
International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

1

A Heuristic Approach for VLSI Floorplanning

Rajalakshmi.P,
PG Student,

Department of Electronics and
Communication Engineering,

Sri Krishna College of
Technology, Coimbatore,

Tamil Nadu, India

 Senoj Joseph,
Assistant Professor,

Department of Electronics and
Communication Engineering,

Sri Krishna College of
Technology, Coimbatore,

Tamil Nadu, India

ABSTRACT

Floorplanning is an essential step in VLSI chip design

automation. The main objective of the floorplanning is to find

a floorplan such that the cost is minimized. This is achieved

by minimizing the chip area and interconnection cost. It

determines the performance, size, yield and reliability of

VLSI chips. We propose a Memetic Algorithm (MA) for

non-slicing and hard module VLSI floorplanning problem.

This MA is a hybrid genetic algorithm that uses effective

genetic search method to explore the search space and an

efficient local search method to exploit information in the

search region. The exploration and exploitation are balanced

by threshold bias search strategy. MA works better than the

existing algorithms and is efficient, faster and cost effective

algorithm. A better floorplan with minimal chip area and

interconnection cost will be obtained using the MA for

non-slicing and hard module VLSI floorplanning

problem.MA is mainly used to produce optimal or near

optimal solution. The experimental results are analyzed to

check the performance of MA.

Keywords

Floorplanning, Genetic Algorithm (GA), Local search,

Memetic algorithm (MA), Very Large Scale Integrated circuit

(VLSI), Ordered Tree (O-tree) Representation, Depth First

Search (DFS) Algorithm.

1. INTRODUCTION
Floorplanning is a mapping between the logical description

(netlist) and the physical description (floorplan).It plays an

important role in both VLSI and Application Specific

Integrated Circuits (ASIC) design. The process of arranging

the blocks of the netlist on the chip is called as Floorplanning.

The VLSI floorplanning goal is to find a floorplan

for a given set of modules at minimum cost such that no

module overlaps with another and the interconnections

between the modules are minimized[10].It is easy to deal with

layout when structural detail at lowest abstraction is available,

one knows the exact number of transistors in the circuit and

the way they are interconnected.
When this type of structural information is not

available, one can estimate the area to be occupied by various

sub blocks and together with a precise or estimated

interconnection pattern, try to allocate distinct regions of the

integrated circuit to the specific sub blocks. This process is

called as Floorplanning. It is an important step in VLSI design

automation as it determines the performance, size, yield, and

reliability of VLSI chips. The floorplan representation

determines the size of the floorplan and the complexity of

transformation between a representation and its corresponding

floorplan[1].Slicing representation and Non-slicing

representation are the two categories of existing floorplan

representations [7]. In general, the non-slicing representations

can contribute to better results than slicing representations.

The Ordered tree (O-tree) representation proposed by

Guo et al. is one of the most efficient non-slicing

representations[2].The representation not only covers all

optimal floorplans but also has a smaller search space. When

designing genetic operators of evolutionary algorithms,

geometrical relations among modules are required. This

representation is useful in identifying the blocks Therefore,

the O-tree representation is made use of in this paper.

Fig 1: Non-Slicing Floorplan

Local search and Global search are the two existing

search methods for the VLSI floorplanning problem. Though

the local search methods are efficient, they may not be able to

produce an optimal solution sometimes as their search may be

trapped in minimal points of the local region. A widely used

global search method for VLSI floorplanning problems is

genetic algorithm (GA). GA has been successfully applied to

solve slicing VLSI floorplanning problems.GA can also be

applied for non-slicing VLSI floorplanning, but the

performance of the GA is not satisfactory [1].

In this paper, a Memetic Algorithm (MA) is

proposed[6] for a non-slicing and hard module VLSI

floorplanning problem. MAs are population-based

metaheuristic search methods[7].

The MA is a hybrid GA that uses an effective

genetic search method to explore the search space and an

efficient local search method to exploit information in the

search region[1].

2. PROBLEM DESCRIPTION
Given a set of blocks B = {b1, b2,…, bn}. Each block Bi is

rectangular and has fixed width and height. A module mi is a

rectangular block with fixed height hi and width wi,

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

2

M = {m1, m2, . . . , mn} is a set of modules, and N is a net list

specifying interconnections between the modules in M.

The objectives of floorplan optimization problem

are to minimize the area of B and reduce wire lengths of

interconnects provided no pair of blocks overlaps. Each block

Bi is associated with a two tuple (hi, wi), where hi and wi

denote the width and height of Bi, respectively. The area Ai of

the block Bi is given by hi * wi, We consider only the

placement of hard modules. A hard module is not flexible in

its shape, but free to rotate.

A floorplan F is an assignment of M onto a plane

such that no module overlaps with another. A floorplan has an

area cost, i.e., Area(F), which is measured by the area of the

smallest rectangle enclosing all the modules and an

interconnection cost, i.e., Wirelength(F), which is the total

length of the wires that are used for the interconnections

specified by N. To minimize the costs, a module can be

rotated 90◦. The cost of a floorplan F is defined as follows:

In the above equation, Area* and Wirelength*

represent the minimal area and the interconnection costs,

respectively[1]. The interconnection cost is the total wire

length of all the nets, and the wire length of a net is calculated

by the half perimeter of the minimal rectangle enclosing the

centers of the modules that have a terminal of the net on it.

Given M and N, the objective of the floorplanning

problem is to find a floorplan F such that cost(F) is

minimized. A floorplan is “admissible” if no module can be

shifted left or bottom without moving other modules in the

floorplan. That is, it is a LB-compact placement. Given a

feasible floorplan (a floorplan on which no module overlaps

with another),we can derive an admissible floorplan by

compacting the modules to the left and bottom boundaries of

the floorplan. The cost of the admissible floorplan is equal to

or less than that of the original floorplan. Therefore, the

search space of the VLSI floorplanning problem is limited to

admissible floorplans [1].

3. LITERATURE SURVEY
Pei-Ning Guo, Toshihiko Takahashi, Chung-Kuan Cheng

proposed an Ordered tree (O tree) structure to represent non-

slicing floorplans. The O tree uses only bits

for a floorplan of rectangular blocks. This paper states the

floorplanning problem, the descriptions of admissible

placement and constraint graph, defines the properties and

operations for O tree, presents a deterministic algorithm based

on O tree. This paper result in better wire length while their

chip area are comparable and the CPU time is much less [2].

Maurizio Rebaudengo, Matteo Sonza Reorda

describes a Genetic Algorithm for the Floorplan Area

Optimization problem. The algorithm is based on suitable

techniques for solution encoding, effective cross-over and

mutation operators, and heuristic operators which further

improve the method’s effectiveness. Experimental results how

that the GA is competitive as far as the CPU time

requirements and the result accuracy are considered [4].

Christine L. Valenzuela and Pearl Y. Wang

presented a GA which uses a normalized postfix encoding

scheme to solve the VLSI floorplanning problem. This paper

describes a GA which uses a novel encoding to breed

normalized postfix expressions for macro cell placement and

area optimization in VLSI floorplan design [3].

Hisao Ishibuchi, Tadashi Yoshida and Tadahiko

Murata proposed a paper that shows how the performance of

EMO algorithms can be improved by hybridization with local

search. The main advantage of the hybridization is that the

convergence speed is improved and the main drawback is that

the increase in the computation time per generation. Thus, the

number of generations is decreased when the available

computation time is limited. As a result, the global search

ability of EMO algorithms is not fully utilized [6].

J.Cohoon, S.Hedge, W.Martin and D.Richards

proposed a method to solve the floorplan design problem

using distributed genetic algorithms. The genetic algorithm is

modified slightly to make it distributed. A number of

instances of the genetic algorithm are spawned and run

independently an in parallel for a number of generations [5].

4. RELATED WORK

4.1 O-Tree Representation
An O tree can be encoded in a tuple (T, π), where T is a 2n-bit

string specifying the structure of the O-tree, and π is a

permutation of the nodes. For each admissible placement, we

can find an O-tree representation. Given an O- tree, it takes

only linear time to construct the placement and its constraint

graph.Generally, a tree contains a finite set of one or more

nodes. There is one specially designated node called the root

of the tree. The root has more branches that are directed edges

pointed from the root to its children. An O tree is a rooted

directed tree in which the order of the subtrees is important.

Two types of representations for an O-tree are

Horizontal and Vertical O-tree Representations[8].The

Horizontal O-tree Representation is considered in this paper.

4.2 Horizontal O-Tree Representation
A floorplan with n rectangular modules can be represented in

a horizontal O tree of (n + 1) nodes, of which n nodes

correspond to n modules m1,m2, . . . , mn and one node

corresponds to the left boundary of the floorplan. This is

called the source node. The left boundary is a dummy module

with zero width placed at x = 0.

In a horizontal O-tree, there exists a directed edge

from module mi to module mj and only if xj = xi + wi, where xi

is the x coordinate of the left bottom position of mi, xj is the x

coordinate of the left-bottom position of mj, and wi is the

width of mi[1].

Fig 2:O-Tree Representation

For a horizontal O-tree, the tuple is obtained by

depth-first traversing the nodes and edges of the O-tree. When

visiting a node other than the root, we append the node to π.

When visiting an edge in descending direction, we append a 0

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

3

to T, and when visiting an edge in ascending direction, we

append a 1 to T. The root of the O tree represents the left

boundary of the chip. Thus, we set its coordinate and its

width. The children are on the right side of their parent with

zero separation distance in coordinate. For each block let be

the set of block with its order lower than in permutation and

interval overlaps interval by a nonzero length. From an

horizontal O-tree, we can find a placement by visiting the tree

in DFS order. The permutation is the label sequence when we

traverse the tree in DFS order. Fig 2 shows the Horizontal

O-tree Representation.

Fig 3:Encoding

For example, Fig 3shows the horizontal O-tree is

encoded as (0011010011, abcde).The length of the bit string

is 10.

4.3 Algorithm for Feasible Tree
Given the generated random number and the number of nodes

as input, this algorithm will generate a specified bits of binary

equivalent for the random number and detects whether the

tree is feasible or not using Horizontal O-tree representation

logic. The number of bits(b) generated is twice the number of

nodes(n) specified as the input. For example, if n=2, then a 4

bit equivalent of generated random number is obtained. This 4

bit equivalent will have 2^4=16 possible combinations, out of

which only few combinations are feasible. The number of

nodes in tree is equal to the number of blocks to be placed in

the Floorplan.

The examples for Feasible and Infeasible tree are

shown below. Let the generated random number be ‘r’ and the

number of nodes be ‘n’. If r=702, n=5, then 1010111110,

Infeasible tree is obtained. Suppose, if r=211,n=7,then

0011010011,Feasible tree is obtained.

4.4 DFS Algorithm Implementation
The major goal of the DFS Algorithm is to visit all the nodes

of the tree only once [7]. In DFS, we follow the path as deeply

as we go. When there is no adjacent vertex present, we

traverse back and search for unvisited vertex. We should

maintain a visited array to mark all the visited vertices. We

developed a program to find the path traversal for more

number of nodes. Hence, the DFS algorithm for the feasible

tree is implemented successfully.

4.5 Maximum Area Calculation
Specifying the position, width and height of the blocks, the

developed a program will find the total area required for

placing the blocks. It should be placed based on the O-tree

Representation and DFS algorithm implementation. It is

implemented using concepts of DataStructures [8]. The total

width is calculated by adding ‘x axis’ (‘y axis’) position and

width (height) of individual block. For each individual block,

the total width is calculated and the maximum value is the

maximum width obtained after placing these blocks.

Maximum Area = Maximum Width x Maximum Height

5. PROPOSED WORK
The proposed method is a MA for a non-slicing and

hard-module VLSI floorplanning problem. MAs are

population-based metaheuristic search methods.

The MA is a hybrid GA that uses an effective

genetic search method to explore the search space and an

efficient local search method to exploit information in the

search region. The exploration and exploitation are balanced

by a novel bias search strategy[1].

MA employs a local search method for the VLSI

floorplanning problem. The local search method is based on a

deterministic algorithm. Optimization algorithm can be

deterministic or probabilistic. Deterministic optimization

algorithms are most often used if a clear relation between the

characteristics of the possible solution and their utility for a

given problem exists. This includes state space search, branch

and bound, algebraic geometry. Probabilistic methods, on the

other hand, may only consider those elements of the search

space in further computations that have been selected by the

heuristic.

Steps:

1. Start: Randomly generate a population of N chromosomes.

2. Fitness: Calculate the fitness of all chromosomes.

3. Create a new population:

a. Selection: According to the selection method, select

2 chromosomes from the population.

b. Local search: Search for the best chromosomes

c. Crossover: Perform crossover on the 2 chromosomes

selected.

d. Local search: Search for the best chromosomes

e. Mutation: Perform mutation on the chromosomes

obtained with small probability.

5.1 Genetic Algorithm
GA is a search heuristic that mimics the process of natural

evolution. This heuristic is routinely used to generate useful

solutions to optimization and search problems. Genetic

algorithms belong to the larger class of EAs, which generate

solutions to optimization problems using techniques inspired

by natural evolution, such as inheritance, mutation, selection,

and crossover.

Genetic Algorithm is started with a set of solutions

(represented by chromosomes) called population. Solutions

from one population are taken and used to form a new

population. This is motivated by a hope, that the new

population will be better than the old one. Solutions which are

selected to form new solutions (offspring) are selected

according to their fitness - the more suitable they are the more

chances they have to reproduce. This is repeated until some

best solution is obtained. GA is used to perform global

exploration among a population while heuristic methods are

used to perform local exploitation around the chromosomes.

The behaviors of GA are characterized by the balance between

exploitation and exploration in the search space. The balance

is affected by the strategy parameters such as population size,

maximum generation, crossover probability and mutation

probability.

Steps:

1. Start: Randomly generate a population of N chromosomes.

2. Fitness: Calculate the fitness of all chromosomes.

3. Create a new population:

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

4

a. Selection: According to the selection method

implemented, select 2 chromosomes from the

population.

b. Crossover: Perform crossover on the 2

chromosomes selected.
c. Mutation: Perform mutation on the chromosomes

obtained.
4. Replace: Replace the current population with the new

population.

5. Test: Test whether the termination condition is satisfied. If

so, stop. If not, return the best solution in current population

and go to Step 2.

A. Fitness Function: The Genetic Representation in MA

considers each individual in the population is an admissible

floorplan represented by an O-tree and encoded in a tuple

(T, π), where T is a 2n-bit string identifying the structure of the

O-tree, and π is a permutation of the nodes[1].

The VLSI floorplanning is a minimization problem,

and the objective is to minimize the cost of floorplan F, i.e.,

cost(F). Thus, the fitness of an individual (T, π) in the

population is defined as follows:

where F(T,π) is the corresponding floorplan of (T, π), and

cost(F(T,π)) is the cost of F defined earlier.

An individual in the initial population is an O-tree (T, π)

representing an admissible VLSI floorplan F. A constructive

algorithm is designed to construct an admissible O-tree. The

algorithm starts with randomly generating a sequence of

modules π. Then, it inserts the modules into an initially empty

O-tree T in the randomly generated order. When inserting a

module into T, it checks all external insertion positions for the

module and inserts the module at the position that gives the

best fitness.

B. Genetic Operators

1) Role of the Genetic Operators in the MA: The role that the

genetic operators play in our MA is different from that in

GAs. In GAs, crossover is used for both exploration and

exploitation, and mutation is used for exploration. In our MA,

however, the crossover and mutation operators are only used

for exploration, or discovering new promising search regions.

The crossover and mutation operators discover new promising

search regions by evolving memes. Memes can mutate

through, for example, misunderstanding, and two memes can

recombine to produce a new meme involving elements of

each parent meme. It is observed that a subtree of the O-tree

represents a compact placement of a cluster of modules.

Hence, subtrees are used as memes in our MA. The memes

are transmitted and evolved through one crossover operator

and two mutation operators, which will be discussed in the

following.

2) Crossover: Given two parents, both of which are

admissible floorplans represented by an O-tree, the crossover

operator transmits the significant structural information from

two parents to a child. By recombining some significant

structural information from two parents, it is hoped that better

structural information can be created in the child.

To create a child c1 from two parents p1 and p2, the

crossover randomly selects some top-level subtrees from p1,

duplicates them, and puts them in c1. Then, the crossover

operator takes a copy of p2 and removes those nodes that have

been already present in c1 and then adds the remaining

structural components to c1. In this way, the generated child

carries the significant structural information from both p1 and

p2. Fig. 4 indicates the basic idea behind the crossover

operator. Fig. 4(a) and (b) are two parents, i.e., p1 and p2, and

Fig. 4(c) is the child produced by the crossover operator.

(a)

(b)

Fig 4(a), (b) : Crossover Operator

(c)

Fig 4(c): Crossover Operator

3) Mutation: The basic idea behind the mutation operators is

to discover a new search region by mutating the structure of

an individual.

Fig 5: Mutation Operator

A mutation operator used by MA randomly selects a

subtree at any level, removes it, and then inserts it back to the

O-tree. Sometimes the mutated floorplan may not be

admissible. Fig. 5 illustrates the basic idea behind the mutator.

In the figure, it shows the initial O-tree and the mutated O-tree

in which the subtree c is being moved.

The mutation operators are randomly selected and

used by our MA to discover new search regions that have

different fitness.

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

5

5.2 Local Search Method
The local search method is based on a deterministic algorithm

proposed by Guo et al. [1].Given an initial floorplan encoded

in an O-tree (T, π), the local search method finds a local

optimal solution through systematically examining those

O-trees that can be obtained by removing a module from, and

then putting it back to the O-tree. When a module is added, its

orientation may be changed if it leads to a smaller cost [1].

The algorithm is shown below.

1) For each node mi in (T, π):

 a) delete mi from (T, π);

 b) insert mi in the position where we can get the

smallest most value among all possible insertion positions in

(T, π) as an external node of the tree;

c) perform (a) and (b) on its orthogonal O-tree.

2) Output (T, π).

Strategy to Bias the Search
In our MA, we use a novel strategy to bias the

search since the search space is huge. Instead of exploiting all

the search points generated by the genetic operators, our MA

only exploits those search points (admissible floorplans)

whose fitness value is equal to or greater than a threshold v

and ignores those search points whose fitness value is less

than v. This basic idea behind the bias search strategy is

illustrated in Fig. 5.

The threshold v is very important as determines the

balance between the exploration and exploitation of our MA,

which affects the computation time and the optimality of

solutions. It should not be too big or too small value since the

efficiency of our MA is dependent on this threshold value.

Experimental results have shown that the threshold strategy is

significant when compared with a random search strategy and

the cost obtained by the MA using the threshold strategy is

less than or equal to the cost obtained by the MA using the

random picking up strategy.

6. EXPERIMENTAL RESULTS
The O-tree Representation, DFS Algorithm Implementation

and Maximum Area Calculation is carried out in C

programming language.

Fig 6: DFS algorithm implementation
Given a random number and number of nodes ’n’ as inputs,

2n bits are generated and it is checked for feasibility. Finally,

node traversal path is obtained in the output. Fig. 6 depicts the

DFS algorithm implementation.

Fig 7: Maximum Area Calculation

 The width, height and position of the blocks are specified as

input and the maximum area occupied by the blocks is

obtained as output. Fig 7 Depicts maximum area calculation.

7. CONCLUSION AND FUTURE

WORKS
 Based on the Horizontal O-tree Representation and DFS

Algorithm, a program has been developed to check the

feasibility of the tree and the path traversal of the nodes. The

main advantage is its flexibility. It can be used for more

number of nodes. Further, a program has been developed to

find the maximum area occupied by the blocks.

The future work includes in extending this program to

eliminate the block overlap. Finally, MA will be implemented

to obtain a better floorplan with minimal chip area and

interconnection cost.

8. REFERENCES
[1] Maolin Tang and Xin Yao, "A Memetic Algorithm for

VLSI Floorplanning", IEEE transactions on systems,

man, and cybernetics—part b: cybernetics, VOL. 37,

NO. 1, 2007, pp. 62-69.

[2] Pei-Ning Guo, Toshihiko Takahashi, Chung-Kuan

Cheng, "Floorplanning Using a Tree Representation",

IEEE transactions on computer-aided design of

integrated circuits and systems, VOL. 20, NO. 2, 2001,

pp. 281-289.

[3] Christine L.Valenzuela and Pearl Y.Wang, ”A Genetic

Algorithm for VLSI Floorplanning”.

[4] M. Rebaudengo and M. Reorda, “GALLO: A genetic

algorithm for floorplan area optimization,” IEEE Trans.

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

6

Comput.-Aided Design Integr.Circuits Syst., vol. 15, no.

8, pp. 943–951, Aug. 1996

[5] J. Cohoon, S. Hegde, W. Martin, and D. Richards,

“Distributed genetic algorithms for the floorplan design

problem,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 10, no. 4, pp. 483–492, Apr. 1991.

[6] H. Ishibuchi, T. Yoshida, and T. Murata, 2003 “Balance

between genetic search and local search in memetic

algorithms for multiobjective permutation flowshop

scheduling,”

[7] Sabih H.Gerez, “Algorithms for VLSI Design

Automation”, John Wiley & Sons Inc., U.K, Second

Edition.

[8] Naveed Sherwani, “Algorithms for VLSI Design

Automation”, John Wiley & Sons Inc., U.K, Second

Edition.

[9] Anuradha A.Puntambekar, “Data Structures”, Technical

Publications, Pune.

[10] Michael John Sebastian Smith, “Application Specific

Integrated Circuits”, Pearson Edition.

[11] Maolin Tang, Raymond Y. K. Lau," A Parallel Genetic

Algorithm for Floorplan Area Optimization", Seventh

International Conference on Intelligent Systems Design

and Applications,IEEE, 2007, pp. 801-806

[12] Guolong Chen, Wenzhong Guo, Yuzhong Chen, "A

PSO-based intelligent decision algorithm for VLSI

Floorplanning", Soft Computing, VOL. 14, NO. 12,

Springer, 2009, pp. 1329-1337.

[13] Jianli Chen, Wenxing Zhu, and M. M. Ali, "A Hybrid

Simulated Annealing Algorithm for Nonslicing VLSI

Floorplanning", IEEE transactions on systems, man and

cybernetics—part c: applications and reviews, VOL. 41,

NO. 4, 2011, pp. 544-553.

[14] Guolong Chen, Wenzhong Guo, Yuzhong Chen, "A

PSO-based intelligent decision algorithm for VLSI

floorplanning", Springer, Soft Computing, 2010, pp.

1329–1337.

[15] C. Valenzuela and P.Wang, “VLSI placement and area

optimization using a genetic algorithm to breed

normalized postfix expressions,” IEEE Trans.Evol.

Comput., vol. 6, no. 4, pp. 390–401, Aug. 2002.

