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ABSTRACT 
Diffuse Optical Tomography (DOT) is an imaging technique 

which uses Near Infrared light to estimate the  functional 

information of biological soft tissues. The recovery of internal 

optical parameters are illustrated using non-invasive boundary 

measurements. DOT involves solving an inverse problem 

which has an ill-condition of non linearity. To overcome this 

drawback regularization techniques are implemented in the 

inverse formulation. In this work a model based regularization 

technique is proposed, which uses model resolution matrix and 

data resolution matrix to improve the resolution of the 

reconstructed image. Simulations are performed by 

reconstructing a 1% noise data in MATLAB interfaced with 

NIRFAST and the results illustrates model based 

regularization improves the resolution of the object with better 

absorption coefficients. 
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1. INTRODUCTION 
In the last decade research, the area of biomedical optics has 

flourished. The conventional imaging techniques includes X-

ray examination which provides an single plane image of a 3D 

organ or subject with bony structures  clearly visible, while 

difficult to discern the shape and composition of the soft tissue 

organ accurately. Then the X-ray Computer Tomography 

which was developed to reduce the super imposition effect of 

digital radiographs, the image reconstruction via x-ray 

imaging from numerous angles, by mathematically 

reconstructing the detailed structures and displaying the 

reconstructed image on video monitor and considering its 

defects usage of x-rays causes allergy to subjects. Next with 

Nuclear Medical Imaging systems the radio isotopes are 

injected into arm vein or administrated through inhalation. The 

data’s are detected using gamma camera either 

photographically or digitally where as injected radioisotopes 

causes severe side effects on human body. Magnetic resonance 

imaging uses magnetic field and high radiofrequency signals 

to obtain anatomical information about the human body as 

cross sectional images. Oscillations in magnetic field gradients 

induce electric current and may cause ventricular fibrillation. 

The Ultrasonic imaging system which is used for obtaining 

images of almost entire range of internal organs in the 

abdomen. While it is completely reflected at boundaries with 

gas and there is a serious restriction in investigation of and 

through gas containing structures. In these particular 

circumstances there has been considerable new development 

in biomedical imaging using diffuse optical tomography  [1,3]. 

DOT is a way to probe highly scattering media using near 

infrared (NIR) light to reconstruct images. NIR light rays of 

range 700-1000nm [4] are widely preferred when compared to 

the other rays, due to its property of non – ionizing, decreased 

absorption and  increased scattering with the biological tissues 

[2]. Decreased absorption makes the light rays to penetrate 

deep into the tissue, hence detects the tumors deep inside.        

           DOT imaging for early detection of brain tumor has 

increased in recent years while it quantifies hemoglobin 

concentration and blood saturation in tissue by imaging 

internal optical absorption and scattering which allows non-

invasive detection and diagnosis [4-6]. DOT imaging provides 

a number of advantages, including portability, real-time 

imaging and low instrumental cost but is generally known to 

have low image resolution which limits its further clinical 

application. Among the numerous methods for enhancing 

image quality in DOT, the regularization approach has been 

shown to be effective because it can decrease the ill pose 

characteristics of the inverse matrix. Several regularization 

techniques [7-11] which are being implemented in order to 

linearize the unstable or non – linear measured data. 

 

2. PROCESS 
Diffuse Optical tomography [1] has come to mean the use of 

low-energy visible or near infra-red light to probe highly 

scattering media, in order to derive qualitative or quantitative 

images of the optical properties of the media. Near Infrared 

optical tomography uses light in the 750-1000nm wavelength 

range to recover images of the internal spatial distribution of 

tissue optical properties, absorption (or chromophore 

concentrations) and scattering parameters [3]. The multiple 

wavelengths have the advantage of being acquired non-

invasively and without ionizing radiation [2]. Diffuse optical 

imaging study of brain tumor [4], is illustrated by forward 

problem and inverse problem. 
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2.1  Forward Modeling 
Forward modeling [5] includes the concept of using a grid of 

light sources and light detectors which is positioned on the 

organ of the subject which is under examination [2]. Often this 

is done using fiber optics where one end of the fiber is secured 

into the organ of the subject, and the other end of the fiber is 

connected to the imaging instrument. The arrangement of the 

fiber on the organ determines the depth-sensitivity of the 

measurements to underlying changes, which is a function of the 

distance between the source and detector pair. Each 

measurement on photon influence samples a different volume 

of underlying tissue. 

The Continuous Wave (CW) diffuse optical imaging [6] of 

thick tissues  involves solving the steady-state diffusion 

equation where in CW systems light sources emit light 

continuously at constant amplitude and this technique have the 

potential to  provide quantitative images of hemodynamic 

changes during brain activation. It is used widely because of its 

relatively low cost, portability, and ease of implementation and 

use compared to Frequency Domain (FD) and Time Domain 

(TD) systems. The forward problem of generating the 

measurement data, for a given set of optical property estimates 

within the tissue, is derived using diffusion approximation. 

 
−∇.κ(r)∇Φ(r) + μa(r) Φ(r) = Qo(r)                      (2.1.1) 

 
Diffusion coefficient is derived as 

 

κ(r)=1/[3[μa(r)+μ`s(r)]]                                        (2.1.2) 

 
A Robin type-III boundary condition is applied to model the 

refractive-index mismatch at the boundary. In  forward model  

finite element method [7] which gives the fluence at every 

point, is used to solve (2.1.1) then the modeled data G(µ) can 

be obtained by sampling at the boundary with  given internal 

spatial distributions of optical properties and source-detector 
locations[8]. 

2.2 Inverse Modeling 
           Inverse modeling [5] demonstrates the reconstruction of 

images using the obtained absorption coefficients. The 

techniques used to solve the inverse problem which is 

achieved by minimizing the objective function (Ω) in (2.2.1) 

over the range of µ. The measured data which is utilized for 

inversion is of nonlinear in nature. This problem is overcomed 

by using regularization or constraining techniques. The 

objective function which is meant to regularize the penalty 

term is given as 

 

Ω=||y−G(μa)||
2+P(μa)                                                 (2.2.1) 

 

The inverse problem includes the concept of recovery of 

unknown optical properties such as μa and μs [6].  

Reconstruction of images is performed using finite element 

method [7], with the formation of meshes in reconstruction 

basis [10] as it provides an accurate approximation equation. 

The main aim of inverse problem is to match the observed data 

to the reconstructed data [19-20]. Reconstruction of the images 

are demonstrated using an open source software NIRFAST 

which is an FEM based software package designed for 

modelling Near Infrared Frequency domain light transport in 

tissue [15]. 

 

 

3. METHODS 

3.1 Standard Regularization 
Standard regularization [12] is otherwise called as constant 

regularization which is of tikhonov type. Here the 

regularization is based on the already available information 

that is the noise [8] characteristics or structural information 

[13] of the data, more prior information  [9] usage leads to a 

better outcome of reconstruction procedure or robustness to 
the noise in data.  

Ω=||y−G(μ)||2+λ||L(µ–μ0)||
2                           (3.1.1)                                 

 

Regularization parameter (λ) is a constant in (3.1.1) which is 

meant to stabilize the solution and the penalty term [17] is 

given as 

 

     P(μa)=λ||μa||
2                                                          (3.1.2) 

  

Linearization of (3.1.1) leads to an updated equation  

 

[JTJ - λLTL] = JTδi-1-λL
TL(µi-1 - μ0 )                          (3.1.3) 

            

In (3.1.3) J is the jacobian matrix which provides the rate of 

change of modelled data with respect to μa [21-22], I 

represents the identity matrix and T for the transpose 

operation. The resolution provided by (3.1.2) concentrates 
more on the detectors position.   

3.2 Adaptive Regularization 
Adaptive regularization [11] is that the regularization 

parameter (λ) depends on or varies with respect to the 

projection error [14]. Projection error (Φ) is defined as the 

difference in measured data to the modeled data which is 

expressed in (3.2.1). 

 

            Φ =y−G(μa)                                   (3.2.1)                                                                                                  

As the regularization parameter varies with projection error, 

increased projection error leads to an increased regularization  

parameter, which  is denoted as 

 

λ =1/(2+e
-∆

 
Φ
)                                            (3.2.2) 

 
In (3.2.2) e represents the exponential function and ∆Φ  

representing the change in projection error. Here the 

regularization parameter is related to the objective function 

[18], that is the projection error. Penalty term for projection 

error based regularization is expressed as    

 

   

P (μa) = λ (∆Φ) || μa ||
2                            (3.2.3) 

 

 Linearization leads to an updated equation 

 

∆µ = JT [JJT + λJJT I]-1Φ                            (3.2.4) 

 

 In (3.2.4) ∆µ represents the change in absorption coefficient. 

Projection error determines the accuracy, while JJT is     

denoted as the hessian matrix with diagonal elements.  

 

3.3 Model Based Regularization 
The main aim of model based regularization  is to match the 

modelled data with the observed data. By this method of 
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regularization the spatial resolution of the reconstructed  image 

is improved [16]. 

 

            y  = G(μa)                                           (3.3.1) 

 

Expanding using taylor series gives the equation 

 

           δ = J  μ a                                          (3.3.2) 

 

 The change in absorption coefficient in (3.3.1) is derived as  

 

  

  μa   =  [JT J + λI] -1 JTJ  μ a                           (3.3.3) 

 

 

In the case of λ = 0 

                  μa   =  μ a                            (3.3.4) 

 

Linearization of  regularization term is demonstrated using the 

model resolution matrix, where it  does not depend on the data, 

but  it is fully based on the forward problem and 

regularization. Because of the ill posed nature of the problem 

due to (3.3.4) λ > 0, which means 

 

                μa≠ μ a                            (3.3.5) 

                       

while this (3.3.3) leads to a model resolution matrix. 

 

     M= [JTJ + λI]-1  JTJ                             (3.3.6) 

 

In (3.3.6) M has the dimension of NN x NN and it purely 

depends on  JTJ and the regularization used. Penalty term is 

given as  

 

      P(μa) = cλi||μa||
2                           (3.3.7) 

 

Linearization of (3.3.6) leads to an updated jacobian matrix for 

reconstruction is given as 

 

[JTJ + cλi I]  μ a  =  JT(y−G(μa)                           (3.3.8) 

 

The model resolution matrix can be applied for deriving the 

linearization equation (3.3.8) for both standard and adaptive  

regularization parameters. Model resolution matrix does not 

depend on the data and its main aim is to provide the better 

resolution characteristics. 

 

3.4 Data Resolution Matrix  
           The data resolution matrix concentrates only on the data 

not on the image characteristics. It defines that how well the 

estimated   μa  fits the observed data, hence it is important to 

consider data too in order to improve the resolution 

characteristics. 

 

      J μa=δ`                             (3.4.1) 

 

Data resolution matrix is computed based on the jacobian 

matrix (J) and the regularization scheme used in the 

reconstruction procedure by matching the predicted data with 

the actual one. 

 

δ` = y-G(μa0)                            (3.4.2) 

 

Data-resolution matrix does not depend on specific data (y) or 

error in it but are exclusively the properties of J and the 

regularization (λ) used. The closer it is to the identity matrix, 

the smaller are the prediction errors for δ, where δ` in (3.4.2) 

representing the data misfit. 

 Data resolution matrix  N is given as 

    N = JTJ[JJT+λI]-1                                                     (3.4.3) 

 

4. SIMULATION 
For assessing the effect of regularization, circular domains are 

considered. These imaging domain background optical 

properties were set to µa =0.01mm-1, µs´ =1mm-1 with uniform 

refractive index of 1.33. The circular imaging domain with 

diameter of 86mm is discretized by 20160 linear triangle 

elements corresponding to 10249 number of nodes (nn). Here 

16 fibres were spaced equally and arranged in a circular 

fashion, where at a time one fibre acts as a source and the rest 

acts as detectors leading to 240 measurements. The amplitude 

data are used in reconstruction the µs´ is assumed to be known.  

A pixel basis having 900 elements (30x30) is used as a 

reconstruction basis. The emphasis was on providing 

improved resolution to the reconstructed target using the 

penalty term. The data noise level is kept at 1% to mimic the 

experimental case. This noisy data, along with the initial guess 

of the background optical values are used in the reconstruction 

procedure. In all the cases here the values of regularization 

parameter are λ = 10 for standard regularization, λ = 0.33 to 

0.5 for adaptive regularization, and for model based 

regularization λ = 1.  

Simulation provides the output in Fig.1with the oxygenated 

haemoglobin, deoxygenated haemoglobin, water molecule, 

scatter amplitude, scatter power concentrations in the 

reconstructed images with the scale of values. Simulations are 

performed in the Intel core i5 processor with 4GB RAM using 

MATLAB interfaced with the NIRFAST which is a finite 

element method based modelling open source software.      

Standard                   Adaptive                 Model Based 
 

                        
HbO 

                       
Deoxy Hb 

                       

                      
Water 

                     
Scatter Amplitude 

 

                                
 Scatter Power 

Fig 1: Simulated Reconstruction of Regularization 

Schemes         
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5. RESULTS 
The absorption  coefficients of the oxygenated haemoglobin 

(HbO) and de-oxygenated haemoglobin  (deoxyHb) of the 

reconstructed image of the above mentioned regularization 

parameters are compared in Table 1. to prove for a better 

regularizing parameter which improves the resolution of the 

reconstructed image. 

       Table 1. Comparison of Regularization Techniques 

 

 

Regularization       

Types 

 

Absorption    

Coefficient of     

HbO 

(mm-1) 

 

Absorption    

Coefficient of 

deoxyHb  (mm-1) 

Standard 

 
0.03 0.008 

Adaptive 

 
0.019 0.006 

Model Based 0.03 0.01 

 

While comparing the regularization techniques the model 

based regularization provides a better approximated reduced 

oxygenated absorption coefficient and increased scattering 

coefficient. The projection error change percentage is 

tabulated in Table 2. and compared for the better error 

correction in the case of regularizing the data. 

 

Table 2. Projection Error 

 

Regularization       

Types 

Projection 

Error 

Projection 

Error Change 

Standard 

 
136.091 32.861% 

Adaptive 

 
136.091 93.82% 

Model Based 

 
136.091 33.6% 

 

This work introduced a new regularization scheme based on 

the model of the problem and also provided a quantitative way 

of assessing the performance characteristics of the 

regularization schemes using both model-resolution and data 

resolution matrices. While the image reconstruction procedure 

and also does not depend on the data or noise in it. 

In standard or Tikhonov regularization the jacobian matrix is 

computed for λ values 1e-6 to 10. A higher value compared to 

the optimal one smoothes the reconstructed images resulting 

in loss of  resolution; a lower case results in high-frequency 

noise in images. This makes the choice of such a 

regularization parameter critical. Tikhonov regularization 

terminates after 200 iterations. Model based regularization has 

c = 0.2 with regularization term λ =1 improves the quality and 

quantity of the reconstructed image. The data resolution 

matrix provides enough sensitivity for imaging. Adaptive 

regularization has the objective function to misfit the data 

with higher values for λ =0.5 hence the change in the 

percentage of projection error is low with reduced number of 

iterations. 

The imaging domains that are considered are regularly 

shaped, but the observed trends and conclusions of this work 

should hold good for irregular shaped real tissues as well. The 

model based regularization provided better performance 

characteristics with better image resolution with the use of  

model . 

 

6. CONCLUSION 
In this paper  we have represented a regularization method 

using model resolution matrix which can be implemented for 

both constant and varying regularization parameter for the 

betterment of the resolution characteristics. The resolution 

improvement provides fidelity in obtaining good quality 

images in diffuse optical tomography for detection of size of 

tumor. This work provides a way of incorporating the 

structural and functional information of tissues into an iterative 

image reconstruction. Model based regularization scheme with 

decreased HbO absorption coefficient and increased deoxyHb 

absorption coefficient provides better resolution improvement. 

The experimental verification of this observed work can be 

demonstrated by the regularization parameter is be pursued as 

future work. 
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