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ABSTRACT 
In this work a kalman filter is designed for estimating the 

level of a cylindrical tank and thus removing noise from the 

level sensor. The system is modeled as a first order system. 

The kalman filter is designed and is used to verify its 

effectiveness in level estimation. This work describes the 

Kalman Filter which is the most important algorithm for state 

estimation and noise cancellation in a level system. The real 

time implementation shows that the noise in the system is 

eliminated and estimation of level is done. 
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1. INTRODUCTION 
The Kalman filter is an optimal estimator that can estimate the 

variables of a wide range of processes. Kalman filter also 

estimates the states of a linear system. The Kalman filter is 

theoretically attractive because apart from all possible filters, 

it is the one that minimizes the variance of the estimation 

error. Kalman filters are implemented in control systems 

because in order to control a process, it is required that an 

accurate estimate of the process variables. 

Filtering is desirable in many situations in engineering and 

embedded systems. For example, many radio communication 

signals are corrupted with noise. A good filtering algorithm 

can be used to remove the noise from electromagnetic signals 

while retaining the useful information. Another example we 

can consider is power supply voltages. Filtering, the ability to 

selectively suppress or enhance particular parts of a signal is 

perhaps the most important tool for signal processing. The 

analog filter prototypes are the most common used method in 

order to transform analog to discrete time signals. 

Least Squares estimation is particularly well suited to linear 

models because the estimated parameters can then be 

expressed mathematically in a closed form and turn out to be 

unbiased estimates of the true parameters. Least mean squares 

(LMS) algorithms are a class of adaptive filter used to mimic a 

desired filter by finding the filter coefficients that relate to 

producing the least mean squares of the error signal (difference 

between the desired and the actual signal). It is a stochastic 

gradient descent method in that the filter is only adapted based 

on the error at the current time.  
In these methods, the higher order terms in the Taylor's 

expansion were neglected. Therefore estimation of distorted 

signals may occur incorrectly or take longer time to converge 

and even diverge.  

In noise cancellation technique, various techniques are 

available. One of them is Bayesian filter.                      

Bayesian filtering uses the available noisy observations to 

estimate the system state. A Bayesian filter uses prediction-

correction technique. The time update model describes how 

the state updates from one time sample to the next. The 

measurement model describes how the observed data is 

related to the internal state of the system.  This approach 

overcomes the major limitation of the adaptive filtering 

technique. Adaptive filtering is a commonly used method in 

biomedical signal processing in order to remove the unwanted 

recorded artifacts that contaminate the desired measured 

physiological signals. An adaptive filter will modify its filter 

coefficients according to a given optimization algorithm in 

order to remove the undesired noise from a recorded signal. 

The filter utilizes additional external sensors as a reference for 

the added noise with the assumption that the added artifact 

and the desired signal are uncorrelated. Thus the filter will 

remove all its artifacts from the recorded signals by using the 

reference to the artifact input. Thus, the choice of reference is 

of very important when utilizing the adaptive filter technique. 

The algorithm is very simple to implement and it doesn’t 

requires any calibration but the requirement of a reference 

signal and additional sensors increases the hardware costs. 

The decision of adaptive algorithm is dependent on the 

computational resources available to the system in operation. 

The Bayesian filter technique does not require any reference 

to be used and additional sensors. The Bayesian filter is 

capable of operating online.   

Kalman filter also operate on a prediction-correction 

technique. The Kalman filter has two layers of calculations; 

time update equations and measurement update equations and 

these equations require a prior knowledge of the process and 

measurement models. One of the main assumptions of the 

Kalman filter is that the initial uncertainty is Gaussian and 

that the system dynamics are linear functions of the state. As 

most systems are not strictly linear the other form of Kalman 

filter is used that is Extended Kalman Filter. The Kalman 

filter main advantage over other methods is in the 

computational efficiency of the algorithm due to its efficient 

use of matrix operations allowing for longer real-time artifact 

removal. 

 

2. KALMAN FILTER 
The kalman filter was developed by Rudolph Kalman, 

although Peter Swerling developed a very similar algorithm 

in1958.The filter is named after Kalman because he published 

his results in a more prestigious journal and his work was 

more general and complete. Sometimes the filter is referred to 

as the Kalmam-Bucy filter because of Richard Bucy’s early 

work on the topic, conducted jointly with kalman [10]. 

http://en.wikipedia.org/wiki/Adaptive_filter
http://en.wikipedia.org/wiki/Stochastic_gradient_descent
http://en.wikipedia.org/wiki/Stochastic_gradient_descent
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The roots of the algorithm can betraced all the way back to the 

18-year-old Karl Gauss’s method of least squares in 1795.The 

kalman filter was developed to solve a specific problem like 

spacecraft navigation for the Apollo space program. From 

there on, the Kalman filter has found applications in hundreds 

of diverse areas, including all forms of navigation, nuclear 

power plant instrumentation, demographic modeling, and 

manufacturing, the detection of underground radioactivity and 

fuzzy logic and neural network training. 

The Kalman Filter (KF) is the best possible, optimal, 

estimator for a large class of systems with uncertainty and a 

very effective estimator for an even larger class. it is one of 

the most well-known and often-used tools for so called 

stochastic state estimation from noisy sensor measurements. 

Under certain assumptions, the KF is an optimal, recursive 

data processing or filter algorithm [7]. 

 The KF is optimal, because it can be shown that, 

under certain assumptions; the KF is optimal with 

respect to virtually any criterion that makes sense for 

example the mean squared error. Kalman filter 

assumes a multivariate Gaussian distribution [5]. One 

of the reasons the filter performs optimally is because 

it uses all available information that it gets. It does 

not matter about the accuracy it just an overall best 

estimate of a state, i.e., the values of the variables of 

interest. The KF is recursive, which brings the useful 

property that not all data needs to be kept in storage 

and re-processed every time when for example a new 

measurement arrives. 

 The KF is a data processing algorithm or filter, which 

is useful for the reason that only knowledge about 

system inputs and outputs is available for estimation 

purposes. A filter tries to obtain an optimal estimate 

of variables from data coming from a noisy 

environment. 

 

 The filter also supports in the estimations of past, present, 

and even future states, and it can do so even when the precise 

nature of the modeled system is unknown. Mathematically, 

the filter estimates the states of a linear system. The gain, 

noise covariance and prediction covariance are assumed 

initially. Using these values, the Kalman gain has been 

calculated and it predicts the estimated value to update the co 

variances. The estimates produced by this method make the 

true values equal to the original measurements. Figure 1 

shows the concept of kalman filter 

 
Figure1:Concept of kalman filter 

 

The Kalman filter uses a system's dynamics model, known  

control inputs to that system, and measurements (such as from 

sensors) to form an estimate of the system's varying quantities 

(its state) that is better than the estimate obtained by using any 

one measurement alone. As such, it is a common sensor 

fusion algorithm. 

2.1. The Kalman Filter Algorithm 

The Kalman Filter is a state estimator which produces an 

optimal estimate in the sense that the mean value of the sum 

of the estimation errors gets a minimal value. The Kalman 

Filter gives the following sum of squared errors: 

E [ex
T (k) ex (k)] = E [ex1

2 (k) +………+exn 
2 (k)] 

a minimal value. Here, 

   ex (k) =  x est (x) – x(k) 

is the estimation error vector. (The Kaman Filter estimate is 

sometimes denoted the “least mean-square estimate”.) This 

assumes actually that the model is linear, so it is not fully 

correct for nonlinear models. It is assumed the that the system 

for which the states are to be estimated is excited by random 

(“white”) disturbances (or process noise) and that the 

measurements (there must be at least one real measurement in 

a Kalman Filter) contain random (“white”) measurement 

noise. 

 The Kalman Filter has many applications, e.g. in dynamic 

positioning of ships where the Kalman Filter estimates the 

position and the speed of the vessel and also environmental 

forces. These estimates are used in the positional control 

system of the ship. The Kalman Filter is also used in soft-

sensor systems used for supervision, in fault-detection 

systems, and in Model-based Predictive Controllers (MPCs) 

which is an important type of model-based controllers. 

 The Kalman Filter algorithm was originally developed for 

systems assumed to be represented with a linear state-space 

model. However, in many applications the system model is 

nonlinear. Furthermore the linear model is just a special case 

of a nonlinear model. Therefore, I have decided to present the 

Kalman Filter for nonlinear models, but comments are given 

about the linear case. The Kalman Filter for nonlinear models 

is denoted the Extended Kalman Filter because it is an 

extended use of the original Kalman Filter. However, for 

simplicity we can just denote it the Kalman Filter, dropping 

“extended” in the name. The Kalman Filter will be presented 

without derivation. 

2.2. Kalman Filter State Estimation 
1. This step is the initial step, and the operations here are 

executed only once. Assume that the initial guess of the state 

is xinit. The initial value xp(0) of the predicted state estimate 

xp (which is calculated continuously as described below) is 

set equal to this initial value: 

               Initial state estimate 

                 xp(0) = xinit 

2. Calculate the predicted measurement estimate from the 

predicted state estimate: 

                      Predicted measurement estimate: 

                yp(k) = g [xp(k)] 

3. Calculate the so-called innovation process or variable – it is 

actually the measurement estimate error – as the difference 

between the measurement y(k) and the predicted measurement 

yp(k): 

                      

                      Innovation variable: 

                     e(k) = y(k) − yp(k)  
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4. Calculate the corrected state estimate xc(k) by adding the 

corrective term Ke(k) to the predicted state estimate xp(k): 

 

                     Corrected state estimate: 

xc(k) = xp(k) + Ke(k)  

 

Here, K is the Kalman Filter gain. The calculation of K is 

described below. 

5. Calculate the predicted state estimate for the next time step, 

xp (k + 1), using the present state estimate xc (k) and the 

known input u(k) in process model: 

 

                      Predicted state estimate: 

                 xp (k + 1) = f [xc(k), u(k)] 

2.4. Flowchart Of Kalman Filter 

Figure2.4shows the flowchart of kalman filter 

 

Figure 2.4 Flowchart for the Concept of Kalman Filter 

 Initially, the noise covariance and prediction covariance are 

assumed. The Kalman gain is calculated then the innovation 

error is been calculated. Using Kalman gain obtained and 

initialized noise covariance the priori covariance estimate is 

done. The priori estimate is performed using the Kalman gain, 

innovation vector and initial state of the system. The new 

system is formed by updating the posterior estimate and 

posterior covariance estimate.  The settling point is been 

checked- if yes the settling point remains the same otherwise 

the state is increased and cycle is again repeated until the 

settling point is reached.  

3. SYSTEM DESCRIPTION 

3.1 Level Process Description 

The level control of a process is a common control system 

found in process industries. When processes are complex, or 

their controls require high degree of performance quality, 

finding a control algorithm may be an complicated 

mathematical problem, due to non-existence of reliable 

models that explain the process dynamics suitably. Moreover, 

there are many process in which operator is necessary, even in 

a low level control loop. The proper controller must control 

the level control. The objective of the controller in the level 

control is to maintain a level set point values dynamically. 

The mainframe is a metallic structure mounted on four castor 

wheels for system mobility with facility to lock the systems in 

a desired place using the castor wheel brakes. 

Inevitably the mainframe is organized as two racks and 

control panel. While the bottom rack houses the reservoir 

tanks, solenoid valve, motor and piping. The upper rack 

houses differential pressure transmitter, I/P converter, control 

valves, process tank and cabinet. The front panel of cabinet 

holds the process schematic, pressure gauges and the 

electrical and pneumatic terminations. The right end of the 

cabinet holds the pressure regulator. The O/P of the pressure 

transmitters current to pressure converter one terminated in 

the front panel. The block diagram representation of the entire 

process will be as shown in the below Figure 3.  

 
Figure 3 block diagram of level process system 

4. SYSTEM MODELLING 

The empirical method of identifying the system is the most 

modern method. Empirical models use data gathered from 

experiments to define the mathematical model of a system. A 

step change in the input to a process produces a response, 

which is called process reaction curve .A variety of empirical 

modelling methods exists. One method for developing models 

uses system identification methods. System identification 

methods use measured data to create difference equation 

which are used for representations that model the data. 

In general terms, the time constant (τ), describes how fast the 

process variable (PV) moves in response to a change in the 

controlled output (CO). the time constant must be positive and 

it must have units of time. Most often it has units of minutes 

or seconds. Step test data implies that the process is in manual 

mode (open loop) and initially at steady state. 

The transfer function models are required only for the 

simulation studies of the controller design. Here we are 

controlling the level (H) of the tank by manipulating the flow 

rate (Q). The most commonly used model to describe the 

dynamics of the industrial level process is general First Order 

plus Time Delay Process (FOPTD). And the FOPTD model 

structure is given in equation (4.1) 

                         ( )
1

dsK
G s e

s








             (4.1)                                                                    

ϴd – Time delay 

Kp – Process gain 

τ - Time constant 

           Here the process of interest is approximated by a First 

Order plus Time Delay Process. The time delay or dead time 

approximation can be done in several methods; some methods 

are discussed below: 
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1. The simplest approximation method is taking the first two 

terms of Taylor series expansion of the Laplace transfer 

function of the dead time element. 

                        1d s
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                      (4.2)                                                                                     
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3. The crude approximation 
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    Thus by approximating the dead time by any of the above 

mentioned methods, we can conclude that a First Order plus 

Time Delay Process can be approximated as a higher order 

process. The transfer function parameters of the process are 

obtained by doing the step test. That is at a fixed inlet flow 

rate the system is allowed to reach the steady state. After that 

a step increment in the input flow rate is given, and various 

readings are noted till the process becomes stable. Steps to 

find transfer function are: 

1. Note down the Initial Steady State (I.S.S) value of the 

process variable (PV). 

2. Give a noticeable change in the input at time (t1) and the 

time delay (L). 

3. Observe the change in the process variable and note down 

the New Steady State (N.S.S) value. 

4. Find out the total change in PV,ΔPV=N.S.S – I.S.S 

5. Compute the value (ΔPV*.632) + I.S.S 

6. Note down the time (t2) corresponding to (ΔPV*0.632) + 

I.S.S value. 

7. Then the time constant (τ) can be calculated as  τ=t2-t1 

8 The process gin (Kp) is ΔPV/ΔV, where ΔV is the change in 

input in Volts 

The transfer function of the tank is computed as,  

 

The state space parameters obtained for the tank is 

A = -0.0013 

B = 0.0625 

C = 0.0432 

D = 0 

Thus the state space equation is, 

ẋ = -0.0013 x(t) + 0.0625 u(t) 

y = 0.0432 x(t) 

5. SOFTWARE IMPLEMENTATION 

5.1 Simulation in matlab 
The process identification has been done to obtain the state 

transition matrix, the process noise covariance matrix and the 

measurement matrix. The process model under consideration 

has been chosen is very simple, and consequently the Kalman 

filter does a good job in rejecting the process and 

measurement noise to generate a very good estimate of the 

process output. 

The algorithm of Kalman filter  was written in M-File Matlab 

programming.It shows how the filter works, generate some 

input data and random noise and compare the filtered 

response ye with the true response y and measured response 

yv. The function KALMAN to design a steady-state Kalman 

filter and this determines the optimal steady-state filter gain M  

based on the process noise covariance Q and the sensor noise 

covariance R. Figure5.1 shows the kalman filter response for 

a steady state. The first plot shows the true response y (dashed 

line) and the filtered output ye (solid line). The second plot 

compares the measurement error (dash-dot) and the estimation 

error (solid).  

 

       Figure5.1:Kalman filter response for a steady state 

This plot shows that the noise level has been significantly 

reduced. This can also be confirmed by the following error 
computations. 

Measurement Error = y-yv; 

Estimation Error = y-ye; 

After computation we get the measurement error as 2.8728 

and the estimation error as 0.0083.Thus from these values we 

can say that the error has been reduced after using the kalman 

filter. 

5.2.1Simple Kalman Filter Implementation In 

LabVIEW 

The algorithm of simple Kalman filter was implemented in 

LabVIEW. The desired value was set and a number was 

randomly generated to produce a measured signal. The 

covariance was set and the program was executed. The front 

panel of the algorithm is shown below in the Figure 5.2. The 

estimated value for the measured value was close to the value 

of the desired value.  In the Figure 5.2, the desired value was 

2 and the measured value was 5. The obtained estimated value 

was 2.05708. 

 
 

Figure5.2 Simple kalman filter implementation 
 

5.2.2. Implementation of Kalman Filter for 

Various Signal Type In LabVIEW 
The algorithm of Kalman filter was implemented for various 

signal type in LabVIEW. A sine wave and a noisy sine wave 

was generated and applied to the algorithm. Figure5.3 shows 

the implementation of kalman filter for sine signal. 
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Figure 5.3 Implementation of kalman filter for sine signal 

5.2.2 Kalman Filter Implementation In Lab VIEW 

For Level Estimation  

Figure 5.2.2 shows the front panel of a lab VIEW simulator of 

a level estimator.In this simulation the outflow is varied and 

the Kalman filter estimates the correct steady state value. 

 

Figure 5.2.2 Front panel of simulator of level estimator  

6. CONCLUSION 

 The system identification of the spherical tank using 

emperical method was done and the piecewise transfer 

function was obtained in real time and hence the system was 

studied. The controllers parameters for an integer order 

system was obtained using Ziegler Nichols method and the 

simulation was done using Matlab Simulink. matlab The 

algorithm of kalman filter was written in M-file matlab 

programming and the effectiveness of the algorithm for the 

plant was verified. And from performance values and from the 

graph it can be viewed that the error is reduced to a certain 

value. 

For future work this project can be extended to do in the real 

time implementation. 
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