (at least almost all places where Erlang/OTP runs).

It supports application layer protocols such as, AMQP which

is appropriate for heterogeneous environments, MQTT,

REST, Streaming Text Oriented Messaging Protocol
(STOMP), STOMP over WebSocket and Extensible

Messaging and Presence Protocol (XMPP) over a gateway.

Hence, RabbitMQ can be used to build ESB, due to STOMP

over WebSocket support.

In RabbitMQ, Persistence is built-in and is controlled at the

message level. The Erlang database-Mnesia is configurable to

be either in RAM or disk, allows RabbitMQ to offer in-

memory/disk based queues very easily, but there are DNS

errors that cause the DB-Mnesia to crash at times. It supports

transactions with unlimited queues. With respect to

messaging, RabbitMQ TRANSACTED mode (not just

durable/persistent) is necessary for guaranteed delivery of

messages, and only persistent mode is not enough.

The Queue specifics of RabbitMQ allow multiple consumers

to be configured for a single queue, and they all get mutually

exclusive messages. It also supports multiple types of queues

such as direct, fan-out, etc. so semantics such as broadcast to

multiple clients listening on multiple queues is achieved.

Messages that are unordered, not FIFO delivered or lost are

auto-requeued (based on timeout). A single RabbitMQ

instance doesn't scale to a lot of queues with each queue

having fair load since all queues are stored in memory (queue

metadata) and also in a clustered setup. Each queue’s

metadata (but not the queue's messages) is replicated on each

node. Hence, there is the same amount of overhead due to

queues on every node in a cluster. It is a message queue that

can be used as a work queue as well but requires additional

semantics such as burying jobs that need to be implemented

by submitting a failed job to a "buried" queue.

Messaging semantics such as No ONCE-ONLY semantics

hence, messages may be sent twice by RabbitMQ to the

consumer(s).The consumer(s) has/have to do the rate limiting

by not consuming messages too fast and not the broker itself

adds responsibility to the end entities. It is basically a push

model.

Redundancy and HA are built-in features in RabbitMQ and

are available through the Erlang OTP platform. Multi-tenancy

in RabbitMQ is supported via hosts. Security is attained at

multiple levels. The management plug-in provides an

appealing web console that allows easy administration with

visualized statistics such as the number of messages per

second and the consumption of resources, such as memory,

sockets, file descriptors, etc.

5.4 ZeroMQ
ZeroMQ [9] a message-oriented middleware library is largely

concerned with business-type systems. It has no open standard

protocols at the application layer but is based on its own

customized protocol. ZeroMQ uses different protocols

depending on the peer's location (TCP, PGM multicast, IPC,

inproc shared memory).

The core of the library is written in C; bindings for C++, Java

(through JNI) and many more languages are supported. It runs

on most platforms, even on LynxOS. ZeroMQ is available

under the LGPLv3 with a static linking exception (even for

iPhone apps). There is no commercial licensing

alternative. ZeroMQ is basically a Brokerless solution. The

direct connection between the system parts results in reduced

maintenance costs as there is no need for brokers or daemons.

The sender of a message is responsible for routing to the right

destination and the receiver of a message is responsible for

queuing, this shows the division of responsibility by the

sender and receiver since it is a Brokerless solution.

ZeroMQ supports communication patterns such as request-

reply, pub-sub, workload distribution and transports like in-

process, inter-process, TCP and multicast achieving

concurrency. It supports synchronous or asynchronous

communication.

Serialization at the middleware end is not supported. ZeroMQ

has no type specification and does not know anything about

the data a user sends. For this reason, it is to be used with an

external serializer. Message batching is supported with

unlimited queues support. Message transfer is higher than any

other solution in transient mode. ZeroMQ does not handle

persistence, hence requires higher layers to manage it.

ZeroMQ has a small memory footprint since it is free of

unnecessary dependencies. Routing in this middleware is

available but is complex to implement. It is scalable. ZeroMQ

has no mechanism to support failover and HA. It is possible to

implement Enterprise Messaging system over ZeroMQ.

5.5 YAMI4
YAMI4 1.10.0 [3, 6] was developed in the year 2010. The

messaging library is developed using C++, objective-C, C

(Industry package) and the client APIs in Ada, C++, Java,

.NET, Python.YAMI4 is guarded against GPLv3 or

Professional package: Boost licensed. It functions both in

International Journal of Computer Applications (0975 – 8887)

International Conference on “Internet of Things, Next Generation Networks and Cloud Computing 2017”

23

Brokered and Brokerless scenarios and has cross platform

support.

YAMI4 supports both request-response and pub-sub pattern.

Since the connections are messaging pattern independent,

runtime decision to switch communication patterns is

available; this achieves asynchronous type with full duplex

communication in YAMI4.

Boost library is resource-heavy and isn't supported by Lynx

OS and Unison platforms, for which YAMI4 has been

implemented; hence boost is used in limited context. Thus,

YAMI4 is lightweight and portable due to lesser external

library dependency. Socket implementation in YAMI4 is

based on TCP sockets. For windows, Winsock and for other

OS, C++ based POSIX library is used. Thread model in

YAMI4 is as follows: a main thread, a single thread for

handling I/O events and another dispatcher thread for

processing events are used. Dispatcher threads are limited in

number. The I/O thread accept requests from an application

and is released for new incoming requests; the processing is

given to dispatcher threads, hence non-blocking is achieved,

this helps to scale applications. Reliability is achieved in

YAMI4; using a single thread, by preventing deadlocks and

allowing thread safety. Programs are allotted their own private

allocator; hence interference is less leading to reliability.

Persistence is not supported in YAMI4. Routing in YAMI4 is

either Point-to-point or pub-sub which is implemented using

multiple tag matching and hierarchy concept. Priority queue

in YAMI4 is implemented using dynamic lists. Queue

Overflow policies such as: reject message, drop message and

update message are specified. Messaging Semantics supported

in YAMI4 are, Delivery policies-at-most once, Message

size/format- raw data and typed data, Ordering, Prioritization,

Message acknowledgments, Purging, etc. Design pattern

support in YAMI4 shows no singleton pattern, no shared

memory concept, and memory is partitioned for each block.

For Serialization, raw binary data or custom serialization

schemes are used. In addition to the standard data model and

the parameters object as its implementation, YAMI4 allows

using raw binary data for efficient transfer of opaque data and

custom serialization schemes that allow integrating other

models like XML, JSON, ASN.1, etc.

Using the concept of Clustering and federation of brokers,

load balancing and failover are achieved. For e.g., Suppose a

message is to be routed via a server, a set of target servers are

specified i.e., failover: (tcp://somehost:12345|

tcp://otherhost:12345), first tcp://somehost:12345- target1 is

checked, if not available, then tcp://otherhost:12345- target 2

is opted for. If the transmission is successful to the 1st target,

then 2nd target is not even checked. Hence it is synchronous

communication for failover. For load balancing, when both

the target servers are available, any random server is selected

and message is routed through it. HA is achieved through

forwarding principle, in which brokers forming a cluster

transfer messages to other brokers within the cluster. This

allows subscribers listening on a different server to receive

messages being published by publishers on a different server.

Error codes and exceptions are provided for debug logs, and

system state before the crash is preserved for recovery

purpose.

From Security context, SSL support is available, Digital

signatures can also be used for data security. Access controls

and encryption mechanisms can be implemented at the

application layer. A feature to monitor the health of the

message broker is available through the 'event monitors'.

YAMI4 has its own wire level protocol (YAMI4) and does

not support any available standards; hence interoperability

between systems is not possible. For interoperability,

application level efforts are to be taken.

Table 1 shows evaluation of middleware solutions in a

nutshell.

6. RELATED STUDIES
The above comparison table deals with theoretical parameters

for evaluation purpose. There have been several works which

show practical analysis of solutions based on the criteria set.

The paper [1] shows an experimental analysis of AMQP and

MQTT protocols over mobile networks finds out the

applicability of the protocols for such unstable networks. It

infers that both the protocols definitely account for jitter, but

no message losses are found. In message burst conditions,

AMQP follows LIFO ordering i.e. messages are fetched in a

reverse order at the receiver, which is not the case with

MQTT. Considering message payload, MQTT has a larger

payload capability than AMQP. This is because of only a 2-

byte header in MQTT, with a much larger header of 8-bytes in

AMQP. Hence, it recommends using MQTT for energy-

efficient requirements and AMQP for security aspects.

 In [3], the tests have been done for Controls Middleware

project to operate CERN accelerators. The authors test

ZeroMQ, Apache Qpid (AMQP) and YAMI4 based on

request-reply and pub-sub patterns for throughput and

scalability factors respectively. They conclude ZeroMQ is

faster due to the automatic message batching. YAMI4 and

Qpid behave average with a message transfer rate of 3500 and

3200 messages/sec respectively. They also prove that YAMI4

does not scale well with an increase in number of clients as

compared to ZeroMQ.

 In [12], ZeroMQ, RabbitMQ (AMQP, STOMP), Apache

Qpid (AMQP) are evaluated for various scenarios of enqueues

and de queues. The conclusions obtained are, ZeroMQ is the

best one for simple architecture requirements, RabbitMQ

outperforms all but with the fact, that it is based on AMQP

and not STOMP. Apache Qpid behaves optimally in no-

persistence mode.

 In [13], Stress testing of Mosquitto broker based on

MQTT protocol is done on Linux/Unix-like systems. The

results obtained show that the broker has the capability of

handling 20000 client connections, with a message transfer

rate of 7000 messages/sec. The CPU usage statistics show

single core usage and a memory usage of 0.3%.

 [15, 16] show that even though ZeroMQ is the fastest in

sending messages, the reception rate is slow, this creates a

large disparity in sending and receiving of messages. There is

a possibility of even message loss during the process. Hence,

ZeroMQ does not provide guaranteed delivery.

6.1 Discussion
Based on the studies, ZeroMQ is a Brokerless solution in

which responsibility is shared among the sender and receiver

applications both.

RabbitMQ performs best in Brokered category, but its

advanced features make the library heavy. It does not support

C/C++ as the development language, which is an important

requirement for modern software development.

International Journal of Computer Applications (0975 – 8887)

International Conference on “Internet of Things, Next Generation Networks and Cloud Computing 2017”

24

Mosquitto is a very lightweight messaging library, but the

protocol does not come with all the functionalities such as

message priority and routing built-in, and the development

efforts increase for incorporating such functions.

Therefore, Apache Qpid and YAMI4 are tested and analyzed

further for deployment in Industry 4.0 platforms.

Table 1. Comparison Table

Middleware/

Features
ZeroMQ RabbitMQ Apache Qpid YAMI4 Mosquitto

Language used

for development
C++ Erlang JAVA, C++

C++,

Objective-C
C

Age of the

middleware
2007 2007 2005 2010 2009

Application

using it

Hootsuite

Mongrel,

Zato,

Zero Cache

UIDAI,

Google Compute

Engine, Mozilla,

AT&T

Used in a PowerVC

environment within IBM

Power Virtualization

Center

Intel Galileo

Facebook

Messenger,

Mobile

Platforms

Middleware

Paradigm
Message-oriented Message-oriented Message-oriented Message-oriented

Message-

oriented

Broker/

Brokerless
Brokerless Brokered

Brokered

From AMQP 1.0.

Brokerless form can also

be implemented.

Can be used both

as Brokered and the

Brokerless

solutions.

Brokered

Messaging

patterns

supported

Request-

Response,

Pub-sub,

Workload

distribution

Request-Response,

Pub-sub

Request-Response,

Pub-sub

Request-Response,

Pub-sub

Only

Pub-sub

Support for

persistence

NO

(needs to be

handled at the

application layer)

YES YES NO YES

Lightweight YES NO YES YES YES

Application

protocol

supported

ZMTP

AMQP,

MQTT,

REST,

STOMP,

STOMP over

WebSockets

AMQP

YAMI4-

a WIRE level

protocol

MQTT

HA support NO YES YES YES

Not Directly,

tries to

do this

through

bridging

between

two brokers.

Routing support

YES

(complex to

implement)

YES
YES

(through AMQP)
YES NO

Priority Queue NO YES YES YES NO

International Journal of Computer Applications (0975 – 8887)

International Conference on “Internet of Things, Next Generation Networks and Cloud Computing 2017”

25

Licensing LGPLv3

DUAL

(Open Source for

Development) and

(Commercial for

Support).

Open Source

GPL

(open source

applications) &

Commercial

License

(closed source)

Open Source

(BSD)

Default Config

Settings
NO

Through

environment variables

Through command line

and XML file
Through config file N.A

Royalty

structure
NO TBD NO NO NO

7. AN EXPERIMENTAL STUDY: YAMI4

VERSUS APACHE QPID
Based on the above study, YAMI4 and Apache Qpid are

analyzed on performance parameters such as Throughput,

Latency, Memory Footprint and CPU usage when in-process.

The test setup consists of a Publisher, a Subscriber and a

Broker running on the same machine with machine

configuration, Windows 10 DELL Inspiron15, Intel core i5 -

4200U CPU @1.60 GHz 2.30 GHz, 64 bit OS, 6GB RAM.

The test condition is Publisher sends n messages of m bytes to

the broker, based on a topic. A Subscriber subscribes to its

topic of interest at the broker. The Broker then matches the

topic received from the Publisher to that of the topic

registered by the Subscriber, if the match is successful, only

then the Broker forwards messages of m bytes to the

Subscriber. This paper prepares the test bed for finding out

YAMI4's performance and uses Apache Qpid's benchmarking

tools such as qpid_perftest.exe and qpid_latency.exe to find

out its throughput and latency measures.

7.1 Throughput
7.1.1 When a number of messages are constant:

It is the amount of messages received per unit time by the

subscriber. The general formula to calculate throughput is as

follows:

 timetotalt

n
throughput

_

 (1)

timestartptimestopstimetotal ttt _____ (2)

where n is the total number of messages of m bytes sent by

the Publisher, timetotalt _ is total time required for n messages

to traverse from publisher to subscriber, timestopst __ is time

of the n th message recorded at the subscriber, timestartpt __

is the time of the 1st message at the publisher. Fig. 3 shows

throughput values for n = 1million and m = 1024 bytes.

0

2000

4000

6000

8000

YAMI4 Apache Qpid
Th

ro
u

gh
p

u
t

(m
sg

s/
se

c)

 Fig 3: Throughput (no: of messages are constant) YAMI4

versus Qpid

7.1.2 When time constant
Throughput is calculated when time = 1 second is set at both

the Publisher and the Subscriber, and messages of m (1024)

bytes are pushed. At the end of 1 second, Publisher and

Subscriber both stop and amount of messages sent to received

are calculated. Ideally,

sent messages ofnumber received messages ofnumber

In Fig. 4a and 4b, 1010 ,,, sspp tttt are time instants, when the

1st message is sent, when the time elapsed is 1 second at the

Publisher, when the 1st message is received at the Subscriber,

when time elapsed is 1 second at the Subscriber.

bcountacount _,_ are number of messages sent and

received at respective ends after a time frame of 1 second.

Fig 4a: YAMI4 throughput

International Journal of Computer Applications (0975 – 8887)

International Conference on “Internet of Things, Next Generation Networks and Cloud Computing 2017”

26

Fig.4b: Apache Qpid throughput

7.2 Latency
It is the time required for a single message to traverse between

endpoints i.e. from Publisher to Subscriber.

Latency is calculated using formula

 111 ps ttlat

 | | | (3)

 pnsnn ttlat

where 111 ,, lattt sp are time instants, when the 1st message is

sent at the Publisher end, received at the Subscriber end and

the time required for the message to travel from Publisher to

Subscriber respectively. Similarly, (3) shows the latency of

each message for all n messages. Fig. 5 shows Min, Max,

Average latency of the Brokers. Min, Max values represent

the minimum and the maximum latency of all the messages in

the system. Average latency using (4) is found out since

latency values of all the messages are not the same.

n

latlatlatlat
lat

n
avg

321
 (4)

where lavgt is the average latency of each message in the

system. Here, n = 1million and m = 1024 bytes.

27.2

15

1
0 00.1430

5

10

15

20

25

30

Apache Qpid YAMI4

La
te

n
cy

 (
se

c) Max

Min

Average

Fig 5: Latency measure

7.3 Memory footprint and CPU usage

Table 2 shows the usage measures when messages are in

transit and when the Broker is in an idle (steady) state.

Table 2. Memory and CPU usage statistics

Features/Broker

ApacheQpid0.34

(non-persistent

mode)

YAMI4 1.10.0

Memory

Footprint(when

transferring 10lakh

messages of 1024

bytes)

4.2- 44 MB of

memory, with

36-44 % CPU

usage

0.6 MB of

memory, with

22-24 % CPU

usage.

Memory Footprint(in

steady state)

6.8 MB of

memory, with

0.4 % CPU

usage

0.6 MB of

memory, with

0% CPU

usage.

7.4 Conclusions from the experiment
Throughput measure of YAMI4 is better as shown in Fig 3.

Fig. 4a and Fig. 4b show the disparity in messages sent to

received, which is high in Apache Qpid than in YAMI4.

As shown in Fig. 5, Latency which is known as delay

otherwise is more in Apache Qpid than YAMI4, is

undesirable.

YAMI4 is lightweight, due to lesser external library

dependency factor.

Hence, YAMI4 as a message broker is an optimal solution for

Industry 4.0 platforms.

8. YAMI4
Messaging fundamentals such as message priority and

queuing, and internal socket mechanism are tested to get

better insights into YAMI4.

8.1 Message priority
YAMI4 defines message priority in its messaging API, which

is absent in TCP/IP stack. This helps to deliver messages of

maximum importance prior to other messages. Implementing

message priority nulls the possibility of batching messages to

achieve better throughput measures, which other Message

brokers implement. Such an effort was consciously made by

YAMI4 [5]. Hence, YAMI4 is not the fastest broker but a

reliable one that delivers message of high importance first.

To check whether and in which conditions, priority behaviour

is reflected, the below tests are conducted.

Priority definition as defined in the library: 0 - least prior, 1-

prior, 2- most prior.

Figure 6 shows the scenarios used for analysis.

A channel is a connection between the client and the server

i.e. between the publisher to the broker & the broker to the

subscriber.

International Journal of Computer Applications (0975 – 8887)

International Conference on “Internet of Things, Next Generation Networks and Cloud Computing 2017”

27

Fig 6: Message priority test scenarios

Table 3 shows that prioritized messages are queued out based

on the level of importance, but this is observed only in cases

where message size is relatively large than other messages in

the system. Hence priority works only in conditions, where

network traffic is at peak, or the receiver at the other end is

slow in receiving, which leads to buffering of messages in the

queue.

Table 3. Message priority results table

Message published sequence Message received sequence

message size

(in characters)
priority assigned

When messages published

once

When messages published

continuously &with a sleep of

5 seconds at the subscriber

1. Same channel and same topic

a. 3*(10^5)

 3*(10^4)

3

0

2

1

2

1

0

2

1

0 (repetitive in 2 1 0)

b. I} with 3 messages

3

3*(10^5)

3*(10^4)

0

2

1

0

2

1

0

2

1 (repetitive in 0 2 1)

II}with 2 messages

3

3*(10^4)

0

1

0

1

0

1 (repetitive in 0 1)

III}with 2 messages

3

3*(10^5)

0

2

0

2

0

2 (repetitive in 0 2)

c. I} big message

3*(10^4)

3*(10^5)

0

2

0

2

2

0 (repetitive in 2 0)

II}small

 message

3*100

3*100

0

2

0

2

0

2 (repetitive in 0 2)

2. Same channel and different topics

a. 3*(10^5)

 3*(10^4)

3

0

2

1

2

1

0

2

1

0 (repetitive in 2 1 0)

International Journal of Computer Applications (0975 – 8887)

International Conference on “Internet of Things, Next Generation Networks and Cloud Computing 2017”

28

b. I} with 3 messages

3

3*(10^5)

3*(10^4)

0

2

1

0

2

1

0

2

1 (repetitive in 0 2 1)

II} with 2 messages

3

3*(10^4)

0

1

0

1

0

1 (repetitive in 0 1)

III}with 2messages

3

3*(10^5)

0

2

0

2

0

2 (repetitive in 0 2)

c. I} big message

3*(10^4)

3*(10^5)

0

2

0

2

2

0 (repetitive in 2 0)

II} small message

3*100

3*100

0

2

0

2

0

2 (repetitive in 0 2)

3. Different channels and same topic

a. 3*(10^5)

 3*(10^4)

3

0

2

1

0

2

1

(random order-

no sequence could be

determined)

b. I} with 3 messages

3

3*(10^5)

3*(10^4

0

2

1

0

2

1

(random order-

no sequence could be

determined)

II}with 2 messages

3

3*(10^4)

0

1

0

1

0

1 (alternative in 0 1)

III}with 2messages

3

3*(10^5)

0

2

0

2

0

2 (alternative in 0 2)

Miscellaneous

(Sent continuously)

3

3*(10^7)

0

2

Not applicable

0 (4 times)

2 (2 times)

c. I} big message

3*(10^4)

3*(10^5)

0

2

0

2

0

2 (alternative in 0 2)

II}small message

3*100

3*100

0

2

0

2

0

2 (alternative in 0 2)

4. Different channels and different topics

International Journal of Computer Applications (0975 – 8887)

International Conference on “Internet of Things, Next Generation Networks and Cloud Computing 2017”

29

a. 3*(10^5)

 3*(10^4)

3

0

2

1

0

2

1

(random order-

no sequence could be

determined)

b. I} with 3 messages

3

3*(10^5)

3*(10^4)

0

2

1

0

2

1

(random order-

no sequence could be

determined)

II }with 2messages

3

3*(10^4)

0

1

0

1

0

1 (alternative in 0 1)

III}with 2messages

3

3*(10^5)

0

2

0

2

0

2 (alternative in 0 2)

Miscellaneous

(Sent continuously)

3

3*(10^7)

0

2

Not applicable

0 (4 times)

2 (2 times)

c. I} big message

3*(10^4)

3*(10^5)

0

2

0

2

0

2 (alternative in 0 2)

II}small message

3*100

3*100

0

2

0

2

0

2 (alternative in 0 2)

Miscellaneous (sent once)

3*(10^7)

3

1

0

0

1
Not applicable

8.2 Message Queue

The message queue is used in conditions, where the network

is saturated, or subscriber is slow so that the messages are

buffered, preventing losses. In YAMI4, each channel has a

single queue and NOT multiple queues based on topics.

Reasoning: Considering test scenarios 1 & 2 in Table 3, queue

full occurs at same published message count for both the

cases; else it would have occurred for higher message counts.

Hence there is NO topic based queue in the broker structure.

8.3 Maximum number of socket

connections

The number of socket connections in YAMI4 is bounded by

the select call of Winsock library. Hence, for a specific

fd_setsize (a select() parameter), a specific set of connections

are achieved. For example, 72 connections for fd_setsize = 64,

1033 for fd_setsize = 1024, and so on. Therefore, a number of

socket connections limit the maximum number of client

connections possible in YAMI4 messaging framework.

9. OPEN ISSUES AND SOLUTIONS

This paper also proposes the best-known solutions for Open

issues based on specific middleware use-cases. They are:

9.1 For Web-based solution

Conventionally, Web-based solutions used HTTP as the

underlying application protocol, but that does not prove

performance-efficient for real-time messaging. Hence,

WebSocket protocol [20] (TCP-based) is specifically

developed for real-time applications that provide long-lived

persistent connections.

This paper proposes WebSocket protocol implementation for

Web-based communication at the message broker level.

9.2 Application-level security

Security is a trending issue that needs to be taken care of at

various levels. At the middleware level, secure messaging

solutions must be based on certain goals and essentials as:

Authentication: the process of determining whether

someone or something is, in fact, who or what it is declared to

be [17].

International Journal of Computer Applications (0975 – 8887)

International Conference on “Internet of Things, Next Generation Networks and Cloud Computing 2017”

30

Confidentiality: the process of making the information private

that cannot be understood by anyone, other than for whom it

was intended [18].

Integrity: with no alteration of information, whether in transit

or in stored state or the alteration that gets detected. [18].

Security essentials of a middleware:

a) Publishers and Subscribers must be authenticated

primarily.

b) Data Confidentiality must be achieved between

publisher and subscriber.

c) The Publisher must not know the Subscriber's

details and the Subscribers must also not know the

details of other subscribers present in the system.

d) The routing framework should not be exposed to the

event contents or the event subscription. Such a

security fundamental is useful for content-centric

networks.

e) User's access must be restricted to specific

resources, so as to control overloading of the

physical resources.

Hence, this paper proposes Authentication and Data

confidentiality between the message broker and its associated

clients.

9.3 Persistence
Persistence in middleware has a scope at Data, Subscription

and Queue level.

In memory (RAM) persistence mechanism is the best

approach, since accessing data at run time requires less time.

9.4 Queuing
Queuing is to be taken care of since messages that do not get

delivered to the subscribers are to be queued until the

subscriber is up.

Queue creation mechanisms using Custom Database or No

SQL (key-value, document, and graph data structures) are

some of the suitable solutions. The benefit of No SQL is it

supports co-operative multitasking, and thread model based

on Co-operative multitasking lowers overhead of message

queues for data exchange.

9.5 Routing
Routing methodology depends on the type of middleware. For

example, Content-based routing is a desired mechanism

Content-centric networks.

9.6 Support for messaging/communication

patterns
For a middleware to be an all-purpose one, Messaging

patterns to be supported are, ACTive (Availability for

Concurrent Transactions) – unique to XMPP, Pipeline (for

aggregation and load-balancing) and Survey (a single request

for the state of multiple applications).

9.7 Provision for ESB support
Enterprise service bus is the one that connects the modern

software platform to the higher business layers. This deals

with implementing service-oriented middleware

functionalities within Message Oriented middleware.

9.8 Support for Event Driven Scenarios
Event Driven Scenarios imply commonly used services to be

active all the time and non-frequent services to be executed on

a periodic basis to process requests. Such scenarios must be

implemented at the middleware layer to achieve low load

solutions.

9.9 Listeners requiring re-querying for

best sources even after finding an

acceptable publisher
This signifies a possible use-case for systems that decide the

best possible solution to a problem intelligently.

9.10 Support for delayed jobs
Middleware that require some intentional delay must

provision for delayed jobs.

10. CONCLUSIONS AND FUTURE

WORK
Modern software platforms adopt the middleware approach

based on an event-driven architecture and pub-sub model for

data handling and monitoring. This paper, therefore, reviews

and analyzes middleware solutions based on Object, Service,

Data and Message paradigms. The solutions such as

RabbitMQ, Apache Qpid, ZeroMQ, Mosquitto and YAMI4

are reviewed and analyzed based on messaging semantics viz.

message routing, messaging patterns supported, message

priority, throughput, latency, memory footprint, etc. Based on

the experimental analysis, YAMI4 is found to be suitable for

Industry 4.0 platforms.

YAMI4 is experimentally tested for its internal fundamentals

of message priority, message queuing and socket connections.

The results show that message priority is achieved only in

cases of network throttling and are FIFO-ordered otherwise.

The tests also show that YAMI4 messaging library has a

maximum number of socket connections limitation.

Further, the paper also focuses on the open issues of

Middleware and the best-known solutions, based on specific

middleware use-cases.

An extended work for enhancing YAMI4 from Web [20] and

Application security context are also planned.

11. ACKNOWLEDGMENTS
The authors remain grateful to the anonymous reviewers.

12. REFERENCES
[1] Jorge E. Luzuriaga, et al. "A comparative evaluation of

AMQP and MQTT protocols over unstable and mobile

networks," in Conf. Proc. 12th Annual IEEE Consumer

Communications and Networking Conference (CCNC),

2015, pp. 931-936.

[2] A Foster. (2014, July). "A Comparison Between DDS,

AMQP, MQTT, JMS, REST and CoAP." Messaging

Technologies for the Industrial Internet and the Internet

of Things. [On-line]. 1.7, pp. 1-25. Available:

www.prismtech.com.

[3] Andrzej Dworak, et al. "Middleware trends and market

leaders 2011," in Conf. Proc. Vol. 111010. No. CERN-

ATS-2011-196, 2011.2015, pp. 931-936.

[4] Tarun Agarwal. "Know all about SCADA Systems

Architecture and Types with Applications." Internet:

http://www.edgefxkits.com/blog/scada-system-

architecture-types-applications/, Sep. 19, 2014.

file:///C:/Users/HP%20P077/Downloads/www.prismtech.com

International Journal of Computer Applications (0975 – 8887)

International Conference on “Internet of Things, Next Generation Networks and Cloud Computing 2017”

31

[5] "YAMI4 vs ZeroMQ." Internet:

http://www.inspirel.com/articles/YAMI4_vs_ZeroMQ.h

tml.

[6] "YAMI4." Internet: http://www.inspirel.com/yami4/.

[7] "Apache Qpid." Internet: https://qpid.apache.org/.

[8] "RabbitMQ." Internet: https://www.rabbitmq.com/.

[9] "ØMQ Community." Internet:

http://zeromq.org/community.

[10] Margaret Rouse. "event-driven architecture

(EDA)." Internet:

http://searchsoa.techtarget.com/definition/event-driven-

architecture-EDA, 2011.

[11] "RabbitMQ vs Apache ActiveMQ vs Apache qpid ."

Internet: http://bhavin.directi.com/rabbitmq-vs-apache-

activemq-vs-apache-qpid/, May 6, 2010.

[12] "A quick message queue benchmark: ActiveMQ,

RabbitMQ, HornetQ, QPID, Apollo." Internet:

http://www.voidcn.com/blog/hanruikai/article/p-

[13] Rex Xia."Stress testing Mosquitto MQTT Broker."

Internet: http://rexpie.github.io/2015/08/23/stress-

testing-mosquitto.html, Aug. 23, 2015.

[14] "Selecting a Message Queue – AMQP or ZeroMQ."

Internet: http://bhavin.directi.com/selecting-a-message-

queue-amqp-or-zeromq/, Apr. 4, 2010.

[15] Tyler Treat. "Dissecting Message Queues." Internet:

http://bravenewgeek.com/dissecting-message-queues/,

Jul. 7, 2014.

[16] "Message Queue Shootout." Internet:

http://mikehadlow.blogspot.in/2011/04/message-queue-

shootout.html, Apr. 10, 2011.

[17] Margaret Rouse. "What is authentication." Internet:

http://searchsecurity.techtarget.com/definition/authentic

ation, 2007.

[18] "Cryptography Defination." Internet:

http://searchsoftwarequality.techtarget.com/definition/cr

yptography, 2014.

[19] "Publish/Subscribe." Internet:

https://msdn.microsoft.com/en-us/library/ff649664.aspx,

Jun. 2004.

[20] Peter Lubbers and Frank Greco. "HTML5 Web Sockets:

Internet: A Quantum Leap in Scalability for the Web."

Internet: https://www.websocket.org/quantum.html,

Mar. 2010.

http://www.inspirel.com/articles/YAMI4_vs_ZeroMQ.html
http://www.inspirel.com/articles/YAMI4_vs_ZeroMQ.html
http://www.inspirel.com/yami4/
internet:%20https://qpid.apache.org/

