
International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

1

A Novel Approach for Multi-Bit Error Correction in
Memories

Jushwanth Xavier .X

Assistant Professor
Loyola Institute of Technology and Science

Benujah .B.R
Assistant Professor

Ponjesly College of Engineering

ABSTRACT

Due to advance technologies transistor size shrinks which

makes the devices more vulnerable to noise and radiation

effect. This affects the reliability of memories. Built-in current

sensors (BICS) have been success in the case of single event

upset (SEC). The process is taken one step further by

proposing specific error correction codes to protect memories

against multiple-bit upsets and to improve yield have been

proposed. The method is evaluated using fault injection

experiments. The results are compared with Hamming codes.

The proposed codes provide a better performance compared to

that of the hamming codes in terms of Single Event Upset. In

the case of the Multi Bit Upset it provides better coverage in

error deduction and correction.

General Terms
Error correction, VLSI

Keywords
Multi-bit error correction, Single event upset, hamming codes.

1. Introduction

CMOS scaling process provides high-density, low cost, low

power, high-speed integrated circuits with a small noise

margin. In very deep sub-micron technologies due to

atmospheric neutrons and alpha particles the device’s field-

level reliability is severely impacted by single-event upset

(SEU) and multi-bit event upset (MBU). Due to this features

susceptible temporary faults will be increased [1]. Due to this

not only memories but logic are also affected. When these

particles hit the silicon bulk, they produce minority carrier,

which produces voltage change at the nodes.

In combinational circuits soft error rate has drawn a major

attention as the number of fault in the devices have increased

significantly. Circuit latch up at output due to neutron effect

have become second point, not many techniques cope with

this problem. Effective solutions in protecting memories are

also provided in [2]. Transient faults in space applications are

potential consequences for the space craft that includes loss of

information, functional failure of the craft [3]. Although SEUs

are major problem, multiple-bit upset (MBU) has become

important problem in the design memory devices. The

probability of multiple errors due to technology shrinkage is

given in [4] and [5]. As the size of the memories increases the

probability of having multiple bits upset increases since large

number of memory cells are used [6] and [7].

Packing and shielding cannot be effective against MBUs and

SEUs since the neutrons can penetrate through the shield

packages [5], [8].

Interleaving is the Common approach used in memory, in

which the cell that belonging to the same logical word are

placed at different positions during the design. The MBU

errors are caused to the cells that are closer discussed in [9].

However this method cannot be used in larger memories

because of the high accesses time, power consumption and

floor plan discussed in [10]. Built-in current sensors (BICS)

can deduct errors by detecting changes in the current as in

[11], [12]. The protection can be optimized with the error

correction codes (ECC) to cope up with MBUs. This is the

objective of this paper proposing a new ECC to overcome

MBUs.

2. Error correcting codes

Error correcting codes are widely used in protecting memories

against the soft errors that are occurring due to the changes in

the environment and the operating point of the devices.

Hamming codes are widely used to protect memories against

SEU because of the reduced area and performance. Hamming

codes are used for single error deduction (SEC) and multiple

error deduction. Hamming codes are capable of deducting up

to two errors in a given code word. In order to improve the

efficiency of the error correction, Triple modular redundancy

(TMR) is used. But TMR uses poling methods that increase

the area along with hamming code can correct only one error.

Hence BICS are used along with ECC with a trade-off with

area. Different methods are proposed that depends on

redundancy that gradually increases the area.

Error deduction and correction in memories should be simple

since accesses time is a major criteria. Due to high bandwidth

used in memories in SOC applications the efficiency of

repairing the memories decreases and redundant methods

cannot be used. Examples of such applications are presented

in [13] [14]. In order to cope up with the errors during the

manufacturing processes certain times half of the device is

used this is done by setting the MSB of the memory to be 0 or

1. Divide by half technique to cope with this problem has

been proposed [15], to improve the efficiency of the memories

novel techniques are required in the error correction. The

technique that is used here gradually can correct more number

of the errors with improving the overall system reliability.

3. Proposed technique

In this detection/correction scheme the message bits are

arranged in array format. This is a combination of the parity

codes and the hamming codes. The n-bit code word is divided

into n1 sub-words of width n2 (i.e. k=n1*n2). A (n1, n2) matrix

is formed where n1 and n2 represent the numbers of rows and

columns, respectively. For each of the n1 rows, the check bits

are added for single error correction/double error detection.

Another n2 bits are added as vertical parity bits.

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

2

M0 M1 M2 M3 M4 M5 M6 M7 B0 B1 B2

M8 M9 M10 M11 M12 M13 M14 M15 B3 B4 B5

M16 M17 M18 M19 M20 M21 M22 M23 B6 B7 B8

M24 M25 M26 M27 M28 M29 M30 M31 B9 B10 B11

P0 P1 P2 P3 P4 P5 P6 P7
P8 P9 P10 P11 P12 P13 P14 P15

Fig 1: 32-bit logical organization

The technique is explained by considering a 32-bit word

length memory, which is divided into a matrix format as

shown in Fig. 1, where n1=4 and n2=8, M0 through M31 are

the data bits, C0 through C19 are the horizontal check bits, p0 –

p7 are the vertical parity bits. Hamming codes are applied to

each row. For an 8-bit data, 5 Hamming check bits are

required. Hence 5 check bits are added at the end of the 8 bits.

As mentioned above the horizontal bits P0 – P15 are calculated

using the ordinary parity generators. While the entire right

side bits B0 – B11 are calculated as follows:

 (1)

 (2)

 (3)

Similarly the parity codes are also generated

Accordingly, we calculate all check bits for all rows using

BNew= Bj+(cb*o) and Mnew = Ml+(n2*o) , where cb is the position

of check bit in the row, o is the row number where is the

corresponding check bit’s position in the first row and i is the

corresponding data bit’s position in this first row. A Hamming

decoder is used to decode each row. Decoding is done in two

steps. First, the horizontal check bits are calculated using the

saved data bits and compared with the saved horizontal check

bits. This procedure is called syndrome bit generation and B1

is called syndrome bit of check bit B1. Second, using

syndrome bits Si, the single error detection (SED)/double

error detection (DED)/no error (NE) signals are generated for

each row. If DED is activated (double error is detected in a

row), we use the vertical syndrome bits SPi and the saved

value of the bit we can correct any single or double erroneous

bits in each row using (7)

Micorrect = (Mierr 0)  (DEDj * SBn) (7)

where Mierr is the erroneous bit, Oi the decoder output

corresponding to the erroneous bit i, DEDj is the DED signal

of row j and SBn the syndrome parity of the corresponding

parity of the bit, e.g., for M10 , we have SP2.

It is important to mention that if more than two errors are

present in the code word, this technique can correct errors in

any row assuming that no error in the same column . If only

two errors occur, they these can be corrected without any

restriction. Algorithm 1 shows the procedure of detection and

correction in the proposed method which is applied on a

code word M, where B'i and P'i are the check bits and the

parity bits that are calculated using the saved data bits in the

memory. These are then compared with saved memory check

bits and parity bits to calculate the syndrome bits SB and SP.

Algorithm 1: code verification algorithm (M: data)

1: Read the saved data bits of M

2: Generate check bits using saved data bits (B'0 – B'11)

3: Generate syndrome bits of check bits (SB0 – SB11)

4: Generate parity bits using saved data bits (P'0 – P'7)

5: Generate syndrome bits of parity bits (SP1 – SP7)

6: Correct every saved bit if it is erroneous using (7)

7: Output the corrected word

Fig 2: Flow Diagram

The read and write procedure for the memory with error

correcting technique can be explained as follows. First each

word in the modules is segmented into multiple bit segments.

Then each n bit segment is encoded to k bit segment of (k - n)

check bits. Algorithms 2 and 3 show the procedure for

reading/writing words from/to a memory, respectively.

Algorithm 2: MEMORY READ

1. Read the word which contains the desired bits.

2. Correct for any errors.

3. Route the desired bits on the tree to the root node

Algorithm 3: MEMORY WRITE

1. Read the word which includes the desired bit.

2. Check for errors and correct them (if any)

3. Compare the value of the bit to be written against

the value stored in the memory.

Error free Error

Write Read

Code Word

Generate Parity Bits and
Check Bits

Generate Syndrome Bit SB
and SP

Perform Error
Correction

Output Code
Word

If

If

Generate Parity Bits
and Check Bits

Store Values

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

3

4. if bits are different then

5. Re-compute the check bits based on this new value.

6. Write back the data and the newly computed check

bits

7. Else

8. Write back the data and the newly computed check

bits

9. end if

Hence based on the algorithm the error deduction/correction is

carried out

4. Simulation Results

The entire coding is done in verilog HDL and simulated. Fault

injection is one of the key methods to estimate the error

detection/correction capabilities of the circuits which utilize

error detection and correction codes. Using a fault injection

method, the coverage of the proposed technique was

estimated. A thousand of faults were thrown and results were

analysed. Compared to the previous methods the proposed

method was able to deduct and correct up to eight errors in a

row with a condition that no errors occur in the same column.

Since this technique can correct only one error per row.

Figure 3 shows the simulated fault injection method with

three faults in data bits 0, 1 and 2 positions. And the result

shows a successful error correction by using this method.

Figure 4 shows the deduction and the correction coverage per

code word of 8bits and found that the proposed technique

Fig 3: Fault coverage

Proves to be a more efficient method for multi-bit correction

methods

Fig 4: MTTF of 32bit code word

A memory chip protected with the proposed technique and

Hamming Codes have been also described using Verilog

language. Random faults were thrown into the memory and

the METF for each technique was calculated. The METF of

each technique was calculated using 15000 trials for each

memory size, for more details, refer to [16]. We have used

codeword sizes 32 bits. The results are portrayed in Fig. 4.

Using the results obtained from METF using the expression

expressed in equation (8) the mean time to fail analysis can be

proceeded. For the 32bit code word a fault rate of about λ =

10-5 where λ denotes the number of upsets that occur in a day

table I gives the values that is obtained in the system during

the analysis. The proposed technique provides a more

efficient method and can provide better coverage.

TABLE I

MTTF IN DAYS OF PROPOSED TECHNIQUE WITH λ-5

Type of

protection

Memory Size

2Mb 16Mb 128Mb

Proposed codes 323.29 168.63 88.35

Hamming codes 15.35 5.47 1.95

 (8)

The redundant bits required for these techniques are tabulated

in table II. The extra redundant bits required for providing the

protection is 400% high compared to that of the hamming

code where hamming code redundant is considered as 100%.

Similarly for the 64bit word size the number of redundant bits

that is required is about 500% where the redundant bits

required for the hamming code is 100%.

TABLE II

REQUIRED REDUNDANT BITS

Type of

protection

Word Size

32 bit 64 bit

Proposed

method
28 40

Hamming

Codes
7 8

Traditional memory repair techniques for yield improvement

rely only on the addition of redundant rows and columns, which

are then used to replace defective ones in the fabricated chip

when necessary. As the number of redundant rows and columns

is increased to allow higher repair capability, the fabrication

yield also increases. However, since full size rows or columns

must be used to replace defective ones, which usually contain

only a few cells, this technique also increases the fabrication

cost. Moreover, when all redundant rows and columns are

exhausted, only a few chips can be used with degraded

capacity by setting the most significant address bit to a

constant value, due to the scattered distribution of defects in

the array.

The technique proposed here aims to reduce the cost per chip

and increase yield by using coding techniques that allows you

to save some of the faulty memory chips with small defects

instead of traditional redundant rows and columns. In the

analysis of yield and cost per chip presented here, the following

0

20

40

60

80

100

1 2 3 4 5 6 7 8

%
 O

F
C

O
V

ER
A

G
E

of faults per 16bit sub codeword

HC Proposed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
TT

F

MEMORY SIZE

Hamming Proposed

International Journal of Computer Applications (0975 – 8887)

International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing “ICIIIOSP-2013”

4

assumptions have been adopted for the following simulations.

1) All defective memory chips have only spot defects, and no

global defects, which are those defects affecting complete

sections of a chip or wafer. For traditional techniques, when

no redundant rows/columns are included in the chip, any

single spot defect will result in the chip being discarded.

2) A 1024*32 bits memory array is used for area calculation,

which has been obtained by modeling the chips

3) Each wafer can hold 1000 chips without any redundancy.

If redundant rows/columns are included on the chip, the

number of chips per wafer is reduced. For example, if we add

two redundant rows and two columns in each memory array the

number of chips per wafer will be 969. (This is used only for

the cost per chip.)

4.1. Yield Analysis
In order to confirm the yield benefits provided by our

technique, we have performed several simulations of a

production run for 1000 chips, with different numbers of

defects per array and different quantities of redundant rows

and columns in each run compared to our technique. In the

yield analysis, the considered number of defects per chip in

each simulated production run has been randomly distributed

in the array, and simulations have been performed assuming

the following scenario:

Chips are repaired using the coding techniques (Hamming and

proposed) and chips with remaining defects after all redundant

elements have been allocated are discarded. For each different

simulation run, the yield has been calculated by dividing the

effective number of chips that were considered good for sale

after repair in each case by the total number of chips that are

produced 1000 in our simulations. Using this criteria we

evaluated the effectiveness of the proposed approach and

calculated the yield for each technique.

4.2. Cost per Chip Analysis
In order to confirm the cost benefits provided by our

technique, we have performed several simulations of a

production run for 1000 chips, with different numbers of

defects per array and using the same coding techniques. In the

cost analysis, the considered number of defects per chip in

each simulated production run has been randomly distributed in

the array, and simulations have been performed assuming two

different scenarios

Chips are repaired using the coding techniques (Hamming and

proposed) and chips with remaining defects after all redundant

elements have been allocated are discarded. For each different

simulation run, the relative cost per chip has been calculated by

dividing total number of chips that could be produced in the

ideal scenario where no redundancy is used and no chips

have defects (1000 in our simulations) by the effective number

of chips that were considered good for sale after repair in each

case

5. Conclusion
Here a high level error detection and correction method is

introduced. The proposed protection code combines Hamming

code and Parity code, so that multiple errors can be detected

and corrected. The fault-injection based experimental results

show that the proposed method provides better Detection and

correction coverage than the Hamming codes. A 32 bit

encoder and decoder are designed and simulated. By using the

fault simulation method faults are forced for multiple bits by

using forcing value in modelsim and results are verified. The

code is able to deduct SEU/MBU and correct the errors. The

research will be further extended to reduce the area and to

improve the error correction of the proposed method.

6. References
[1] G. Cardarilli, A. Leandri, P. Marinucci, M. Ottavi, S.

Pontarelli, M. Re, and A. Salsano, “Design of a fault

tolerant solid state mass memory,” IEEE Trans. Reliab.,

vol. 52, no. 4, pp. 476–491, Dec. 2003.

[2] B. Cooke, “Reed Muller Error Correcting Codes,” MIT

Undergraduate J. Math., vol. 1, pp. 21–26, 1999.

[3] P. A. Ferreyra, C. A. Marques, R. T. Ferreyra, and J. P.

Gaspar, “Failure map functions and accelerated mean

time to failure tests: New approaches for improving the

reliability estimation in systems exposed to single event

upsets,” IEEE Trans. Nucl. Sci., vol. 52, no. 1, pp. 494–

500, Jan. 2005.

[4] P. Hazucha and C. Svensson, “Impact of CMOS

technology scaling on the atmospheric neutron soft error

rate,” IEEE Trans. Nucl. Sci., vol. 47, no. 6, pp. 2586–

2594, Dec. 2000.

[5] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U.

Gunneflo, “Using heavy-ion radiation to validate fault-

handling mechanisms,” IEEE Trans. Microelectron., vol.

14, pp. 8–23, 1994.

[6] R. Reed, M. Carts, P. Marshall, C. J. Marshall, O.

Musseau, P. Mc- Nulty, D. Roth, S. Buchner, J.

Melinger, and T. Corbiere, “Heavy ion and proton-

induced single event multiple upset,” IEEE Trans. Nucl.

Sci., vol. 44, no. 6, pp. 2224–2229, Dec. 1997.

[7] N. Seifert, D. Moyer, N. Leland, and R. Hokinson,

“Historical trend in alpha-particle induced soft error rates

of the Alpha microprocessor,” in Proc. 39th Annu. IEEE

Int. Reliab. Phys. Symp., 2001, pp. 259–265.

[8] S. Satoh, Y. Tosaka, and S. A. Wender, “Geometric

effect of multiple-bit soft errors induced by cosmic ray

neutrons on DRAM’s” IEEE Electron Device Lett., vol.

21, no. 6, pp. 310–312, 2000.

[9] A. Dutta and N. A. Touba, “Multiple bit upset tolerant

memory using a selective cycle avoidance based SEC-

DED-DAEC code.” in Proc. IEEE VLSI Test Symp.

(VTS), 2007, pp. 349–354.

[10] M. Nicolaidis, F. Vargas, and B. Courtois, “Design of

built-in current sensors for concurrent checking in

radiation environments,” IEEE Trans. Nucl. Sci., vol. 40,

no. 6, pp. 1584–1590, Dec. 1993.

[11] J. Lo, “Analysis of a BICS-only concurrent error

detection method,” IEEE Trans. Computers, vol. 51, no.

3, pp. 241–253, 2002.

[12] S. K. Lu, “Efficient built-in redundancy analysis for

embedded memories with 2-D redundancy,” IEEE Trans.

Very Large Scale Integr. (VLSI) Systems, vol. 14, no. 1,

pp. 34–42, Jan. 2006.

[13] C. Argyrides, A. A. Al-Yamani, C. Lisboa, and L. C. D.

K. Pradhan, “Increasing memory yield in future

technologies through innovative design,” in Proc. 8th Int.

Symp. Quality Electron. Des. (ISQED), Mar. 2009, pp.

622–626.

[14] C. Argyrides, H. Zarandi, and D. K. Pradhan, “Matrix

codes: Multiple bit upsets tolerant method for SRAM

memories”, 22nd IEEE International Symposium on

Defect and Fault-Tolerance in VLSI Systems, 2007. DFT

'07, Pp. 340–348.

[15] J. A. Maestro and P. Reviriego, “Study of the effects of

MBUs on the reliability of a 150 nm SRAM device,” in

Proc. 45th Annu. Des. Autom. Conf. (DAC), 2008, pp.

930–935.

