
International Journal of Computer Applications (0975 – 8887)

International Conference on Internet of Things, Next Generation Networks and Cloud Computing

10

Network Optimization in the Open Stack Cloud

Pramod Gavali
Student,

 Department of Computer Engineering
S.K.N.C.O.E, Savitribai Phule Pune University

Pune, India

S. P. Pingat
Assistant Professor,

 Department of Computer Engineering
S.K.N.C.O.E,Savitribai Phule Pune University

Pune, India

ABSTRACT
Cloud systems software requires a VM placement engine

that decides where to place the virtual machine in the

environment. The placement engine in the cloud platform

such as OpenStack considers multiple constraints when

launching a new instance, including required compute and

memory resources. This placement mechanism does not

considers network requirements of VM In this paper, we

propose the solution to optimize the network resources which

is easily integrated in the OpenStack placement engine. Our

solution keeps the track of the the traffic following within the

physical network devices and the appropriate action is taken

to optimize the network resources including migration of

existing VM.

General Terms
VM- Virtual Machine

OpenStack- Open Stack cloud software

CPU- Central Processing Unit

RAM- Random Access Memory

CN- Cloud Network

Keywords
Cloud, Network optimization, Virtual Machine , Container,

Placement, Migration

1. INTRODUCTION
The OpenStack[1] cloud computing platform has

sophisticated mechanisms for managing the CPU, memory,

and storage resources. However, Openstack lacks behind

managing the network resources. The OpenStack uses the

logic that launch instances such as Virtual Machines (VMs)

to the physical server is called scheduler or placement engine.

The default placement engine only considers CPU and

memory resources. It does not consider network

requirements. Other cloud computing platforms e.g.

Eucyliptus have similar limitations regarding network

awareness. A lack of network optimization in the cloud

management platforms risks performances issues in the data

plane and a violation of the Quality of Service (QoS) [2]. For

example, there could be a congestion in shared resources on

servers, which leads to increase the job queue and results into

QoS violation.. In the past there has been substantial

progress regarding theoretical solutions and designs for

addressing the network optimization. But none of them are

practically implemented in the existing cloud platforms. In

this paper we analyzes the network optimization problem

and design a solution that can easily integrated in the existing

cloud computing platform -Openstack.. Section 2 explains the

exiting work to address network optimization problem. In

Section 3 captures the mathematical model . Section 4

introduces the Openstack architecture and reviews the

functionalities of its existing default scheduler. In Section 5,

we analyze the solutions for optimizing network resources

during VM placement. Later, we propose the design of our

prototype implementation network optimization in

OpenStack. Section 6 Finally, concludes this paper

2. RELATED WORK
This section briefly describes the efferent techniques already

designed for cloud network optimization

2.1 NETDEO
The NetDeo[3] is designed for improving the better

utilization of the existing network resources and infrastructure

.Without changing existing network architecture and routing

protocol intact, it aims at reducing network bandwidth

requirement by optimizing placement of VMs in the cloud.

This mechanism has lower up-front cost and immediate effect.

2.1.1 Advantages
 Applicable in the dynamic environment where the

servers are getting added and removed from the

environment very frequently

 Continuous and incremental optimization of the

cloud network

 Performs good in Tree[10][11] and FatTree [11]

network topology

2.1.2 Disadvantages
 The traffic agent needs to be installed on the all

servers that keep on sending the traffic information

for given server . Its very difficult to install and

maintain the traffic agent software if the number of

server in the environment are very huge

 Does not perform well in Bcube [9] topology

 Performance degrades when number of hosts are

increased

2.2 MAPLE
A MAPLE[4] is a network-aware Virtual Machine

placement technique that uses estimate of the effective

bandwidth required for compute hosts to ensure that the

cloud network performs within targets specified in the SLA

for the customer application. It allocates network resources

to make perfect balance between efficiency of resource

utilization and the performance requirement. The MAPLE is

designed to provide a network-aware VM placement policy

used to launch the set of VMS on different servers. The

MAPLE does require the a prior reservation of bandwidth.

2.2.1 Advantages
 Good performance in case of deploying multiple

VM at a time

International Journal of Computer Applications (0975 – 8887)

International Conference on Internet of Things, Next Generation Networks and Cloud Computing

11

 Less QoS violation compared to NetDEO[3] and

Oktupus[5]

2.2.2 Disadvantages
 Not applicable in dynamic environment where the

server are upgraded very frequently

 Applicable only for tree topology.

2.3 Oktopus
This Oktopus[5] is designed for multi-tenant cloud provider

that accepts the network bandwidth requirement from the

tenant and try to reserve the required network bandwidth

while deploying the tenet application in the cloud. The user

specifies the network bandwidth requirement as Virtual

Network . It provides the abstraction of the virtual network by

which it determines the trade-off between the network

bandwidth guarantees offered to customer and the cloud

provider's profit.

2.3.1 Advantages
 Virtual Network profiles allows to mentions the

QoS requirement

 Physical Network sharing ratio is increased in

multi-tenant environment

2.3.2 Disadvantages
 Not applicable for dynamic environment where the

infrastructure is frequently upgraded

 Does not perform VM migration

2.4 Traffic Aware Virtual Machine

Placement Problem(TVMPP)
The TVMPP[6] is a network performance problem. The

traffic matrix among the virtual machines and the cost matrix

among the compute host machines is considered as the input

for this algorithm. The output of this algorithm is the optimal

solution that suggests which compute host the VMs should be

placed in order to improve the cloud network. The aggregate

traffic rates dictated by every network devices like switches

and routers. The TVMPP is NP-hard problem and propose a

heuristic approach to solve the TVMPP efficiently for large

environment. The algorithm follows a novel two-step

approach: it first makes partitions of VMs and compute hosts

in the clusters. Then it finds matching VMs and compute

hosts within the cluster and subsequently at individual level.

2.4.1 Advantages
 Good performance in varying and heterogeneous

traffic condition

 Bcube topology is benefited more with TVMPP

2.4.2 Disadvantages
 Worst performance in Tree network topology

 Not applicable for dynamic environment where the

infrastructure compute and network devices get

upgraded continuously. The NetDeo[3] is designed

for improving the better utilization of the existing

network resources and infrastructure .Without

changing existing network architecture and routing

protocol intact, it aims at reducing network

bandwidth requirement by optimizing placement of

VMs in the cloud. This mechanism has lower up-

front cost and immediate effect.

3. PROBLEM DEFINITION AND

FORMULATION
The network optimization problem is defined as a set of

service nodes {n1, n2, ..., nN} on a collection of networked

server systems {s1, s2, ..., sM}, where N and M are

respectively the total number of nodes and servers in the

system.

The traffic load between two servers nx and ny is defined as

the product of their traffic , path length, and inverse path

reliability:

𝑇𝐿𝑜𝑎𝑑 𝑛𝑥 ,𝑛𝑦 = 𝐷𝑥𝑦 × 𝐿𝑖𝑗 × 𝑅𝑖𝑗
−1

 The traffic load of a service node is defined as the quadratic

mean of the traffic loads between the service/node and all its

communicating pairs:

𝑁𝑜𝑑𝑒𝐿𝑜𝑎𝑑 𝑛𝑥 =
1

𝑁𝑥
 𝑇𝐿𝑜𝑎𝑑

𝑁𝑥

𝑦=1

 𝑛𝑥 ,𝑛𝑦
2

where Nx is the number of service nodes communicating with

node nx

4. OPENSTACK ARCHITECTURE

4.1 Overview
A cloud computing platform manages pools of compute,

storage, and networking resources to offer them on demand,

e.g., as Infrastructure-as-a-Service[9] (IaaS). This paper

focuses on the OpenStack [1], which is widely used cloud

platform by cloud service providers. It is an open source

cloud platform that comprises of a set of interconnected

development projects.. The main components are

implemented in Python, and they are accessible through

REST API. The web interface is also used to manage different

components. The OpenStack architecture is extensible and

flexible. Figure. 1 shows a simplified overview on the

OpenStack software architecture.

Fig. 1: Open Stack Architecture Overview

International Journal of Computer Applications (0975 – 8887)

International Conference on Internet of Things, Next Generation Networks and Cloud Computing

12

A cloud computing environment can be built by subset of

these components, and systems can also be extended by other

components that are not officially part of the OpenStack

platform.

4.2 VM Placement
“Nova” is the components of OpenStack that manages the

hypervisors on the physical server and controls the execution

of VM. The “scheduler” controls the compute resources on

the hypervisors of the available hosts. If a new VM/instance is

launched, the scheduling logic/placement engine selects the

most suitable physical server to host the new instance. The

default placement policy in Open Stack is the “filter”

scheduler [8][11]. It uses a 2-step process of “filtering” and

“weighting” to make decision on which server a new VM

should be launched.

4.3 Existing drawbacks and Challenges
The existing filter scheduler determines a set of acceptable

compute hosts by filtering and weighting. Each time it selects

a host to launch a new instance, the scheduler consumes some

resources so that subsequent evaluations can adjust

accordingly. It suffers from few limitations as below:

No Network-aware filter[10]: There is not filter the select the

host based on the available network bandwidth on the host

Static data structure: The VM scheduler maintains the static

own view of the resource allocation on each nodes, This view

is not frequently updated dynamically .

5. PROPOSED DESIGN
Figure. 2 shows the proposed architecture of the systems that

could add network awareness in the VM placement

Fig. 2: Proposed Design

 Basically, the traffic agent is installed on the centralized

system , like router or switch . The router or switch is most

suitable candidate as the all the traffic goes through it . This

helps the traffic agent inspect the packets based on sampling

mechanism and send the traffic data to the cloud server We

can make use of exiting technologies like sFLow[8] which

can be installed on the switches . The sFlow works on

sampling techniques that inspect the packets on the configured

interval. It keeps on sending the sampled pack to the Collector

. In our case the collector is nothing but the cloud server

which collects the packets form the switch and make analysis

of which link is heavily used and which VM are talking each

other over the physical network. Based on this information

the appropriate CN optimization can be performed .

5.1 sFlow collector
The slow collector is the process running on the cloud server

that keeps listening the UDP packets form the sFlow agent.

The collector keeps records of the more recent traffic

information and make analysis of the traffic identifying top N

talkers. The list of top N talker is sent to VM placement

engine to run a VM placement algorithm

5.2 Algorithm
Algorithm 1 is the main algorithm used for network aware

virtual machine placement in the cloud. It contains following

steps,

 Step 1: It collects traffic information using

GetTrafficInfo() function.

 Step 2: Find the list of target physical machine to

accommodate new VM. The function

FindTargetPM() is used.

 Step 3: Select the VM to be migrated using function

SelectVMNode().

 Step 3.1: The improvement in objective is

calculated using. AcceptMove() If the move is not

accepted, continue step 3.1.

 Step 3.2: Explores neighborhoods by exchanging

different server on the candidate server to the

original server.

International Journal of Computer Applications (0975 – 8887)

International Conference on Internet of Things, Next Generation Networks and Cloud Computing

13

6. TEST ENVIRONMENT AND

RESULTS

Fig. 3: Open Stack Cloud Test Environment

Figure. 3 shows the test environment for open stack cloud . It

contains 1 controller and 2 compute servers, each one has 16

CPU and 64 Gb memory. Each compute host is capable of

hosting 20 VMs. The server are connected to the 1 Gbps

switch. The following graphs shows the bandwidth utilization

with and without Network aware VM placement.

Fig. 4: Graph Network Bandwidth utilization –

NetworkAware vs Without network Aware VM

placement

If the number of VMs less them 40, the Network-aware

placement does not make any difference. If the no. of VMs

are greater than 40 and less the 150, the network aware

placement makes difference. The VM migration can be

performed to save the bandwidth. If no. of VMs are more than

150. The environment becomes more congested; hence there

is much less opportunity to migrate the VM.

7. CONCLUSIONS AND FUTURE

WORK
Adding the network awareness in the VM placement

significantly optimizes the cloud network. The proposed

design is easily integrated in the OpenStack cloud platform.

The proposed solution eliminates the drawback of existing

solutions covered in section 2 At the writing of this paper, the

full implementation and the result testing is not complete.

8. REFERENCES
[1] Kevin Jackson , Cody Bunch "OpenStack Cloud

Computing Cookbook Second Edition Kindle Edition"

[2] M. Steiner, B. G. Gaglianello, V. Gurbani, V. Hilt, W.

Roome, M. Scharf,and T. Voith, “Network-aware service

placement in a distributed cloud environment,” in Proc.

ACM SIGCOMM, 2012."

[3] Zhenyu Wu, Guofei Jiang, and Haining Wang,Yueping

Zhang, Vishal Singh, “Automating Cloud Network

Optimization and Evolution,” IEEE journal VOL. 31,

NO. 12, DECEMBER 2013

[4] David Breitgand, Amir Epstein, Alex Glikson, “Network

Aware Virtual Machine and Image Placement in a

Cloud,” 9th CNSM and Workshop at IFIP DECEMBER

2013

[5] H. Ballani, T. Karagiannis, P. Costa, and A. Rowstron,

“Towards predictable datacenter networks,” in Proc.

ACM SIGCOMM, 2011, pp. 242–253.

[6] X. Meng, L. Zhang V. Pappas, “Improving the

scalability of data center networks with traffic-aware

virtual machine placement,” in IEEE INFOCOM, San

Diego, CA, USA, March 2010.

[7] Fie Xu ,Fangming Liu, “ Heterogeneity and Interference-

Aware Virtual Machine Provisioning for Predictable

Performance in the Cloud” IEEE Transaction OCT

2015Bowman, M., Debray, S. K., and Peterson, L. L.

1993. Reasoning about naming systems. .

[8] P. Leitner and J. Cito, “Patterns in the Chaos a Study of

Performance Variation and Predictability in Public IaaS

Clouds,” in Proc. of WWW, May 2015.

[9] F. Xu, F. Liu, H. Jin, and A. V. Vasilakos, “Managing

Performance Overhead of Virtual Machines in Cloud

Computing: A Survey,State of Art and Future

Directions,” Proceedings of the IEEE, vol. 102, no. 1,

2014. Heterogeneity of Public Clouds,” IEEE

Transactions on Cloud Computing, vol. 1, no. 2, 2013

[10] K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan,

“Choreo: Networkaware task placement for cloud

applications,” in Proc. ACM IMC, 2013.

[11] B. Hu and H. Yu, “Research of scheduling strategy on

OpenStack,” in Pro. CLOUDCOM-ASIA, 2013.

IJCATM : www.ijcaonline.org

